CERTAIN LOCALLY NILPOTENT VARIETIES OF GROUPS

Alireza Abdollahi

Let $c \geqslant 0, d \geqslant 2$ be integers and $\mathcal{N}_{c}^{(d)}$ be the variety of groups in which every d generator subgroup is nilpotent of class at most c. N.D. Gupta asked for what values of c and d is it true that $\mathcal{N}_{c}^{(d)}$ is locally nilpotent? We prove that if $c \leqslant 2^{d}+2^{d-1}-3$ then the variety $\mathcal{N}_{c}^{(d)}$ is locally nilpotent and we reduce the question of Gupta about the periodic groups in $\mathcal{N}_{c}^{(d)}$ to the prime power exponent groups in this variety.

1. Introduction and results

Let $c \geqslant 0, d \geqslant 2$ be integers and \mathcal{N}_{c} be the variety of nilpotent groups of class at most c. We denote by $\mathcal{N}_{c}^{(d)}$ the variety of groups in which every d-generator subgroup is in \mathcal{N}_{c}. In [2], Gupta posed the following question:

For what values of c and d it is true that $\mathcal{N}_{c}^{(d)}$ is locally nilpotent?
Then he proved that for $c \leqslant\left(d^{2}+2 d-3\right) / 4$, the variety $\mathcal{N}_{c}^{(d)}$ is locally nilpotent. In [1], Endimioni improved the latter result where he proved that for $c \leqslant 2^{d}-2$, the variety $\mathcal{N}_{c}^{(d)}$ is locally nilpotent. Here we improve the number $2^{d}-2$ to $2^{d}+2^{d-1}-3$. In fact we prove:

Theorem 1.1.
(1) For $c \leqslant 2^{d}+2^{d-1}-3$, the variety $\mathcal{N}_{c}^{(d)}$ is locally nilpotent.
(2) For $c \leqslant 2^{d}+2^{d-1}+2^{d-2}-3$, every p-group in the variety $\mathcal{N}_{c}^{(d)}$ is locally nilpotent, where $p \in\{2,3,5\}$.
Note that the variety $\mathcal{N}_{c}^{(2)}$ is contained in the variety of c-Engel groups and it is yet unknown whether every c-Engel group is locally nilpotent, even, so far there is no published example of a non-locally nilpotent group in the variety $\mathcal{N}_{c}^{(2)}$. In the last section of this paper, where we consider the problem of locally nilpotency of the variety $\mathcal{N}_{c}^{(2)}$, we study periodic groups in this variety. Note that since every two generator subgroup of a group in $\mathcal{N}_{c}^{(2)}$ is nilpotent, every periodic group in $\mathcal{N}_{c}^{(2)}$ is a direct product of p-groups (p prime). We reduce the question of Gupta for periodic groups in $\mathcal{N}_{c}^{(d)}$ to the locally nilpotency of p-groups of finite exponent in this variety where the exponent depends only on the numbers p and c. In fact we prove that

[^0]Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/03 \$A2.00+0.00.

Theorem 1.2. Let p be a prime, $c>1$ an integer and $r=r(c, p)$ be the integer such that $p^{r-1}<c-1 \leqslant p^{r}$.
(1) every p-group in $\mathcal{N}_{c}^{(2)}$ is locally nilpotent.
(2) if p is odd, every p-group of exponent dividing p^{r} in $\mathcal{N}_{c}^{(2)}$ is locally nilpotent, and if $p=2$, every 2 -group of exponent dividing 2^{r+1} in $\mathcal{N}_{c}^{(2)}$ is locally nilpotent.

2. Groups in the variety $\mathcal{N}_{c}^{(d)}$

Let F_{∞} be the free group of infinite countable rank on the set $\left\{x_{1}, x_{2}, \ldots\right\}$, we define inductively the following words in F_{∞} :

$$
\begin{aligned}
W_{1} & =W_{1}\left(x_{1}, x_{2}\right)=\left[x_{1}, x_{2}, x_{1}, x_{2}\right], \\
W_{n} & =W_{n}\left(x_{1}, x_{2}, \ldots, x_{n+1}\right)=\left[W_{n-1}, x_{n+1}, W_{n-1}, x_{n+1}\right] \quad n>1 \\
V_{1} & =V_{1}\left(x_{1}, x_{2}, x_{3}\right)=\left[\left[x_{2}, x_{1}, x_{1}, x_{1}, x_{1}\right], x_{3},\left[x_{2}, x_{1}, x_{1}, x_{1}, x_{1}\right], x_{3}\right] \\
V_{n} & =V_{n}\left(x_{1}, x_{2}, x_{3}, \ldots, x_{n+2}\right)=\left[V_{n-1}, x_{n+2}, V_{n-1}, x_{n+2}\right] \quad n>1 .
\end{aligned}
$$

For a group G and a subgroup H of G, we denote by $H P(G)$ the Hirsch-Plotkin radical of G and H^{G} the normal closure of H in G. We use the following result due to Heineken (see Lemma 8 of [3] and see Lemma 2 of [5] for the left-normed version).

