BULL. AUSTRAL. MATH. SOC. VOL. 6 (1972), 263-285.

Extension of multipliers by periodicity

Michael G. Cowling

A theorem proved by de Leeuw for $\Gamma = R^n$ and later generalized by Lohoué and Saeki states that if Γ is an LCA group, Γ_0 a closed subgroup thereof, π the canonical mapping from Γ onto Γ/Γ_0 and ϕ a Fourier multiplier of type (p, p) on Γ/Γ_0 , then $\phi \circ \pi$ is a Fourier multiplier of type (p, p) on Γ . We show here that if $1 \leq p < q \leq \infty$, Γ_0 is a compact subgroup of Γ and ϕ is a Fourier multiplier of type (p, q)on Γ/Γ_0 , then $\phi \circ \pi$ is a Fourier multiplier of type (p, q)on Γ ; and if Γ_0 is a non-compact subgroup of Γ and $\phi \circ \pi$ is a Fourier multiplier of type (p, q) on Γ for some p and q satisfying $1 \leq p < q \leq \infty$, then ϕ is zero. We prove also that if ϕ is a Fourier multiplier of type (p, q) on Γ/Γ_0 , where $1 \leq q and <math>\Gamma$ is discrete, then $\phi \circ \pi$ is a Fourier multiplier of type (p, q) on Γ .

1. Introduction

Before stating our results formally, we introduce some notation. For a topological space X, C(X) denotes the space of continuous complex-valued functions on X, and $C_C(X)$ is the subspace of C(X)consisting of the functions with compact supports. We shall denote by G

Received 2 November 1971. Communicated by G.I. Gaudry. The author thanks Dr G.I. Gaudry for his helpful suggestions and comments during the writing of this paper.

and Γ dual LCA (locally compact abelian) groups with Haar measures dxand $d\chi$ respectively. Haar measures on dual groups will be assumed to be normalised so that the inversion theorem holds. Throughout this paper, pand q are used to denote extended real numbers satisfying $1 \le p \le \infty$ and $1 \le q \le \infty$; in Sections 2 and 3 we assume further that p < q, and in Section 4, we shall take p > q. The conjugate indices p' and q' are defined by the equations $p'^{-1} + p^{-1} = q'^{-1} + q^{-1} = 1$. $L^p(G)$ and $L^q(G)$ are the usual Lebesgue spaces on G; $M_{bd}(G)$ is the space of bounded Radon measures on G. The Fourier transform of a function f is denoted by \hat{f} ; A(G) is the space of Fourier transforms of elements of $L^1(\Gamma)$.

A Fourier multiplier of type (p, q), hereinafter called a multiplier of type (p, q), is defined to be a locally integrable function ϕ on Γ such that, for some constant C,

(1)
$$\left|\int_{\Gamma} \phi(\chi) \hat{f}(\chi) \hat{g}(\chi) d\chi\right| \leq C ||f||_p ||g||_q,$$

for all $f, g \in C_C(G)$. It is assumed that the function $\oint \hat{fg}$ is integrable for all $f, g \in C_C(G)$. The space of multipliers of type (p, q) is called $M_p^q(\Gamma)$; $M_p^q(\Gamma)$ is a normed vector space if the norm of ϕ , written $\|\phi\|_{p,q}$, is defined to be the least admissible value of C in the inequality (1), and we identify functions which are equal locally almost everywhere.

If ϕ is a multiplier of type (p, q), then, for fixed $f \in C_C(G)$, the linear functional

$$\Phi_{f} : g \neq \int_{\Gamma} \phi(\chi) \hat{f}(\chi) \hat{g}(\chi) d\chi$$

is defined on the dense subspace $C_C(G)$ of $L^{q'}(G)$ if $q \neq 1$, and on the dense subspace $C_C(G)$ of $C_0(G)$ if q = 1 ($C_0(G)$ is the space of continuous functions on G which vanish at infinity), and satisfies

$$|\Phi_{f}(g)| \leq ||\phi||_{p,q} ||f||_{p} ||g||_{q'}$$
.

Therefore there exists an element $t_{dr}f$ of $L^{q}(G)$ if $q \neq 1$, and of

 $M_{bd}(G)$ if q = 1 so that

(2)
$$\int_{\Gamma} \phi(\chi) \hat{f}(\chi) \hat{g}(\chi) d\chi = t_{\phi} f \star g(0)$$

One may show quite easily that $t_{\phi}f$ is actually in $L^{1}(G)$ if q = 1, using the fact that the only bounded measures for which translation is a (norm) continuous operation are those generated by integrable functions. Evidently, the operator t_{ϕ} is linear and

$$||t_{\phi}f||_{q} \leq ||\phi||_{p,q} ||f||_{p}$$

so t_{ϕ} may be extended to a continuous operator from $L^{p}(G)$ (or $C_{0}(G)$ if $p = \infty$) to $L^{q}(G)$ of norm $\|\phi\|_{p,q}$. If $p = \infty$, t_{ϕ} is in fact continuous from $C_{0}(G)$ to $L^{q}(G)$ with the weak topology on $C_{0}(G)$ induced by $L^{1}(G)$, and so may be extended to a continuous operator from $L^{\infty}(G)$ to $L^{q}(G)$ in this case, as $C_{0}(G)$ is dense in $L^{\infty}(G)$ with this weak topology. Now for $h, k \in L^{2}(G)$, Plancherel's formula may be written in the form

$$h \star k(0) = \int_{\Gamma} \hat{h}(\chi) \hat{k}(\chi) d\chi \; .$$

Consequently, the formula (2) leads us to believe that, in some sense (3) $(t_d f)^{-} = \phi \hat{f}$.

This formula can be shown to be correct provided a general notion of Fourier transform, involving distributional methods, is used. We have no use for the formula (3), so shall avoid this complication; the interested reader is referred to Gaudry [2] and Gluck [3] for details of distributional Fourier transforms. Our definition of $M_p^q(\Gamma)$ differs somewhat from the conventional definition, which involves these methods see for example, Gaudry [2] and Hörmander [5]: however, our space is a vector subspace of the usual space, with the same norm, provided that we identify functions which are equal locally almost everywhere. Let Γ_0 be a closed subgroup of the LCA group Γ , and let π be the canonical mapping of Γ onto Γ/Γ_0 . Associated naturally with π is the induced mapping π^* , which maps the measurable function ϕ on Γ/Γ_0 to the measurable function $\phi \circ \pi$ on Γ , effectively "extending ϕ by periodicity". As mentioned above, de Leeuw [1] showed that, for $\Gamma = R^n$, π^* is a continuous mapping of $M_p^p(\Gamma/\Gamma_0)$ into $M_p^p(\Gamma)$, and Lohoué [6] and Saeki [8] extended this result independently to general LCA groups. We prove the following theorems.

THEOREM 1. If Γ_0 is a compact subgroup of Γ and $1 \le p < q \le \infty$, then π^* maps $M_p^q(\Gamma/\Gamma_0)$ continuously into $M_p^q(\Gamma)$, and for any $\psi \in M_p^q(\Gamma)$ which is constant on cosets of Γ_0 in Γ , there exists $\phi \in M_p^q(\Gamma/\Gamma_0)$ such that $\pi^*\phi = \psi$.

THEOREM 2. If Γ_0 is a non-compact closed subgroup of Γ and, for some locally integrable function ϕ on Γ/Γ_0 , $\pi^*\phi \in M_p^q(\Gamma)$ for some pand q satisfying $1 \le p < q \le \infty$, then $\phi = 0$ locally almost everywhere.

