C. L. BelnaNagoya Math. J.Vol. 47 (1972), 49-58

NON-ESSENTIAL CLUSTER VALUES AND NORMAL FUNCTIONS

C. L. BELNA*

1. Introduction

We consider continuous functions f which map the open unit disk D into the Riemann sphere W. For a point ζ on the unit circle C, we say that χ is a *chord at* ζ if χ is a chord of C having one endpoint at ζ and that Δ is a Stolz angle at ζ if Δ is a Stolz angle with vertex ζ . Suppose S denotes either a chord at ζ , a Stolz angle at ζ , or D. Then, letting σ denote the chordal metric on W and setting

$$S_r = S \cap \{z \in D : |z - \zeta| < r\}$$
 $(r > 0)$,

we define the cluster set $C(f,\zeta,S)$ of f at ζ relative to S and the essential cluster set $C_e(f,\zeta,S)$ of f at ζ relative to S as follows: the point $w^* \in W$ is in $C(f,\zeta,S)$ if, for every $\varepsilon > 0$ and every r > 0,

$$S_r \cap f^{-1}(\{w \in W : \sigma(w, w^*) < \varepsilon\}) \neq \phi$$
;

whereas w^* is in $C_e(f,\zeta,S)$ if, for every $\varepsilon > 0$,

$$\limsup_{r o 0}rac{m[S_r\,\cap\,f^{-1}(\{w\in W\colon\sigma(w,w^*)0$$
 ,

where m denotes linear Lebesgue measure m_1 if S is a chord at ζ and denotes 2-dimensional Lebesgue measure m_2 if S is either a Stolz angle at ζ or D. The abbreviated notations $C(f,\zeta)$ and $C_e(f,\zeta)$ are used in place of $C(f,\zeta,D)$ and $C_e(f,\zeta,D)$. We remark that both $C(f,\zeta,S)$ and $C_e(f,\zeta,S)$ are closed subsets of W with $C_e(f,\zeta,S) \subset C(f,\zeta,S)$ and that

$$\lim_{r\to 0}\frac{m[S_r\cap f^{-1}(G)]}{mS_r}=1$$

Received January 8, 1971.

^{*} Research performed in part at the U.S.A.F. Aerospace Research Laboratories while in the capacity of an Ohio State University Research Foundation Research Analyst under Contract F33615-67-C-1758.

for each open subset G of W containing $C_e(f,\zeta,S)$. (Note that the latter fact is trivially true for open sets G containing $C(f,\zeta,S)$.)

The object of our study is the open set $C(f,\zeta,S) - C_e(f,\zeta,S)$, which we call the set of non-essential cluster values of f at ζ relative to S. In section 2 (3) we give a necessary condition for a point w to be a non-essential cluster value of f at ζ relative to a chord (Stolz angle) at ζ . In both of these sections we make use of the following lemma of Lappan [3, Lemma 2, p. 46] (see also Rung [7, p. 424]) concerning the non-Euclidean hyperbolic distance between points a and b in D given by

$$\rho(a,b) = \tanh^{-1}\left(\left|\frac{a-b}{1-\bar{a}b}\right|\right).$$

LEMMA L. If a and b are in D with $\rho(a,b) = M$, then

$$\tanh M \leq \frac{|a-b|}{1-|a|} \leq \frac{2\tanh M}{1-\tanh M}.$$

We show in section 4 that normal functions have neither non-essential chordal cluster values nor non-essential angular cluster values. On the other hand, in the last section we exhibit a normal function having non-essential cluster values at almost every $\zeta \in C$ relative to D.

2. Chordal Cluster Sets

For each $a \in D$ and each M > 0, we set

$$D(a, M) = \{z \in D : \rho(a, z) < M\}$$

and we denote the boundary of D(a, M) by $\partial D(a, M)$.