Lemma 2.1. Let G be a group and g an element in G such that $[g, x, g, x]=1$ for all $x \in G$. Then the normal closure of $\langle g\rangle$ in $\langle g\rangle^{G}$ is Abelian. In particular, $g \in H P(G)$.

Lemma 2.2. Let G be a group satisfying the law $W_{n}=1$ for some integer $n \geqslant 1$. Then, G has a normal series $1=G_{n} \triangleleft G_{n-1} \triangleleft \cdots \triangleleft G_{1}=G$ in which each factor G_{i} / G_{i+1} is locally nilpotent ($i=1,2, \ldots, n-1$).

Proof: We argue by induction on n. If $n=1$, then Lemma 2.1 yields that x_{1} $\in H P(G)$ for all $x_{1} \in G$ and so G is locally nilpotent. Now suppose that the lemma is true for n and G satisfies the law $W_{n+1}=1$. By Lemma 2.1, we have $W_{n}\left(x_{1}, \ldots, x_{n+1}\right)$ $\in H P(G)$ for all $x_{1}, \ldots, x_{n+1} \in G$ and so $G / H P(G)$ satisfies the law $W_{n}=1$. Thus by the induction hypothesis $G / H P(G)$ has a normal series of length n with locally nilpotent factors. This completes the proof.

LEMMA 2.3. Let G be a p-group satisfying the law $V_{n}=1$ for some integer $n \geqslant 1$ where $p \in\{2,3,5\}$. Thus G has a normal series $1=G_{n+1} \triangleleft G_{n} \triangleleft \cdots \triangleleft G_{1}=G$ in which each factor G_{i} / G_{i+1} is locally nilpotent $(i=1,2, \ldots, n)$.

Proof: We argue by induction on n. If $n=1$, then by Lemma $2.1\left[x_{2}, x_{1}, x_{1}, x_{1}, x_{1}\right]$ $\in H P(G)$ for all $x_{1}, x_{2} \in G$. Thus $G / H P(G)$ is a 4-Engel group and since every 4-Engel p-group is locally nilpotent where $p \in\{2,3,5\}$ (see Traustason [9] and Vaughan-Lee $[10]), G / H P(G)$ is locally nilpotent. Now suppose that G satisfies the law $V_{n+1}=1$. By

Lemma 2.1, $V_{n}\left(x_{1}, \ldots, x_{n+2}\right) \in H P(G)$ for all $x_{1}, \ldots, x_{n+2} \in G$, so $G / H P(G)$ satisfies the law $V_{n}=1$. Thus by the induction hypothesis, $G / H P(G)$ has a normal series of length $n+1$ with locally nilpotent factors. This completes the proof.

We use in the sequel the following special case of the well-known fact due to Plotkin [6] that every Engel radical group is locally nilpotent. (see also Lemma 2.2 of [1])

Lemma 2.4. Let H be a normal subgroup of an Engel group G. If H and G / H are locally nilpotent, then G is locally nilpotent.

Proof of Theorem 1.1: One can see that W_{n} and V_{n} are, respectively, in the $\left(2^{n+1}+2^{n}-2\right)$ th term and $\left(2^{n+2}+2^{n+1}+2^{n}-2\right)$ th term of the lower central series of F_{∞}, for all integers $n \geqslant 1$.
(1) every group G in the variety $\mathcal{N}_{c}^{(d)}$ satisfies the law $W_{d-1}=1$ and so it follows from Lemmas 2.2 and 2.4, that G is locally nilpotent.
(2) if $d=2$ then $c \leqslant 4$ and so every group in the variety $\mathcal{N}_{c}^{(d)}$ is 4-Engel. But as it is mentioned in the proof of Lemma 2.3, every 4-Engel p-group is locally nilpotent, where $p \in\{2,3,5\}$. Now assume that $d \geqslant 3$, then every group G in the variety $\mathcal{N}_{c}^{(d)}$ satisfies the law $V_{d-2}=1$ and so it follows from Lemmas 2.3 and 2.4, that G is locally nilpotent.