THEOREM 3. If Γ_0 is a subgroup of the discrete LCA group Γ , and $1 \leq q , then <math>\pi^*$ maps $M_p^q(\Gamma/\Gamma_0)$ continuously into $M_p^q(\Gamma)$, and for any $\psi \in M_p^q(\Gamma)$ which is constant on cosets of Γ_0 in Γ , there exists $\phi \in M_p^q(\Gamma/\Gamma_0)$ such that $\pi^*\phi = \psi$.

Extension over compact subgroups (Theorem 1)

The subgroup Γ_0 is assumed to be compact, and so G_0 , its annihilator in G, is an open subgroup of G. The Haar measure dx_0 of G_0 may therefore be taken to be that of G restricted to G_0 . If we assign to G/G_0 the natural measure dx ascribing unit mass to each point of G/G_0 , then for any $f \in C_C(G)$,

$$\int_{G} f(x)dx = \int_{G/G_0} \left[\int_{G_0} f(x+x_0)dx_0 \right] d\dot{x}$$

Our assumption that the inversion theorem holds for dual pairs of groups implies that Γ_0 has total Haar measure one, and for any $\gamma \in C_C(\Gamma)$,

$$\int_{\Gamma} \Upsilon(\chi) d\chi = \int_{\Gamma/\Gamma_0} \left[\int_{\Gamma_0} \Upsilon(\chi + \chi_0) d\chi_0 \right] d\chi^{\bullet} ,$$

(with the obvious notation). It is well-known that if $f \in C_{\mathcal{C}}(G)$ is supported in G_0 , then $\hat{f} = \pi^* \hat{f}_0$, f_0 denoting the function frestricted to G_0 (whose dual is Γ/Γ_0).

Let f and g be in $C_C(G)$. Since G_0 is an open subgroup of G, the supports of f and g have non-void intersection with only a finite number of cosets of G_0 in G. Therefore there exist an integer n, points x_1, x_2, \ldots, x_n in G and functions

$$f_1, f_2, \dots, f_n, g_1, g_2, \dots, g_n$$
 in $C_C(G)$ such that $f = \sum_{j=1}^n f_j$

 $g = \sum_{k=1}^{n} g_k, \quad f_j \text{ is supported in } x_j + G_0, \quad g_k \text{ is supported in } -x_k + G_0$ and the sets $x_j + G_0$ (j = 1, 2, ..., n) are pairwise disjoint. Then, denoting by T_x the translation operator $T_x f(y) = f(y-x)$, we see that

$$\int_{\Gamma} \pi^* \phi(\chi) \hat{f}(\chi) \hat{g}(\chi) d\chi$$

$$\begin{split} &= \sum_{j,k=1}^{n} \int_{\Gamma} \pi^{*} \phi(\chi) \hat{f}_{j}(\chi) \hat{g}_{k}(\chi) d\chi \\ &= \sum_{j,k=1}^{n} \int_{\Gamma} \pi^{*} \phi(\chi) \overline{x_{j}(\chi)} \left(T_{-x_{j}} f_{j}\right)^{(\chi)} x_{k}(\chi) \left(T_{x_{k}} g_{k}\right)^{(\chi)} d\chi \\ &= \sum_{j,k=1}^{n} \int_{\Gamma} \pi^{*} \phi(\chi) \overline{x_{j}(\chi)} \pi^{*} \left(T_{-x_{j}} f_{j}\right)^{(\chi)} (\chi) x_{k}(\chi) \pi^{*} \left(T_{x_{k}} g_{k}\right)^{(\chi)} (\chi) d\chi \\ &= \sum_{j,k=1}^{n} \int_{\Gamma/\Gamma_{0}} \phi(\chi) \left(T_{-x_{j}} f_{j}\right)^{(\chi)} (\chi) \left(T_{x_{k}} g_{k}\right)^{(\chi)} (\chi) \left(\int_{\Gamma_{0}} (\overline{x_{j}} \cdot x_{k}) (\chi + \chi_{0}) d\chi_{0}\right] d\chi \end{split}$$

It is known that, if K is a compact LCA group, ξ a character of K, and dy its Haar measure, then $\int_{K} \xi(y) dy = 0$ unless $\xi(y) = 1$ for all $y \in K$. Thus

(4)
$$\int_{\Gamma} \pi^* \phi(\chi) \hat{f}(\chi) \hat{g}(\chi) d\chi = \sum_{j=1}^n \int_{\Gamma/\Gamma_0} \phi(\chi) \left(T_{-x_j} f_j \right) \hat{o}(\chi) \left(T_{x_j} g_j \right) \hat{o}(\chi) d\chi$$

and so

$$\begin{split} \left| \int_{\Gamma} \pi^{\star} \Phi(\chi) \hat{f}(\chi) \hat{g}(\chi) d\chi \right| &\leq \sum_{j=1}^{n} \left| \int_{\Gamma/\Gamma_{0}} \Phi(\chi) \left(T_{-x_{j}} f_{j} \right) \hat{0}(\chi) \left(T_{x_{j}} g_{j} \right) \hat{0}(\chi) d\chi \right| \\ &\leq \sum_{j=1}^{n} \left\| \Phi \right\|_{p,q} \left\| \left(T_{-x_{j}} f_{j} \right) 0 \right\|_{p} \left\| \left(T_{x_{j}} g_{j} \right) 0 \right\|_{q}, \\ &\leq \left\| \Phi \right\|_{p,q} \left[\sum_{j=1}^{n} \left\| \left(T_{-x_{j}} f_{j} \right) 0 \right\|_{p} \right]^{1/p} \left[\sum_{j=1}^{n} \left\| T_{x_{j}} g_{j} \right\|_{q}^{p'}, \right]^{1/p'} \end{split}$$

by Hölder's inequality. The space $l^{q'}$ is contained continuously in $l^{p'}$ since q' < p', and so

(5)
$$\left| \int_{\Gamma} \pi^{*} \phi(\chi) \hat{f}(\chi) \hat{g}(\chi) d\chi \right| \leq \|\phi\|_{p,q} \left[\sum_{j=1}^{n} \|T_{-x_{j}} f_{j}\|_{p}^{p} \right]^{1/p} \left[\sum_{j=1}^{n} \|T_{x_{j}} g_{j}\|_{q}^{q'} \right]^{1/q'}$$
$$= \|\phi\|_{p,q} \|f\|_{p} \|g\|_{q'}$$

if p > 1. A similar argument applies if p = 1, and so, as claimed, $\pi^*\phi \in M_p^q(\Gamma)$, and $\|\pi^*\phi\|_{p,q} \le \|\phi\|_{p,q}$.

To conclude the proof of the theorem, suppose that ϕ is a function on Γ/Γ_0 such that $\psi = \pi^* \phi \in M_p^q(\Gamma)$. Let f_0 and g_0 be in $C_C(G_0)$ and denote by f and g the functions in $C_C(G)$ which are supported in G_0 and agree with G_0 and f_0 on G_0 . Then

completing the proof of the theorem.

It is perhaps worthy of note that π^* is an isometry from $M_p^p(\Gamma/\Gamma_0)$ to $M_p^p(\Gamma)$ regardless of the normalisations of the Haar measures concerned. However, if p < q, the norm of $\pi^*\phi$ is dependent on the choice of Haar measure on Γ_0 . This is little more than a restatement of the fact that if T is a continuous linear operator from $L^p(G)$ to $L^q(G)$ and the Haar measure of G is changed from dx to Cdx, then the norm of T changes from ||T|| to $c^{1/q-1/p}||T||$.