LEMMA 1. Suppose $\{a_n\}$ is a sequence of points lying on the chord χ at $\zeta \in C$ with $a_n \to \zeta$. Then, for each M > 0,

$$\limsup_{r\to 0}\frac{m_{\scriptscriptstyle 1}[\chi_r\,\cap\,\bigcup\limits_{n=1}^\infty D(a_n,M)]}{m_{\scriptscriptstyle 1}\gamma_r}>0\;.$$

Proof. Choose a number M>0. Denote by b_n the point of $\chi\cap\partial D(a_n,M)$ that is furthest from ζ (in the Euclidean sense). Setting $r_n=|b_n-\zeta|$, we have

$$\frac{m_1[\chi_{r_n}\cap D(a_n,M)]}{m_1\chi_{r_n}} > \frac{|a_n-b_n|}{|b_n-\zeta|}.$$

Since $\{b_n\} \subset \chi$, there exists a constant K > 0 with $(1 - |b_n|)/|b_n - \zeta| > K$

for all n. Also, by Lemma L, $|a_n - b_n|/(1 - |b_n|) \ge \tanh M$ for each n. Consequently

$$\liminf_{n\to\infty}\frac{m_1[\chi_{r_n}\cap D(a_n,M)]}{m_1\gamma_{r_n}}\geq K\tanh M,$$

which clearly implies the conclusion of the lemma.

A sequence $\{a_n\} \subset D$ is said to be *close to* the sequence $\{b_n\} \subset D$ if $\rho(a_n, b_n) \to 0$ as $n \to \infty$.

THEOREM 1. Let $f: D \to W$ be continuous, let χ be a chord at $\zeta \in C$, and suppose $w_0 \in C(f, \zeta, \chi) - C_e(f, \zeta, \chi)$. If $\{a_n\}$ is a sequence of points on χ with $a_n \to \zeta$ and $f(a_n) \to w_0$, then there exists a sequence $\{b_n\} \subset \chi$ which is close to a subsequence of $\{a_n\}$ and for which $\{f(b_n)\}$ converges to a point of $C_e(f, \zeta, \chi)$.

Proof. Set $G_j = \{w \in W : \sigma(w, C_e(f, \zeta, \chi)) < 1/j\}$ and choose positive integers N and J such that $f(a_n) \notin \tilde{G}_j$ (the closure of G_j) for n > N and j > J. Set

$$M(n,j) = \max \{M : f(\chi \cap D(a_n, M)) \cap G_j = \phi\},\,$$

and suppose there exists a $j_0 > J$ for which

$$\limsup_{n\to\infty} M(n,j_0) = M_{j_0} > 0.$$

This implies the existence of a subsequence $\{a'_n\}$ of $\{a_n\}$ such that $f(\chi \cap D(a'_n, M_{j_0}/2)) \cap G_{j_0} = \phi$ for each n. Then, by Lemma 1,

$$\limsup_{r o 0} \ rac{m_1[\chi_r \cap igcup_{n=1}^\infty D(lpha_n', M_{f_0}/2)]}{m_1\chi_r} > 0$$
 ;

and hence

$$\lim_{r\to 0} \frac{m_1[\chi_r \cap f^{-1}(G_{j_0})]}{m_1\chi_r} \neq 1$$

in violation of $C_e(f,\zeta,\chi) \subset G_{j_0}$. It follows that, for each j>J, $\lim_{n\to\infty} M(n,j)=0$. Thus for each j>J there exist an integer n_j and a point $b_j\in\chi$ for which $|a_{n_j}-\zeta|<1/j$, $\rho(a_{n_j},b_j)<1/j$ and $f(b_j)\in G_j$. Then since each convergent subsequence of $\{f(b_j)\}$ converges to a point of $C_e(f,\zeta,\chi)$, the theorem is proved.

A chord χ at $\zeta \in C$ is called a segment of Julia for a function f at ζ provided f assumes all values of W except possibly two in each Stolz angle at ζ meeting χ .

COROLLARY 1. Let f be a meromorphic function in D, and let χ be a chord at $\zeta \in C$. If $C_e(f,\zeta,\chi) \neq C(f,\zeta,\chi)$, then χ is a segment of Julia for f at ζ .