3. p-GROUPS IN THE VARIETY $\mathcal{N}_{c}^{(2)}$

Lemma 3.1. Let $c \geqslant 1$ be an integer, p a prime number and G a finite c-Engel p-group. Suppose that $x, y \in G$ such that $x^{p^{n}}=y^{p^{n}}=1$ for some integer $n>0$. Let r be the integer such that $p^{r-1}<c \leqslant p^{r}$. Then;
(a) if p is odd and $n>r$ then $\left[x^{p^{n-1}}, y^{p^{n-1}}\right]=1$.
(b) if $p=2$ and $n>r+1$ then $\left[x^{2^{n-1}}, y^{2^{n-1}}\right]=1$.

Proof: Suppose that $K \leqslant H$ are two normal subgroups of G such that H / K is elementary Abelian and a is an arbitrary element of G. Put $t=a K$ and $V=H / K$. Since $\left[V_{, c} t\right]=1$, we have that $\left[V_{p^{r}} t\right]=1$ and $0=(t-1)^{p^{r}}=t^{p^{r}}-1$ in End (V). Thus $\left[H, a^{p^{r}}\right] \leqslant K$ for all $a \in G$. Now let $N=\left\langle x^{p^{r}}, y^{p^{r}}\right\rangle$. Then $[H, N] \leqslant K$ and since K, H are normal in $G ;[H, M] \leqslant K$ where $M=N^{G}$ the normal closure of N in G. Thus M is a normal subgroup of G centralising every elementary Abelian normal section of G. By a result of Shalev [8]; if p is odd then M is powerful and if $p=2$ then M^{2} as well as all subgroups of M^{2} which are normal in G, are powerful. Suppose that p is odd. Since M is generated by $\left\{\left(x^{g}\right)^{p^{r}},\left(y^{g}\right)^{p^{r}} \mid g \in G\right\}$ and M is powerful, by Corollary 1.9 of [4], $M^{p^{n-r}}$ is generated by $\left\{\left(x^{g}\right)^{p^{n}},\left(y^{g}\right)^{p^{n}} \mid g \in G\right\}$ and so $M^{p^{n-r}}=1$. On the other hand $M^{p^{n-r-1}}$ is powerful by Corollary 1.2 of [4]. Thus $\left[M^{p^{n-r-1}}, M^{p^{n-r-1}}\right] \leqslant\left(M^{p^{n-r-1}}\right)^{p}$. Now by Theorem 1.3 of [4], we have $\left(M^{p^{n-r-1}}\right)^{p}=M^{p^{n-r}}=1$. Thus $M^{p^{n-r-1}}$ is Abelian and part (a) has been proved. Now assume that $p=2$. As mentioned above, since the
subgroup $\left\langle x^{2^{r+1}}, y^{2^{r+1}}\right\rangle^{G}$ of M is normal in G, it is also powerful and the rest of the proof is similar to the previous case.

Lemma 3.2. Let $c>1$ be an integer, p a prime number and G a p-group in the variety $\mathcal{N}_{c}^{(2)}$ and let r be the integer satisfying $p^{r-1}<c-1 \leqslant p^{r}$.
(a) if p is odd then $G^{p^{r}}$ is locally nilpotent.
(b) if $p=2$ then $G^{2^{r+1}}$ is locally nilpotent.

Proof: Note that G is a c-Engel group. Suppose p is odd. First we prove that if x is an element of G such that $x^{p^{n}}=1$ for some $n>r$, then $\left[a, x^{p^{n-1}}, x^{p^{n-1}}\right]=1$ for all $a \in G$. Let $y=\left(x^{-1}\right)^{a}$, then it is enough to show that $\left[y^{p^{n-1}}, x^{p^{n-1}}\right]=1$. Since $\langle x, a\rangle \in \mathcal{N}_{c}$ then $\langle y, x\rangle \in \mathcal{N}_{c-1}$; therefore by Lemma 3.1, we have that $\left[y^{p^{n-1}}, x^{p^{n-1}}\right]=1$. Now let z be an arbitrary element of G such that $z^{p^{n}}=1$ for some positive integer n. We prove by induction on n that $z^{p^{r}} \in H P(G)$ and so it completes the proof for the case p odd. If $n \leqslant r$, then $z^{p^{r}}=1 \in H P(G)$. Assume that $n>r$ then by the induction hypothesis, $z^{p^{p+1}} \in H P(G)$. Now by the first part of the proof, $\left[a, z^{p^{r}}, z^{p^{r}}\right]=1 \bmod H P(G)$, for all $a \in G$. So the normal closure of $z^{p^{r}} H P(G)$ in $G / H P(G)$ is Abelian. Therefore $\left\langle z^{p^{r}}\right\rangle^{G}$ is (locally nilpotent)-by-Abelian, hence Lemma 2.4 implies that $z^{p^{r}} \in H P(G)$.