3. Extension over non-compact subgroups (Theorem 2)

Theorem 2 is proved by contradiction. Estimates akin to those for the Dirichlet kernel are used to invalidate inequality (8) below. We prove the theorem first for continuous functions ϕ , and then generalize our result.

LEMMA. Suppose that $\phi \in C(\Gamma/\Gamma_0)$ and $\pi^*\phi \in M_p^q(\Gamma)$, where Γ_0 is a non-compact subgroup of Γ , and p < q. Then $\phi = 0$.

Proof. Suppose that $\phi \neq 0$. Evidently, without any loss of generality, we may suppose that

(a) $\phi(0) \neq 0$ since $T_{\chi} \pi^* \phi = \pi^* T_{\chi}^* \phi \in M_p^q(\Gamma)$ if $\pi^* \phi \in M_p^q(\Gamma)$; (b) $\phi(0) = 1$, since $M_p^q(\Gamma)$ is stable under scalar multiplication;

(c)
$$\phi$$
 is real-valued, since if $\pi^*\phi \in M_p^q(\Gamma)$, $\overline{\pi^*\phi} \in M_p^q(\Gamma)$ and so
 $\frac{\pi^*\phi + \overline{\pi^*\phi}}{2} \in M_p^q(\Gamma)$.

Because ϕ is continuous, there exists a neighbourhood V of $\dot{0}$ in Γ/Γ_0 such that $\phi(\dot{\chi}) > 0$ for any $\dot{\chi} \in V$. Let $v \in A\{\Gamma/\Gamma_0\}$ be a non-negative function which is supported in V, does not vanish at $\dot{0}$, and satisfies $\|v\|_{A(\Gamma/\Gamma_0)} = 1$. Therefore [7, 4.1.3], π^*v is the Fourier transform of a bounded measure μ on G, and $\int_G |d\mu| = 1$. If $f \in C_C(G)$, $f \star \mu \in L^1 \cap C(G)$, and so, for some real constant C_1 depending only on ϕ ,

$$\begin{split} \left| \int_{\Gamma} \pi^* \phi(\chi) \hat{f}(\chi) \hat{\mu}(\chi) \hat{f}(\chi) d\chi \right| &\leq C_1 \|f^* \mu\|_p \|f\|_q, \\ &\leq C_1 \|f\|_p \|f\|_q, \end{split}$$

by an obvious extension of the inequality (1).

Let $f \in C_{\mathcal{C}}(G)$ be such that \hat{f} is non-negative and non-vanishing at 0. Given a Γ_0 -valued sequence $(\chi_j)_{j \in \mathbb{Z}^+}$ $(\mathbb{Z}^+$ is the set of positive integers), define the $C_{\mathcal{C}}(G)$ -valued sequence $(f_n)_{n \in \mathbb{Z}^+}$

(7)
$$f_n = \left(\sum_{j=1}^n x_j\right) f ,$$

the summation being a sum of functions and not the group-theoretic sum. Then $\hat{f}_n = \sum_{i=1}^n T_{\chi_i} \hat{f}$, so

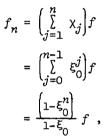
$$\begin{split} \left| \int_{\Gamma} \pi^* \phi(\chi) \hat{f}_n(\chi) \hat{\mu}(\chi) \hat{f}_n(\chi) d\chi \right| &= \int_{\Gamma} \pi^* \phi(\chi) \pi^* v(\chi) \sum_{j=1}^n T_{\chi_j} \hat{f}(\chi) \sum_{k=1}^n T_{\chi_k} \hat{f}(\chi) d\chi \\ &\geq \int_{\Gamma} \pi^* \phi(\chi) \pi^* v(\chi) \sum_{j=1}^n \left[T_{\chi_j} \hat{f}(\chi) \right]^2 d\chi \\ &= n \int_{\Gamma} \pi^* \phi(\chi) \pi^* v(\chi) [\hat{f}(\chi)]^2 d\chi , \end{split}$$

270

since $\pi^*\phi$ and π^*v are constant on cosets of Γ_0 in Γ . This last integral is non-zero, so for some constant C_2 independent of n,

(8)
$$n \leq C_2 \|f_n\|_p \|f_n\|_q$$
,

We show first that Γ_0 cannot contain a discrete subgroup isomorphic to the integers Z. Suppose that Γ_0 contains a discrete subgroup isomorphic to Z; let ξ_0 be a generator of this subgroup, and set $\chi_j = \xi_0^{j-1}$ for $j \in Z^+$. Then, with the notation (7),



unless $\xi_0(x) = 1$, in which case $f_n(x) = nf(x)$. It transpires that the kernel ker ξ_0 of ξ_0 is of measure zero, so we may neglect this possibility. If the Haar measures dt and $d\dot{x}$ of ker ξ_0 and $G/\text{ker}\xi_0$ are appropriately normalised,

$$\begin{split} \|f_{n}\|_{p}^{p} &= \int_{G} \left| \frac{1-\xi_{0}^{n}(x)}{1-\xi_{0}(x)} \right|^{p} |f(x)|^{p} dx \\ &= \int_{G/\ker\xi_{0}} \left| \frac{1-\xi_{0}^{n}(\dot{x})}{1-\xi_{0}(\dot{x})} \right|^{p} \left[\int_{\ker\xi_{0}} |f(x+t)|^{p} dt \right] d\dot{x} \end{split}$$

Now $|f|^p \in C_c(G)$ and so the function $F: \dot{x} \to \int_{\ker \xi_0} |f(x+t)|^p dt$ is continuous and has compact support [4, 15.21] and is therefore bounded. So for some C_3 depending on f and p but not on n,

271

(9)
$$||f_n||_p^p \leq c_3 \int_{G/\ker\xi_0} \left| \frac{1-\xi_0^n(\dot{x})}{1-\xi_0(\dot{x})} \right|^p d\dot{x}$$

The annihilator in G of the subgroup generated by ξ_0 is just $\ker\xi_0$, and so $G/\ker\xi_0$ is isomorphic (topologically and algebraically) to the dual group of Z, namely, the circle group. Therefore

$$\begin{aligned} \|f_n\|_p^p &\leq C_3 \int_0^{2\pi} \left| \frac{1 - \exp[int]}{1 - \exp[it]} \right|^p dt \\ &= 2C_3 \int_0^{\pi} \left| \frac{1 - \exp[int]}{1 - \exp[it]} \right|^p dt \end{aligned}$$

The following estimates are readily obtained:

$$\left|\frac{1-\exp[int]}{1-\exp[it]}\right| \le n \quad \text{for} \quad t \in \left(0, \frac{2\pi}{n}\right) ,$$

and

272

$$\left|\frac{1-\exp[int]}{1-\exp[it]}\right| \leq \frac{2}{2\sin(t/2)} \leq \frac{\pi}{t} \text{ for } t \in \left[\frac{2\pi}{n}, \pi\right].$$

Hence

$$\|f_n\|_p^p \le 2C_3 \pi \left[2n^{p-1} + \frac{(n/2)^{p-1}-1}{p-1}\right]$$
 if 1

and

$$\|f_n\|_1 \le 2C_3 \pi [2 + \log(n/2)];$$

that is,

(10)
$$||f_n||_p = O(\log n)$$
 as $n \to \infty$ if $p = 1$,

and

(11)
$$||f_n||_p = O(n^{1/p'})$$
 as $n \to \infty$ if $p > 1$.