Proof. Suppose $C_{\epsilon}(f,\zeta,\chi) \neq C(f,\zeta,\chi)$. Applying Theorem 1 we obtain sequences $\{a_n\}, \{b_n\} \subset \chi$ and distinct complex values α and β for which $\rho(a_n,b_n) \to 0$, $f(a_n) \to \alpha$ and $f(b_n) \to \beta$. According to Lappan [3, Theorem 4, p. 44], for each value $\delta \in W$ with perhaps two exceptions, there exists a sequence $\{z_k^i\}$ close to a subsequence of $\{a_n\}$ with $f(z_k^i) = \delta$ for each k. Then, for any Stolz angle Δ at ζ meeting χ , each of the sequences $\{z_k^i\}$ has a terminal subsequence that lies in Δ and the corollary is proved.

The outer angular cluster set of f at $\zeta \in C$ is the set

$$C_{\mathscr{A}}(f,\zeta) = \bigcup_{\Lambda} C(f,\zeta,\Delta)$$

where Δ ranges over all Stolz angles at ζ . Since $C(f, \zeta, \Delta) = W$ for each Stolz angle Δ at ζ meeting a segment of Julia for f at ζ , we have the following result.

COROLLARY 2. Let f be a meromorphic function in D, and let ζ be a point of C. If $C_{\mathfrak{s}}(f,\zeta) \neq W$, then $C_{\mathfrak{e}}(f,\zeta,\chi) = C(f,\zeta,\chi)$ for every chord χ at ζ .

3. Angular Cluster Sets

We start with a simple lemma.

LEMMA 2. Let a be a point of D, let χ be the chord at $\zeta \in C$ that passes through a, and let M be a positive number. If Q represents either component of $D(a, M) - \chi$, then

$$m_2 Q \geq K_M (1 - |\alpha|)^2$$

where $K_M = [\arcsin (\operatorname{sech} M) - \tanh M \operatorname{sech} M] \tanh^2 M > 0$.

Proof. For a=0, $m_2Q=(\pi/2) \tanh^2 M>K_M$. Suppose $a\neq 0$. Let A denote the line segment joining a to the origin, and let χ^* be the chord of C that passes through a and is orthogonal to A. Then let T

be the component of $D(a, M) - \chi^*$ that is separated from the origin by χ^* . Clearly $m_2Q \geq m_2T$. Through elementary calculations we find that

$$m_2T = \tau[|a|, M](1 - |a|)^2$$

with

$$au[|a|,M] = \Big(rac{1+|a|}{|a|}\Big)^2\Big(rac{\lambda}{1-\lambda^2}\Big)^2[rcsin\,(\sqrt{1-\lambda^2})-\lambda\sqrt{1-\lambda^2}]$$

where $\lambda = |a| \tanh M$. Finally, it is easy to see that $\tau[|a|, M] \geq K_M$ and the proof is complete.

LEMMA 3. Let $\{a_n\}$ be a sequence of points in the Stolz angle Δ at $\zeta \in C$ with $a_n \to \zeta$. Then, for each M > 0,

$$\limsup_{r o 0} rac{m_2[arDelta_r \, \cap \, igcup_{n=1}^{\infty} D(a_n, M)]}{m_2 arDelta_r} > 0 \; .$$

Proof. Choose a number M>0. Since $\{a_n\}\subset \Delta$, there exists a number $M^*(0 < M^* \le M)$ such that the set $D(a_n, M^*)\cap (D-\Delta)$ is connected for each n. Let χ_n denote the chord at ζ that passes through the point a_n , and let D_n^1 and D_n^2 denote the components of $D(a_n, M^*) - \chi_n$ with $m_2D_n^1 \le m_2D_n^2$. It is clear that, for each n, either $D_n^1 \subset \Delta$ or $D_n^2 \subset \Delta$. Denote by b_n the point of $\chi_n \cap \partial D(a_n, M^*)$ that is furthest from ζ (in the Euclidean sense), and set $r_n = |b_n - \zeta|$. If E_n denotes the region obtained by reflecting D_n^1 across χ_n , it is evident that

$$E_n \subset D_n^2 \, \cap \, \{z \in D : |z-\zeta| < r_n\}$$

and that $m_2 E_n = m_2 D_n^1$. Thus

$$m_2[\Delta_{r_n} \cap D(a_n, M^*)] \geq m_2 D_n^1$$
.

