Entire functions mapping

countable dense subsets of the reals onto each other monotonically

Daihachiro Sato and Stuart Rankin

Abstract

It is shown that for arbitrary countable dense subsets A and B of the real line, there exists a transcendental entire function whose restriction to the real line is a real-valued strictly monotone increasing surjection taking A onto B. The technique used is a modification of the procedure Maurer used to show that for countable dense subsets A and B of the plane, there exists a transcendental entire function whose restriction to A is a bijection from A to B.

1. Introduction

The following problem was posed by Erdös [2; p. 297, Problem 24] in 1957:

Does there exist an entive function f not of the form $a_{0}+a_{1} z$, such that the number $f(x)$ is rational or irrational according as x is rational or irrational? More generally, if A and B are two denumerable dense sets, does there exist an entire function which maps A onto B ?

A solution to the first part of the problem is to be found in Neumann and Rado [4], while if one interprets the second part of the problem to mean countable dense subsets A and B of the plane, then a solution to this part is given by Maurer [3], who establishes the existence of a
transcendental entire function whose restriction to A is a bijection from A to B. In fact, the authors [5] have shown that such a function can be constructed so that each of its derivatives has this property as well.

On the other hand, if A and B are considered to be countable dense subsets of the real line, then the following theorem, due to Barth and Schneider [1], solves the problem:

THEOREM. Let A and B be two countable dense subsets of the real line. Then there exists an entire transcendental function f such that $f(z) \in B$ iff $z \in A$.

It is still unresolved whether such a statement holds if A and B are countable dense subsets of the plane. By the Picard Theorem, the function Maurer constructs cannot possible satisfy this condition. The purpose of this paper is to show that a modification of Maurer's technique gives a straightforward proof of the theorem that Barth and Schneider actually proved.

2. Monotone generalized interpolation

THEOREM 1. Let A and B be countable dense subsets of the real line. Then there exists a transcendental entire function f such that f restricted to the real line is a real homeomorphism, and $f(A)=B$.

Proof. Suppose that we have both A and B enumerated. Choose the first element in the enumeration of A and of B, say a_{1} and b_{1} respectively. Define $f_{0}(z)=\left(z-a_{1}\right)+b_{1}$, and $A_{0}=\left\{a_{1}\right\}, B_{0}=\left\{b_{1}\right\}$. Suppose at the nth stage we have sets $A_{n-1}=\left\{a_{1}, a_{2}, \ldots, a_{2 n-1}\right\} \subset A$ and $B_{n-1}=\left\{b_{1}, b_{2}, \ldots, b_{2 n-1}\right\} \subset B$ and a monotone increasing polynomial f_{n-1} such that $f_{n-1}\left(a_{i}\right)=b_{i}$ for $i=1,2, \ldots, 2 n-1$. Construct A_{n}, B_{n} and f_{n} as follows:
(i) Let $h_{n}(z)=\prod_{i=1}^{2 n-1}\left(z-a_{i}\right)$ and choose the first element remaining in the enumeration of A after A_{n-1} is removed. Denote this element by $a_{2 n}$. Let $c_{2 n}$ be the intersection of all closed intervals containing
$A_{n-1} \cup\left\{a_{2 n}\right\}$. There exists a real $\delta>0$ such that for each real k satisfying $0<k<\delta$, the polynomial $f_{n-1}(x)+k h_{n}(x)$ is monotone increasing on $C_{2 n}$, and hence on the whole line. Since $B \sim B_{n-1}$ is dense, we may choose such a k, say k_{n}, as small as we like so that $f_{n-1}\left(a_{2 n}\right)+k_{n} h_{n}\left(a_{2 n}\right)=b_{2 n} \in B \sim B_{n-1}$. Let $g_{n}(z)=f_{n-1}(z)+k_{n} h_{n}(z)$.
(ii) Now choose the first element remaining in the enumeration of B after $B_{n-1} \cup\left\{b_{2 n}\right\}$ is removed. Denote this element by $b_{2 n+1}$. Let $C_{2 n+1}$ be the intersection of all closed intervals containing $C_{2 n} \cup\left[g_{n}^{-1}\left(b_{2 n+1}\right)-\frac{1}{2}, g_{n}^{-1}\left(b_{2 n+1}\right)+\frac{1}{2}\right]$. Let $F(z, w)=g_{n}(z)+w\left(z-a_{2 n}\right)^{2} h_{n}(z)-b_{2 n+1}$. Since the restriction of g_{n} to the reals is a surjective real-valued function, there is a real x_{0} such that $g_{n}\left(x_{0}\right)=b_{2 n+1}$. Thus $F\left(x_{0}, 0\right)=0$, while $\frac{\partial f}{\partial w}\left(x_{0}, 0\right) \neq 0$, and so the implicit function theorem asserts that for arbitrarily small $\varepsilon>0$, there exists a real l_{n}, satisfying $0<l_{n}<\varepsilon$, and $a_{2 n+1} \in A \sim\left(A_{n-1} \cup\left\{a_{2 n}\right\}\right)$ with $F\left(a_{2 n+1}, z_{n}\right)=0$. Define $f_{n}(z)=f_{n-1}(z)+k_{n} h(z)+\tau_{n}\left(z-a_{2 n}\right)^{2} h(x), A_{n}=A_{n-1} \cup\left\{a_{2 n}, a_{2 n+1}\right\}$ and $B_{n}=B_{n-1} \cup\left\{b_{2 n}, b_{2 n+1}\right\}$. Then $f_{n} \mid A_{n}$ is a bijection from A_{n} to B_{n}. As in case (i), f_{n} can be made monotone increasing on $C_{2 n+1}$ by choosing I_{n} sufficiently small and thus f_{n} can be made monotone increasing on the whole line. Moreover, at each stage we need only consider a finite number of conditions to obtain an upper bound for k_{n} and l_{n} so that $f(z)=\sum_{n=1}^{\infty} f_{n}(z)$ converges to a transcendental entire function. By the construction of each f_{n}, the restriction of f to the reals is a monotone increasing surjective real-valued function taking A onto B.

References

[1] K.F. Barth and W.J. Schneider, "Entire functions mapping countable dense subsets of the reals onto each other monotonically", J. London Math. Soc. (2) 2 (1970), 620-626.
[2] Paul Erdös, "Some unsolved problems", Michigan Math. J. 4 (1957), 291-300.
[3] W.D. Maurer, "Conformal equivalence of countable dense sets", Proc. Amer. Math. Soc. 18 (1967), 269-270.
[4] B.H. Neumann and R. Rado, "Monotone functions mapping the set of rational numbers onto itself", J. Austral. Math. Soc. 3 (1963), 282-287.
[5] Daihachiro Sato and Stuart Rankin, "Highly conformal equivalence of countable dense sets", submitted.

Department of Mathematics,
University of Saskatchewan,
Regina Campus,
Regina,
Saskatchewan,
Canada;
Department of Mathematics,
University of Western Ontario,
London,
Ontario,
Canada.