Since p < q, $p'^{-1} + q^{-1} = 1 - p^{-1} + q^{-1} < 1$, so $||f_n||_p ||f_n||_q$, = o(n) as $n \neq \infty$, contradicting the inequality (8). Thus Γ_0 cannot contain a discrete subgroup isomorphic to Z.

By a well-known structure theorem [4, 9.8], Γ_0 contains an open subgroup of the form $R^n + K$, where K is compact. Since Γ_0 cannot contain a discrete subgroup isomorphic to Z , n = 0 , that is, Γ_0 contains a compact open subgroup. Denote Γ/K and Γ_0/K by Γ' and Γ_0' respectively; Γ_0/K is discrete because K is an open subgroup of Γ_0 , and because Γ_0 is not compact, Γ_0/K is infinite. Topologically and algebraically, Γ/Γ_0 is isomorphic to Γ'/Γ'_0 , so any continuous function ϕ on Γ/Γ_0 naturally defines a continuous function ϕ' on Γ'/Γ'_0 . Further, $\pi^*\phi$ is in $M_n^q(\Gamma)$ and is constant on cosets in Γ of the compact subgroup K , so by Theorem 1, $\phi' \circ \pi' \in M^{q}_{p}(\Gamma')$, where π' is the canonical mapping of Γ' onto Γ'/Γ'_0 . Thus, if $0 \neq \pi^* \phi \in M^q_p(\Gamma)$, there exists a group Γ' with an infinite discrete subgroup Γ'_0 and $\phi' \in C(\Gamma'/\Gamma'_0)$ such that $\phi' \circ \pi' \in M^q_p(\Gamma')$. Every element of Γ'_0 must be of finite order (since Γ'_0 cannot contain a subgroup isomorphic to Z); thus we may, without loss of generality, assume that $0 \neq \phi \in C(\Gamma/\Gamma_{\cap})$, $\pi^*\phi \in M^q_p(\Gamma)$, and Γ_0 is an infinite discrete subgroup, every element of which is of finite order.

Since Γ_0 is infinite, there exists a sequence $\{\xi_j\}_{j \in \mathbb{Z}^+}$ of elements of Γ_0 so that ξ_{k+1} is not a member of the finite group Λ_k of order m(k) generated by the elements $\xi_1, \xi_2, \ldots, \xi_k$. Denote by Λ the group $\overset{\infty}{\underset{k=1}{\overset{\circ}{\cup}}} \Lambda_k$, and let $(\chi_j)_{j \in \mathbb{Z}^+}$ be an enumeration of the elements of Λ so that

$$\{\chi_j : 1 \le j \le m(k)\} = \{\chi : \chi \in \Lambda_k\}$$

Let H be the annihilator of Λ in G; Λ is discrete, so G/H is compact. Then, as argued for (9)

(12)
$$||f_n||_p^p \leq C_{l_1} \int_{G/H} \left| \sum_{j=1}^n \chi_j(\dot{x}) \right|^p d\dot{x} ;$$

in particular, taking n = m(k),

$$\|f_{m(k)}\|_{p}^{p} \leq C_{4} \int_{G/H} \left| \sum_{j=1}^{m(k)} \chi_{j}(\dot{x}) \right|^{p} d\dot{x}$$

We assume that the Haar measure of G/H is normalised so that G/H has measure one. It is easily checked that the Fourier transform of the function F_k on G/H defined to be m(k) times the characteristic function of H_k/H , where H_k is the annihilator of Λ_k in G, is just the characteristic function of Λ_k ; that is, $F_k(\dot{x}) = \sum_{j=1}^{m(k)} \chi_j(\dot{x})$. It follows immediately that

$$\|f_{m(k)}\|_{p}^{p} \leq C_{1} \int_{G/H} |F_{k}(\dot{x})|^{p} d\dot{x}$$
$$= C_{1}m(k)^{p-1} ,$$

that is,

274

(13)
$$\|f_{m(k)}\|_{p} = O\{m(k)^{1/p'}\}$$

But from (8),

$$m(k) \leq C_2 \|f_{m(k)}\|_p \|f_{m(k)}\|_q,$$

= $o(m(k))$ as $m(k) \rightarrow \infty$

so we have produced the desired contradiction, and the lemma is proved.

Proof of Theorem 2. Suppose that ϕ is a locally integrable function such that $\pi^*\phi \in M_p^q(\Gamma)$. Then if $f, g \in C_c(G)$ and $\|f\|_p = \|g\|_q$, = 1, $\left|\int_{\Gamma} \pi^*\phi(\chi)\hat{f}(\chi)\hat{g}(\chi)d\chi\right| \leq \|\pi^*\phi\|_{p,q}$.

Since $M_p^{\mathcal{A}}(\Gamma)$ is stable under translation, for any $\xi \in \Gamma/\Gamma_0$,

$$\left|\int_{\Gamma} \pi^{*} T_{\xi}^{*} \phi(\chi) \hat{f}(\chi) \hat{g}(\chi) d\chi\right| \leq \|\pi^{*} \phi\|_{p,q},$$

so

$$\left| \int_{\Gamma/\Gamma_0} \phi(\mathbf{\dot{x}}-\mathbf{\dot{\xi}}) \left[\int_{\Gamma_0} \hat{f}(\mathbf{x}+\mathbf{x}_0) \hat{g}(\mathbf{x}+\mathbf{x}_0) d\mathbf{x}_0 \right] d\mathbf{\dot{x}} \right| \leq \|\pi^* \phi\|_{p,q}$$

whence

$$\left| \int_{\Gamma/\Gamma_{0}} \phi(\dot{\mathbf{x}}-\dot{\boldsymbol{\xi}}) \gamma(\dot{\boldsymbol{\xi}}) \left[\int_{\Gamma_{0}} \hat{f}(\mathbf{x}+\mathbf{x}_{0}) \hat{g}(\mathbf{x}+\mathbf{x}_{0}) d\mathbf{x}_{0} \right] d\dot{\mathbf{x}} \right| \leq \|\pi^{*}\phi\|_{p,q} |\gamma(\dot{\boldsymbol{\xi}})|$$

for any $\gamma \in C_{\mathcal{C}}(\Gamma/\Gamma_0)$ and $\dot{\xi} \in \Gamma/\Gamma_0$. Integrating with respect to $\dot{\xi}$ over Γ/Γ_0 and applying Fubini's Theorem, we see that

$$\left| \int_{\Gamma/\Gamma_{0}} \phi * \gamma(\dot{\chi}) \left[\int_{\Gamma_{0}} \hat{f}(\chi + \chi_{0}) \hat{g}(\chi + \chi_{0}) d\chi_{0} \right] d\dot{\chi} \right| \leq \|\pi^{*} \phi\|_{p,q} \|\gamma\|_{1},$$

that is,

$$\left|\int_{\Gamma} \pi^{*}(\phi * \gamma)(\chi)\hat{f}(\chi)\hat{g}(\chi)d\chi\right| \leq \|\pi^{*}\phi\|_{p,q}\|\gamma\|_{1}.$$

Thus $\pi^*(\phi * \gamma) \in M_p^q(\Gamma)$ for any $\phi \in C_c(\Gamma/\Gamma_0)$. Furthermore, $\phi * \gamma$ is a continuous function for any $\gamma \in C_c(\Gamma/\Gamma_0)$, and so $\phi * \gamma$ is zero by the lemma. Hence $\phi = 0$ locally almost everywhere, completing the theorem.

4. Extension in discrete groups (Theorem 3)

The proof of Theorem 3 is similar to that of Theorem 1.