Applying Lemma 2 we obtain

$$m_2[\Delta_{r_n} \cap D(a_n, M^*)] \geq K_{M^*}(1 - |a_n|)^2$$
.

Then, using α to denote the angular opening of Δ , we have

$$\frac{m_2[\Delta_{r_n} \cap D(a_n, M^*)]}{m_2\Delta_{r_n}} \geq (2\alpha^{-1}K_{M^*}) \left(\frac{1-|a_n|}{|b_n-\zeta|}\right)^2.$$

It follows from Lemma L that there exists a constant A>0 such that

 $(1-|a_n|)/(1-|b_n|) \ge A$ for all n; and, since $\{b_n\} \subset \Delta$, there exists a constant B>0 with $(1-|b_n|)/|b_n-\zeta| \ge B$ for all n. Hence

$$\liminf_{n o\infty}rac{m_2[arDelta_{ au_n}\,\cap\,D(a_n,M^*)]}{m_2arDelta_{ au_n}}\geq (AB)^2lpha^{-1}K_{M^*}>0$$
 ,

and the conclusion of the lemma now follows.

We now give the analogue of Theorem 1 for Stolz angles.

THEOREM 2. Let $f: D \to W$ be continuous, let Δ be a Stolz angle at $\zeta \in C$, and suppose $w_0 \in C(f, \zeta, \Delta) - C_e(f, \zeta, \Delta)$. If $\{a_n\}$ is a sequence of points in Δ with $a_n \to \zeta$ and $f(a_n) \to w_0$, then there exists a sequence $\{b_n\} \subset \Delta$ which is close to a subsequence of $\{a_n\}$ and for which $\{f(b_n)\}$ converges to a point of $C_e(f, \zeta, \Delta)$.

The proof of Theorem 2 is obtained by using Lemma 3 in place of Lemma 1 and replacing χ by Δ in the proof of Theorem 1. Also the proofs of the following corollaries are similar to those of the corollaries of Theorem 1.

COROLLARY 1. Let f be a meromorphic function in D, and let Δ be a Stolz angle at $\zeta \in C$. If $C_e(f,\zeta,\Delta) \neq C(f,\zeta,\Delta)$, then f assumes all values on W except possibly two in each Stolz angle Δ^* at ζ containing $\bar{\Delta}$.

COROLLARY 2. Let f be a meromorphic function in D, and let ζ be a point of C. If $C_{\mathscr{A}}(f,\zeta) \neq W$, then $C_{\varepsilon}(f,\zeta,\Delta) = C(f,\zeta,\Delta)$ for each Stolz angle Δ at ζ .

4. Applications to Normal Functions

Let \mathscr{T} denote the collection of all one-one conformal mappings of D onto D. A continuous function $f:D\to W$ is said to be *normal* if the family of functions $\{f(T(z))\}_{T(z)\in\mathscr{F}}$ is normal in D in the sense of Montel.

THEOREM 3. Suppose the continuous function $f: D \to W$ is normal. Then, for each $\zeta \in C$, (1) $C_e(f, \zeta, \chi) = C(f, \zeta, \chi)$ for each chord χ at ζ and (2) $C_e(f, \zeta, \Delta) = C(f, \zeta, \Delta)$ for each Stolz angle Δ at ζ .

Proof. Assume $C_e(f,\zeta,\chi) \neq C(f,\zeta,\chi)$ for some $\zeta \in C$ and some chord χ at ζ . By Theorem 1 there exist sequences $\{a_n\}, \{b_n\} \subset \chi$ and distinct complex values α and β for which $\rho(a_n,b_n) \to 0$, $f(a_n) \to \alpha$ and $f(b_n) \to \beta$. According to Lappan [4, Theorem 2, p. 156], f is non-normal in violation of the hypothesis; and (1) is proved. The proof of (2) is similar.

The converse of Theorem 3 is not true, as the following theorem shows.

THEOREM 4. There exists a non-normal continuous function $f: D \to W$ such that, for each $\zeta \in C$, (1) $C_e(f,\zeta,\chi) = C(f,\zeta,\chi)$ for each chord χ at ζ and (2) $C_e(f,\zeta,\Delta) = C(f,\zeta,\Delta)$ for each Stolz angle Δ at ζ .