The case $p=2$ is similar.
Proof of Theorem 1.2: Suppose that p is odd and every p-group of exponent dividing p^{r} in $\mathcal{N}_{c}^{(2)}$ is locally nilpotent. Let G be a p-group in $\mathcal{N}_{c}^{(2)}$, then by Lemma $3.2(\mathrm{a}), G^{p^{r}}$ is locally nilpotent. By assumption, $G / G^{p^{r}}$ is locally nilpotent and since G is a c-Engel group, it follows from Lemma 2.4 that G is locally nilpotent. The case $p=2$ is similar and the converse is obvious.

Now we use this result to some special cases. In fact we prove:
Proposition 3.3. Every 2-group or 3-group in the variety $\mathcal{N}_{5}^{(2)}$ is locally nilpotent.

Proof: By Theorem 1.2, we must prove that every 2-group of exponent dividing 8 and every 3 -group of exponent dividing 9 in $\mathcal{N}_{5}^{(2)}$ is locally nilpotent. Suppose that G is a 2-group of exponent 8 in $\mathcal{N}_{5}^{(2)}$. Let $x, y \in G$, then $\langle x, y\rangle \in \mathcal{N}_{5}$ and is of exponent 8. It is easy to see that $\left[x^{4}, y, x^{4}, y\right]=1$. So by Lemma $2.1, x^{4} \in H P(G)$ for all $x \in G$. Therefore $G / H P(G)$ is of exponent dividing 4. By a famous result of Sanov (see 14.2.4 of [7]), $G / H P(G)$ is locally nilpotent and so by Lemma $2.4, G$ is locally nilpotent.

Now suppose that G is a 3 -group of exponent 9 in the variety $\mathcal{N}_{5}^{(2)}$. Let $x, y \in G$, it is easy to see that $\left[x^{3}, y, x^{3}, y\right]=1$. The rest of the proof is similar to the previous case, but we may use this well-known result that every group of exponent 3 is nilpotent (see 12.3.5 and 12.3.6 of [7]).

References

[1] G. Endimioni, 'Groups in which every d-generator subgroup is nilpotent of bounded class', Quart. J. Math. Oxford (2) 46 (1995), 433-435.
[2] N.D. Gupta, 'Certain locally metanilpotent varieties of groups', Arch. Math. 20 (1969), 481-484.
[3] H. Heineken, 'Engelsche Elemente der Länge drei', Illinois J. Math. 5 (1961), 681-707.
[4] A. Lubotzky and A. Mann, 'Powerful p-groups. I. Finite groups', J. Algebra 105 (1987), 484-505.
[5] M.L. Newell, 'On right-Engel elements of length three', Proc. Roy. Irish Acad. Sect. A 96 (1996), 17-24.
[6] B.I. Plotkin, 'On the nil-radical of a group', Dokl. Akad. Nauk SSSR 98 (1954), 341-343.
[7] D.J.S. Robinson, A first course in the group theory, Graduate Texts in Mathematics 80, (Second edition) (Springer-Verlag, New York, 1996).
[8] A. Shalev, 'Characterization of p-adic analytic groups in terms of wreath products', J. Algebra 145 (1992), 204-208.
[9] G. Traustason, 'On 4-Engel groups', J. Algebra 178 (1995), 414-429.
[10] M. Vaughan-Lee, 'Engel-4 groups of exponent 5', Proc. London Math. Soc. (3) 74 (1997), 306-334.

Department of Mathematics
University of Isfahan
Isfahan 81746-73441
Iran

Institute for Studies in Theoretical Physics and Mathematics
Tehran
Iran
e-mail: a.abdollahi@sci.ui.ac.ir

[^0]: Received 24th June, 2002
 This research was in part supported by a grant from IPM