Let Γ_0 be a subgroup of the discrete group Γ , and G_0 its annihilator in G. We may assume that the Haar measures $d\chi$, $d\chi_0$ and $d\dot{\chi}$ of Γ , Γ_0 and Γ/Γ_0 respectively assign unit mass to each point of these groups; then, for any $\gamma \in C_C(\Gamma)$,

$$\int_{\Gamma} \Upsilon(\chi) d\chi = \int_{\Gamma/\Gamma_0} \left[\int_{\Gamma_0} \Upsilon(\chi + \chi_0) d\chi_0 \right] d\dot{\chi} \ .$$

Our assumption that the inversion theorem holds for dual pairs of groups implies that the Haar measures of G, G/G_0 and G_0 are normalised so

that each group has unit measure. Further, for any $f \in C(G)$,

$$\int_{G} f(x) dx = \int_{G/G_0} \left[\int_{G_0} f(x+x_0) dx_0 \right] d\dot{x}$$

Because G is compact, the set of trigonometric polynomials on G, denoted by T(G), is dense in C(G). Thus $\psi \in M_p^q(\Gamma)$ if and only if there exists a constant C such that

(14)
$$\left| \int_{\Gamma} \psi(\chi) \hat{f}(\chi) \hat{g}(\chi) d\chi \right| \leq C ||f||_p ||g||_q$$

for all $f, g \in T(G)$, and the least possible value of C in the inequality is $\|\Psi\|_{p,q}$. An analogous criterion, to decide whether a function ϕ on Γ/Γ_0 belongs to $M_p^q(\Gamma/\Gamma_0)$, will also be used.

Let $h \in A(G)$ and $x_0 \in G_0$. By the inversion theorem,

$$\begin{split} h(x_0) &= \int_{\Gamma/\Gamma_0} \left[\int_{\Gamma_0} (\chi + \chi_0) (x_0) \hat{h}(\chi + \chi_0) d\chi_0 \right] d\dot{\chi} \\ &= \int_{\Gamma/\Gamma_0} \dot{\chi}(x_0) \left[\int_{\Gamma_0} \hat{h}(\chi + \chi_0) d\chi_0 \right] d\dot{\chi} , \end{split}$$

since Γ_0 annihilates G_0 . The function h_0 , defined to be h restricted to G_0 , therefore satisfies

$$h_0^{\widehat{}}(\overset{\bullet}{\chi}) = \int_{\Gamma_0} \hat{h}(\chi + \chi_0) d\chi_0 .$$

In particular, if $f, g \in C(G)$, then $f \star g \in A(G)$, so

(15)
$$(f \star g)_{0}(\dot{\chi}) = \int_{\Gamma_{0}} \hat{f}(\chi + \chi_{0})\hat{g}(\chi + \chi_{0})d\chi_{0} .$$

Therefore, if $f, g \in T(G)$, the orthogonality relations show that

$$\begin{split} (f \star g)_{0}^{\circ}(\dot{\chi}) &= \int_{\Gamma_{0}} \left[\int_{\Gamma_{0}} \int_{G} \hat{f}(\chi + \chi_{0}) \hat{g}(\chi + \xi_{0}) \overline{(\chi + \chi_{0})(y)}(\chi + \xi_{0})(y) dy d\xi_{0} \right] d\chi_{0} \\ &= \int_{G} \left[\int_{\Gamma_{0}} \hat{f}(\chi + \chi_{0}) \overline{(\chi + \chi_{0})(y)} d\chi_{0} \right] \left[\int_{\Gamma_{0}} \hat{g}(\chi + \xi_{0})(\chi + \xi_{0})(y) d\xi_{0} \right] dy \\ &= \int_{G} \left(T_{y} f \right)_{0}^{\circ}(\dot{\chi}) \left(T_{-y} g \right)_{0}^{\circ}(\dot{\chi}) dy \quad . \end{split}$$

by Hölder's inequality. Since G is compact and p' < q', $L^{p'}(G)$ is contained continuously in $L^{q'}(G)$, so, if $p < \infty$ and $q' < \infty$,

$$(16) \left| \int_{\Gamma} \pi^{*} \phi(\chi) \hat{f}(\chi) \hat{g}(\chi) d\chi \right|$$

$$\leq \|\phi\|_{p,q} \left[\int_{G} \left\| (T_{y}f)_{0} \right\|_{p}^{p} dy \right]^{1/p} \left[\int_{G} \left\| (T_{-y}g)_{0} \right\|_{q}^{q'} dy \right]^{1/q'}$$

$$= \|\phi\|_{p,q} \left[\int_{G} \int_{G_{0}} |f(x_{0}-y)|^{p} dx_{0} dy \right]^{1/p} \left[\int_{G} \int_{G_{0}} |g(x_{0}+y)|^{q'} dx_{0} dy \right]^{1/p'}$$

$$= \|\phi\|_{p,q} \|f\|_{p} \|g\|_{q'} ,$$

by Fubini's Theorem, the translation and reflection invariance of Haar measures, and the normalisation of the Haar measure of C_0 . If $p = \infty$ or $q' = \infty$, a similar argument will give the appropriate estimate. The first half of the theorem is now proved.

We show now that if $\pi^*\phi \in M_p^q(\Gamma)$, then $\phi \in M_p^q(\Gamma/\Gamma_0)$, and $\|\phi\|_{p,q} \leq \|\pi^*\phi\|_{p,q}$. Since we have just shown that $\|\pi^*\phi\|_{p,q} \leq \|\phi\|_{p,q}$, it will follow that π^* is an isometry (with the normalisation we have assumed). An inductive argument is employed.

Suppose that Γ_0 is a finite group of order n; then G/G_0 is a

•

finite group of order n. Let $\{x_1, x_2, \ldots, x_n\}$ be any subset of G containing exactly one element of each coset of G_0 in G. If f_0 is any member of $C\{G_0\}$, we shall write f for the function on G which is supported in G_0 and coincides there with f_0 ; also, if h is any member of C(G), we shall denote by h_0 its restriction to G_0 . We note that dx_0 , the Haar measure on G_0 , is just n times the restriction to G_0 of the Haar measure on G. Consequently, for $f_0, g_0 \in C\{G_0\}$,

(17)
$$||f_0||_p = n^{1/p} ||f||_p$$

and

(18)
$$n(f * g)_0 = f_0 * g_0$$
.

Then

$$\begin{split} \int_{\Gamma} \pi^{*} \phi(\chi) \Big[\sum_{j=1}^{n} \left(T_{x_{j}} f \right)^{\gamma}(\chi) \Big] \Big[\sum_{k=1}^{n} \left(T_{-x_{k}} g \right)^{\gamma}(\chi) \Big] d\chi \\ &= \sum_{j=1}^{n} \sum_{k=1}^{n} \int_{\Gamma/\Gamma_{0}} \phi(\chi) \Big[\int_{\Gamma_{0}} \left(T_{x_{j}} f \right)^{\gamma}(\chi + \chi_{0}) \left(T_{-x_{k}} g \right)^{\gamma}(\chi + \chi_{0}) d\chi_{0} \Big] d\chi \\ &= \sum_{j=1}^{n} \sum_{k=1}^{n} \int_{\Gamma/\Gamma_{0}} \phi(\chi) \Big[T_{x_{j}} f \star T_{-x_{j}} g \Big]_{0}^{\circ}(\chi) d\chi^{*} , \end{split}$$
by (15).
$$\Big(T_{x_{j}} f \star T_{-x_{k}} g \Big]_{0} = 0 \quad \text{unless} \quad j = k \text{, and} \quad T_{x_{j}} f \star T_{-x_{j}} g = f \star g \text{,} \end{aligned}$$
so
$$\int_{\Gamma} \pi^{*} \phi(\chi) \Big[\sum_{j=1}^{n} \left(T_{x_{j}} f \right)^{\gamma}(\chi) \Big] \Big[\sum_{k=1}^{n} \left(T_{-x_{k}} g \right)^{\gamma}(\chi) \Big] d\chi = \sum_{j=1}^{n} \int_{\Gamma/\Gamma_{0}} \phi(\chi) (f \star g)_{0}^{\circ}(\chi) d\chi \\ &= \int_{\Gamma/\Gamma_{0}} \phi(\chi) n(f \star g)_{0}^{\circ}(\chi) d\chi \end{split}$$