Proof. Define the sets

$$A = \{z \in D : |z - 3/4| \le 1/4\}$$

and

$$B = \{z \in D : |z - 1/2| \ge 1/2\} .$$

Let $\{a_n\}$ and $\{b_n\}$ be disjoint sequences of points in $D-(A\cup B)$ with $a_n\to 1$ and $\rho(a_n,b_n)\to 0$. Define the continuous function F on $A\cup B\cup \{a_n\}\cup \{b_n\}$ by

$$F(z) = egin{cases} w_1 & ext{ for } z \in A \ \cup \ B \ \cup \ \{a_n\} \ w_2 & ext{ for } z \in \{b_n\} \end{cases}$$

where w_1 and w_2 are distinct points of W. The function F can be extended to a continuous function $f:D\to W$. It follows from the result of Lappan cited in the proof of Theorem 3 that f is non-normal. Furthermore, for each $\zeta\in C$,

$$C(f,\zeta,S) = \{w_1\} = C_e(f,\zeta,S)$$

where S denotes an arbitrary Stolz angle or chord at ζ . Hence the theorem is proved.

We now show that Theorem 3 is not true if the condition that f is normal is removed, even if f is assumed to be holomorphic.

THEOREM 5. The function

$$F(z) = \prod_{j=1}^{\infty} \left\{ 1 - \left(\frac{z}{1 - n_j^{-1}} \right)^{n_j^2} \right\} \qquad (n_j = 3^j)$$

is holomorphic in D and has the properties: (1) for nearly every $\zeta \in C$, $C_e(F,\zeta,\rho_{\zeta}) \neq C(F,\zeta,\rho_{\zeta})$ where ρ_{ζ} denotes the chord at ζ which forms a diameter of C, and (2) for almost every $\zeta \in C$, $C_e(F,\zeta,\Delta) \neq C(F,\zeta,\Delta)$ where Δ denotes an arbitrary Stolz angle at ζ .

Proof. Bagemihl and Seidel [1] have shown that F(z) is holomorphic

in D and that $F(z) \to \infty$ as $|z| \to 1$ through a region Ω which is described as follows: for $j = 1, 2, 3, \cdots$ and $\nu = 0, 1, \cdots, n_j^2 - 1$ set

$$z_{j\nu} = (1 - n_j^{-1})e^{2\pi i \nu/n_j^2}$$

and

$$\Gamma_{j\nu} = \{z : |z - z_{j\nu}| \le r_j\}$$

where $r_j = 1/n_j^4$. Then Ω is the region obtained by deleting all the disks $\Gamma_{j\nu}$ from D.

Since each point of C is a limit point of the set $\{z_{j\nu}\}$ of zeros of $F(z), 0 \in C(F, \zeta)$ for every $\zeta \in C$; and it follows from a theorem of Collingwood [6, p. 66] that $0 \in C(F, \zeta, \rho_{\zeta})$ for nearly every $\zeta \in C$. Also, as a consequence of the uniqueness theorem of Lusin and Privaloff [6, p. 72] and Plessner's theorem [6, p. 70], for almost every $\zeta \in C$, $C(F, \zeta, \Delta) = W$ for each Stolz angle Δ at ζ . That F(z) has properties (1) and (2) now follows from the next two lemmas.

Lemma 4. $C_e(F,\zeta,\chi)=\{\infty\}$ for every $\zeta\in C$ and every chord χ at ζ .

Proof. Let ζ be a point of C and let χ be a chord at ζ . For $1/n_{k+1} \leq r \leq 1/n_k$ we have

$$egin{aligned} rac{m_1 [\chi_r \, \cap \, (D-arOmega)]}{m_1 \chi_r} & \leq n_{k+1} \sum_{j=k}^\infty rac{2}{n_j^4} \ & \leq 6 \sum\limits_{j=k}^\infty rac{1}{n_j^3}
ightarrow 0 \quad ext{as} \quad k
ightarrow \infty \;. \end{aligned}$$

Hence

$$\lim_{r\to 0}\frac{m_1[\chi_r\cap (D-\Omega)]}{m_1\chi_r}=0,$$

which implies $C_e(F, \zeta, \chi) = \{\infty\}$.