 $= \int_{\Gamma/\Gamma_{\alpha}} \phi(\overset{\bullet}{\chi}) \hat{f}_{0}(\overset{\bullet}{\chi}) \hat{g}_{0}(\overset{\bullet}{\chi}) d\overset{\bullet}{\chi} \ ,$

by (18). Therefore

$$(20) \left| \int_{\Gamma/\Gamma_{0}} \phi(\dot{\mathbf{x}}) f_{0}^{\circ}(\dot{\mathbf{x}}) g_{0}^{\circ}(\dot{\mathbf{x}}) d\dot{\mathbf{x}} \right| \\ = \left| \int_{\Gamma} \pi^{*} \phi(\mathbf{x}) \left[\sum_{j=1}^{n} \left(T_{x_{j}} f \right)^{\circ}(\mathbf{x}) \right] \left[\sum_{k=1}^{n} \left(T_{-x_{k}} g \right)^{\circ}(\mathbf{x}) \right] d\mathbf{x} \right| \\ \leq \left\| \pi^{*} \phi \right\|_{p,q} \left\| \sum_{j=1}^{n} T_{x_{j}} f \right\|_{p} \left\| \sum_{k=1}^{n} T_{-x_{k}} g \right\|_{q}, \\ = \left\| \pi^{*} \phi \right\|_{p,q} n^{1/p} \|f\|_{p} n^{1/q'} \|g\|_{q}, \\ = \left\| \pi^{*} \phi \right\|_{p,q} \|f_{0}\|_{p} \|g_{0}\|_{q}, ,$$

the penultimate step because the functions $T_{xj} f$ (j = 1, 2, ..., n) have pairwise disjoint supports, and the last step by (17). This establishes the second half of the theorem if Γ_0 is a finite group.

Assume now that $\Gamma_0 = Z$ (the integers), and hence that $G/G_0 = T$, the circle group, which we view as the unit circle in the complex plane. For any positive integer n, let $S_n = \{x_1, x_2, \ldots, x_n\}$ be a subset of G such that

$$x_k = \exp\left[\frac{2\pi i k}{n}\right]$$
, $k = 1, 2, ..., n$

Define the subintervals I_n and J_n of the real line:

$$I_n = \left[\frac{\pi}{n^2} - \frac{\pi}{n}, \frac{\pi}{n} - \frac{\pi}{n^2}\right] ,$$
$$J_n = \left(-\frac{\pi}{n}, \frac{\pi}{n}\right) ,$$

and set $K_n = \exp[iI_n]$ and $U_n = \exp[iJ_n]$. Then K_n is a compact subset of T containing the identity and contained in the open set U_n . Let Ψ_n be a continuous function supported in U_n satisfying $0 \le \Psi_n \le 1$ and $\Psi_n(K_n) = \{1\}$. Denote by Ψ'_n the periodic extension of Ψ_n to G; this is constant on cosets of G_0 . If $h \in C(G)$, then

$$n \int_{G} \psi'_{n}(x)h(x)dx = n \int_{G/G_{0}} \psi_{n}(\dot{x}) \left[\int_{G_{0}} h(x+x_{0})dx_{0} \right] d\dot{x} .$$

The integral inside the brackets is a continuous function of $\stackrel{\bullet}{x}$, and

$$1 - 1/n \le n \int_{G/G_0} \psi_n(\dot{x}) d\dot{x} \le 1$$
,

so, as $n \to \infty$, the limit $\lim_{n \to \infty} n \int_G \psi'_n(x)h(x)dx$ exists, and

(21)
$$\lim_{n\to\infty} n \int_G \psi'_n(x)h(x)dx = \int_{G_0} h(x_0)dx_0 .$$

Let $f_0, g_0 \in T(G_0)$, and let f and g be trigonometric polynomials on G which agree with f_0 and g_0 respectively on G_0 . Put

$$\begin{split} f_{n} &= \psi_{n}^{\prime} f \ , \ g_{n} = \psi_{n}^{\prime} g \ , \ F_{n} = \sum_{j=1}^{n} T_{x_{j}} f_{n} \ \text{and} \ G_{n} = \sum_{k=1}^{n} T_{-x_{k}} g_{n} \ . \ \text{Let} \\ \begin{pmatrix} h_{l} \end{pmatrix}_{l \in L} \ \text{be an approximate identity in} \ L^{1}(G_{0}) \ \text{ so that} \ \|h_{l}\|_{1} \leq 1 \ \text{and} \\ \hat{h}_{l} \in C_{C}(\Gamma/\Gamma_{0}) \ . \ \text{Then} \\ \\ \int_{\Gamma} \pi^{*} \phi(\chi) \pi^{*} \hat{h}_{l}(\chi) \hat{F}_{n}(\chi) \hat{G}_{n}(\chi) d\chi \\ &= \sum_{j=1}^{n} \sum_{k=1}^{n} \int_{\Gamma/\Gamma_{0}} \phi(\chi) \hat{h}_{l}(\chi) \Big[\int_{\Gamma_{0}} \left(T_{x_{j}} f_{n} \right)^{\wedge} (\chi + \chi_{0}) \left(T_{-x_{k}} g_{n} \right)^{\wedge} (\chi + \chi_{0}) d\chi_{0} \Big] d\chi \\ &= \sum_{j=1}^{n} \sum_{k=1}^{n} \int_{\Gamma/\Gamma_{0}} \phi(\chi) \hat{h}_{l}(\chi) \Big[\int_{T_{x_{j}}} f_{n} \star T_{-x_{k}} g_{n} \Big]_{0}(\chi) d\chi \ , \end{split}$$
by (15).
$$\left(T_{x_{j}} f_{n} \star T_{-x_{k}} g_{n} \right)_{0} = 0 \ \text{unless} \ j = k \ , \ \text{and so} \\ (22) \int_{\Gamma} \pi^{*} \phi(\chi) \pi^{*} \hat{h}_{l}(\chi) \hat{F}_{n}(\chi) \hat{F}_{n}(\chi) \hat{G}_{n}(\chi) d\chi = n \int_{\Gamma/\Gamma_{0}} \phi(\chi) \hat{h}_{l}(\chi) \left(f_{n} \star g_{n} \right)^{\circ}_{0}(\chi) d\chi \ . \end{split}$$

·By an obvious analogue of (21), if $x_0 \in G_0$,

$$\begin{split} \lim_{n \to \infty} n \left(f_n \star g_n \right) \left(x_0 \right) &= \int_{G_0} f \left(x_0 - y_0 \right) g \left(y_0 \right) dy_0 \\ &= f_0 \star g_0 \left(x_0 \right) \end{split}$$

and

$$\begin{split} |n(f_n \star g_n)(x_0)| &\leq n \|f_n \star g_n\|_{\infty} \\ &\leq n \|f_n\|_1 \|g_n\|_{\infty} \\ &\leq \|f\|_{\infty} \|g\|_{\infty} , \end{split}$$

so by Lebesgue's Dominated Convergence Theorem, $n(f_n * g_n)_0$ converges in $L^1(G_0)$ to $f_0 * g_0$. Consequently $n(f_n * g_n)_0^2$ converges pointwise to $\hat{f}_0 \hat{g}_0$. The group G is compact and so $\pi^* \phi \in M_p^q(\Gamma)$ implies that $\pi^* \phi$ (and hence ϕ) is bounded. Further, \hat{h}_{l} has finite support, whence

$$\begin{split} \lim_{n \to \infty} \int_{\Gamma} \pi^* \phi(\chi) \pi^* \hat{h}_{\mathcal{I}}(\chi) \hat{F}_n(\chi) \hat{G}_n(\chi) d\chi &= \lim_{n \to \infty} \int_{\Gamma/\Gamma_0} \phi(\chi) \hat{h}_{\mathcal{I}}(\chi) n (f_n * g_n) \hat{0}(\chi) d\chi \\ &= \int_{\Gamma/\Gamma_0} \phi(\chi) \hat{h}_{\mathcal{I}}(\chi) \hat{f}_0(\chi) \hat{g}_0(\chi) d\chi \end{split}$$

Therefore

$$\begin{split} \left| \int_{\Gamma/\Gamma_{0}} \phi(\dot{\chi}) \hat{h}_{\mathcal{I}}(\dot{\chi}) \hat{f}_{0}(\dot{\chi}) \hat{g}_{0}(\dot{\chi}) d\dot{\chi} \right| &\leq \lim_{n \to \infty} \inf \left| \int_{\Gamma} \pi^{*} \phi(\chi) \pi^{*} \hat{h}_{\mathcal{I}}(\chi) \hat{F}_{n}(\chi) \hat{G}_{n}(\chi) d\chi \right| \\ &\leq \lim_{n \to \infty} \inf \left\| \pi^{*} \phi \right\|_{p,q} \left\| u_{\mathcal{I}} * F_{n} \right\|_{p} \left\| G_{n} \right\|_{q}, \end{split}$$

where μ_{l} denotes the measure whose Fourier transform is $\pi^* \hat{h}_{l}$ and whose norm is $\|h_{l}\|_{1}$ [7, 4.1.3]. Then

$$\begin{split} \left| \int_{\Gamma/\Gamma_{0}} \phi(\dot{\chi}) \hat{h}_{l}(\dot{\chi}) \hat{f}_{0}(\dot{\chi}) \hat{g}_{0}(\dot{\chi}) d\dot{\chi} \right| &\leq \lim_{n \to \infty} \inf \|\pi^{*} \phi\|_{p,q} \|h_{l}\|_{1} \|F_{n}\|_{p} \|G_{n}\|_{q}, \\ &\leq \lim_{n \to \infty} \inf \|\pi^{*} \phi\|_{p,q} n^{1/p} \|f_{n}\|_{p} n^{1/q'} \|g_{n}\|_{q}, \\ &= \|\pi^{*} \phi\|_{p,q} \|f_{0}\|_{p} \|g_{0}\|_{q'}, \end{split}$$

since $\lim_{n \to \infty} n^{1/p} \|f_n\|_p = \|f_0\|_p$ by (21). The net $(h_l)_{l \in L}$ is an approximate identity, so \hat{h}_l converges pointwise to 1. \hat{f}_0 has finite support, and so

Michael G. Cowling

$$(23) \quad \left| \int_{\Gamma/\Gamma_{0}} \phi(\dot{\mathbf{x}}) \hat{f}_{0}(\dot{\mathbf{x}}) \hat{g}_{0}(\dot{\mathbf{x}}) d\dot{\mathbf{x}} \right| = \lim_{L} \left| \int_{\Gamma/\Gamma_{0}} \phi(\dot{\mathbf{x}}) \hat{h}_{l}(\dot{\mathbf{x}}) \hat{f}_{0}(\dot{\mathbf{x}}) \hat{g}_{0}(\dot{\mathbf{x}}) d\dot{\mathbf{x}} \right|$$
$$\leq \|\pi^{*} \phi\|_{p,q} \|f_{0}\|_{p} \|g_{0}\|_{q}, \quad ,$$

completing the proof in the case $\Gamma_0 = Z$.

Suppose now that whenever Γ_0 is finitely generated by at most melements $(m \ge 1)$ and $\pi^* \phi \in M_p^q(\Gamma)$, then $\phi \in M_p^q(\Gamma/\Gamma_0)$ and $\|\phi\|_{p,q} \le \|\pi^* \phi\|_{p,q}$. Let Γ_0 be a group generated by (m+1) elements $\chi_1, \chi_2, \ldots, \chi_{m+1}$. The inductive hypothesis shows that, if Γ_1 is the group generated by $\chi_1, \chi_2, \ldots, \chi_m$, the function ψ on Γ/Γ_1 , obtained in the natural way from $\pi^* \phi$, belongs to $M_p^q(\Gamma/\Gamma_1)$ and that $\|\psi\|_{p,q} \le \|\pi^* \phi\|_{p,q}$, provided that, as usual, the discrete groups Γ/Γ_1 and Γ are taken with counting measure. The Second Isomorphism Theorem [4, 2.2] states that Γ/Γ_0 is isomorphic to $(\Gamma/\Gamma_1)/(\Gamma_0/\Gamma_1)$. Since Γ_0/Γ_1 is generated by one element and ψ is constant on the cosets of Γ_0/Γ_1 in Γ/Γ_1 , it follows that $\phi \in M_p^q(\Gamma/\Gamma_0)$ and that $\|\phi\|_{p,q} \le \|\pi^* \phi\|_{p,q}$. The theorem is now established whenever Γ_0 is finitely generated.

To demonstrate the general result enunciated, we need another lemma. Let Γ_1 be any subgroup of Γ , G_1 its annihilator in G, and π_1 the canonical mapping $G \neq G/G_1$. We shall assume that the Haar measures dx_1 and $d\dot{x}_1$ of G_1 and G/G_1 are such that each group has unit mass; the Haar measure on Γ_1 must therefore be that on Γ restricted to Γ_1 .

LEMMA. If
$$\psi \in M_p^q(\Gamma)$$
, then $\psi|_{\Gamma_1} \in M_p^q(\Gamma_1)$, and
 $\|\psi|_{\Gamma_1}\|_{p,q} \leq \|\psi\|_{p,q}$.
Proof. Let $f \in C(G/G_1)$. It is well known that
 (24) $(f \circ \pi_1)^{\wedge}(\chi) = \hat{f}(\chi)$ if $\chi \in \Gamma_1$

282

and

 $(f \circ \pi_{\gamma})^{(\chi)} = 0$ otherwise.

Further,

(25)
$$\|f \circ \pi_{1}\|_{p} = \left[\int_{G} |f \circ \pi_{1}(x)|^{p} dx \right]^{1/p}$$
$$= \left[\int_{G/G_{1}} |f(\mathbf{x}_{1})|^{p} \int_{G_{1}} dx_{1} d\mathbf{x}_{1} \right]^{1/p}$$
$$= \|f\|_{p},$$

and so

$$(26) \qquad \left| \int_{\Gamma_{1}} \psi(\chi) \hat{f}(\chi) \hat{g}(\chi) d\chi \right| = \left| \int_{\Gamma} \psi(\chi) \left(f \circ \pi_{1} \right)^{\gamma}(\chi) \left(g \circ \pi_{1} \right)^{\gamma}(\chi) d\chi \right|$$
$$\leq \left\| \psi \right\|_{p,q} \left\| f \circ \pi_{1} \right\|_{p} \left\| g \circ \pi_{1} \right\|_{q},$$
$$= \left\| \psi \right\|_{p,q} \left\| f \right\|_{p} \left\| g \right\|_{q},$$

for any $f, g \in C(G/G_1)$, proving the lemma.