LEMMA 5. $C_e(F, \zeta, \Delta) = \{\infty\}$ for every $\zeta \in C$ and every Stolz angle Δ at ζ .

Proof. Choose a point $\zeta \in C$ and let Δ be a Stolz angle at ζ with angular opening α . For $1/n_{k+1} \leq r \leq 1/n_k$ we have

$$egin{aligned} rac{m_2[arDelta_r \, \cap \, (D-arOmega)]}{m_2arDelta_r} &\leq 2lpha^{-1}n_{k+1}^2 \sum_{j=k}^\infty n_j^2[\pi(1/n_j^4)^2] \ &\leq 18lpha^{-1}\pi \sum_{j=k}^\infty rac{1}{n_j^4} o 0 \quad ext{as} \quad k o \infty \;. \end{aligned}$$

Consequently

$$\lim_{r o 0} rac{m_2 [arDelta_r \, \cap \, (D - arOmega)]}{m_2 arDelta_r} = 0$$
 ,

and so $C_e(F,\zeta,\Delta) = {\infty}$.

5. Total Cluster Sets

If the analogue of Theorem 1 (or Theorem 2) for $C(f,\zeta)$ and $C_e(f,\zeta)$ were true, it would easily follow that these two sets are always equal for normal functions. Thus the next theorem shows that no such analogue exists. (In this section m denotes linear measure.)

Theorem 6. There exists a bounded holomorphic function g in D for which

$$m\{\zeta\in C:C_e(g,\zeta)=C(g,\zeta)\}=0.$$

To establish the existence of such a function, we make use of the following portion of a result of Goffman and Sledd [2, Theorem 2]. (We note that their proof is for real-valued functions in the upper half plane, but only slight modifications are needed to obtain a proof for complex-valued functions in D.)

THEOREM GS. For each $\zeta \in C$ let ρ_{ζ} denote the chord at ζ which forms a diameter of C. If $f: D \to W$ is measurable, then

$$m\{\zeta \in C: C_e(f,\zeta) \subset C_e(f,\zeta,\rho_t)\} = 2\pi$$
.

Proof of Theorem 6. It follows from a theorem of Littlewood [5, p. 172] that there exists a bounded holomorphic function g in D for which there exists a subset E of C with $mE = 2\pi$ and $C(g, \zeta, \rho_{\zeta}) \neq C(g, \zeta)$ for each $\zeta \in E$. By Theorem GS there exists a subset F of C with $mF = 2\pi$ and $C_e(g, \zeta) \subset C_e(g, \zeta, \rho_{\zeta})$ for each $\zeta \in F$. Then in view of Theorem 3 we have

$$C_{e}(g,\zeta) \subset C_{e}(g,\zeta,\rho_{t}) = C(g,\zeta,\rho_{t}) \subseteq C(g,\zeta)$$

for each $\zeta \in E \cap F$, and the theorem is proved.

REFERENCES

- F. Bagemihl and W. Seidel, Some boundary properties of analytic functions, Math. Z., 61 (1954), 186-199.
- [2] Casper Goffman and W. T. Sledd, Essential Cluster Sets, J. London Math. Soc., (2), 1 (1969), 295-302.
- [3] Peter Lappan, Some sequential properties of normal and non-normal functions with applications to automorphic functions, Comm. Math. Univ. Sancti Pauli, 12 (1964), 41-57.
- [4] —, Some results on harmonic normal functions, Math. Z., 90 (1965), 155-159.
- [5] J. E. Littlewood, Mathematical Notes (4): On a theorem of Fatou, London Math. J., 2 (1947), 172-176.
- [6] K. Noshiro, Cluster sets, Berlin, 1960.
- [7] D. C. Rung, Behavior of holomorphic functions in the unit disk on arcs of positive hperbolyic diameter, J. Math. Kyoto Univ., 8-3 (1968), 417-464.

Wright State University Dayton, Ohio 45431