Suppose that $f_0, g_0 \in T(G_0)$. Let $\{\chi_1, \chi_2, \ldots, \chi_n\}$ be a finite subset of Γ containing elements of each coset of Γ_0 in Γ on which \hat{f}_0 or \hat{g}_0 is non-zero, and define Γ_1 to be the group generated by $\chi_1, \chi_2, \ldots, \chi_n$. A subgroup of a finitely generated abelian group is also finitely generated [9, II.3.k], so $\Gamma_1 \cap \Gamma_0$ is finitely generated. By the lemma, $\pi^* \phi|_{\Gamma_1} \in M_p^q(\Gamma_1)$, and $\|\pi^* \phi|_{\Gamma_1}\|_{p,q} \leq \|\pi^* \phi\|_{p,q}$. Since $\pi^* \phi|_{\Gamma_1}$ is constant on cosets of the finitely generated group $\Gamma_1 \cap \Gamma_0$, ϕ' , defined to be the function on $\Gamma_1/(\Gamma_1 \cap \Gamma_0)$ whose periodic extension to Γ_1 is $\pi^* \phi|_{\Gamma_1}$, satisfies $\phi' \in M_p^q(\Gamma_1/(\Gamma_1 \cap \Gamma_0))$ and $\|\phi'\|_{p,q} \leq \|\pi^* \phi\|_{p,q}$. The First Isomorphism Theorem [4, 2.1] states that the group $(\Gamma_1 + \Gamma_0)/\Gamma_0$ is isomorphic to the group $\Gamma_1/(\Gamma_1 \cap \Gamma_0)$; the natural isomorphism θ maps the coset $\chi + \Gamma_0$ of $(\Gamma_1 + \Gamma_0)/\Gamma_0$ ($\chi \in \Gamma_1$) to the coset $\chi + \Gamma_1 \cap \Gamma_0$ of $\Gamma_1/(\Gamma_1 \cap \Gamma_0)$. We have (implicitly) normalised the Haar measure of
$$\begin{split} &\Gamma_1/(\Gamma_1\cap\Gamma_0) \text{ so that each point has unit mass; if we also normalise} \\ &\left(\Gamma_1+\Gamma_0\right)/\Gamma_0 \text{ so that each point has unit mass, the mapping } \theta^*:\psi+\psi\circ\theta \\ &\text{must be an isometric isomorphism of } M_p^q \Big(\Gamma_1/(\Gamma_1\cap\Gamma_0)\Big) \text{ onto } M_p^q \Big((\Gamma_1+\Gamma_0)/\Gamma_0\Big) \text{ .} \\ &\text{In particular, } \varphi|_{(\Gamma_1+\Gamma_0)/\Gamma_0} = \varphi'\circ\theta\in M_p^q \Big((\Gamma_1+\Gamma_0)/\Gamma_0\Big) \text{ and} \\ &\|\varphi|_{(\Gamma_1+\Gamma_0)/\Gamma_0}\|_{p,q} \leq \|\pi^*\varphi\|_{p,q} \text{ . Let } \Gamma_2 \text{ be the group } (\Gamma_1+\Gamma_0) \text{ , } G_2 \text{ the} \\ &\text{annihilator in } G_0 \text{ of } \Gamma_2/\Gamma_0 \text{ , and } \pi_2 \text{ the canonical projection} \\ &G_0+G_0/G_2 \text{ . The dual group of } \Gamma_2/\Gamma_0 \text{ is } G_0/G_2 \text{ , so, for any} \\ &h, k \in C(G_0/G_2) \text{ ,} \end{split}$$

$$\left|\int_{\Gamma_2/\Gamma_0} \phi(\dot{\chi})\hat{h}(\dot{\chi})\hat{k}(\dot{\chi})d\dot{\chi}\right| \leq \|\pi^*\phi\|_{p,q} \|h\|_p \|k\|_q,$$

In particular, considering $h, k \in T(G_0/G_2)$ such that

$$\hat{h} = \hat{f}_0 \Big|_{\Gamma_2/\Gamma_0} \quad \text{and} \quad \hat{k} = \hat{g}_0 \Big|_{\Gamma_2/\Gamma_0} ,$$

$$\Big| \int_{\Gamma_2/\Gamma_0} \phi(\dot{\chi}) \hat{f}_0(\dot{\chi}) \hat{g}_0(\dot{\chi}) d\dot{\chi} \Big| \leq \|\pi^* \phi\|_{p,q} \|h\|_p \|k\|_q,$$

However, Γ_1 was defined so that \hat{f}_0 and \hat{g}_0 were both supported in $(\Gamma_1 + \Gamma_0) / \Gamma_0$. Consequently, as in (24), $f_0 = h \circ \pi_2$ and $g_0 = k \circ \pi_2$. The normalisations are such that $\|h \circ \pi_2\|_p = \|h\|_p$ and $\|k \circ \pi_2\|_q$, $= \|k\|_q$, , as in (25). Thus

$$\left| \int_{\Gamma/\Gamma_0} \phi(\dot{\mathbf{x}}) \hat{f}_0(\dot{\mathbf{x}}) \hat{g}_0(\dot{\mathbf{x}}) d\dot{\mathbf{x}} \right| \leq \|\pi^* \phi\|_{p,q} \|f_0\|_p \|g_0\|_{q'}$$

which, since f_0 and g_0 were arbitrary trigonometric polynomials on ${\cal G}_0$, proves the theorem.

Finally, we should note that, if G is not compact (that is, if Γ is not discrete) then $M_p^q(\Gamma) = \{0\}$ if $1 \le q . Hörmander [5] demonstrates this if <math>G = R^n$, and the generalisation of his proof to arbitrary non-compact groups is obvious. So when p > q, the only case of

interest in connection with periodic extensions of multipliers is that where $\ \Gamma$ is discrete.

References

- [1] Karel de Leeuw, "On L multipliers", Ann. of Math. (2) 81 (1965), 364-372.
- [2] G.I. Gaudry, "Quasimeasures and operators commuting with convolution", Pacific J. Math. 18 (1966), 461-476.
- [3] Lawrence Gluck, Draft of Ph.D. thesis, Illinois Institute of Technology, Chicago, 1970.
- [4] Edwin Hewitt and Kenneth A. Ross, Abstract harmonic analysis, Vol. I
 (Die Grundlehren der mathematischen Wissenschaften, Band 115. Academic Press, New York; Springer-Verlag, Berlin, Göttingen, Heidelberg, 1963).
- [5] Lars Hörmander, "Estimates for translation invariant operators in L^p spaces", Acta Math. 104 (1960), 93-140.
- [6] Noël Lohoué, "La synthèse des convoluteurs sur un groupe abélien localement compact", C.R. Acad. Sci. Paris Sér. A 272 (1971), 27-29.
- [7] Walter Rudin, Fourier analysis on groups (Interscience, New York, London, 1962).
- [8] Sadahiro Saeki, "Translation invariant operators on groups", Tôhoku Math. J. 22 (1970), 409-419.
- [9] Eugene Schenkman, Group theory (Van Nostrand, Princeton, New Jersey; Toronto; New York; London; 1965).

Department of Pure Mathematics, School of General Studies, Australian National University, Canberra, ACT.