Now the potencies a, b, c of the points A, B, C relatively to the circle O are, \mathbf{R} being the radius of the circle,

$$
a=\mathrm{OA}^{2}-\mathrm{R}^{2}, \quad b=\mathrm{OB}^{2}-\mathrm{R}^{2} \quad c=\mathrm{OC}^{2}-\mathrm{R}^{2}
$$

which transform equation (1) into

$$
\begin{equation*}
a \cdot \mathbf{B C}+b \cdot \mathbf{C A}+c \cdot \mathbf{A B}+\mathbf{A B} \cdot \mathbf{B C} \cdot \mathbf{C A}=0 \tag{2}
\end{equation*}
$$

But $\mathrm{CB} . \mathrm{CA}=c$, if C be the point where the tangent common to the two circles meets AB.

Thus equation (2) becomes
or

$$
\begin{gather*}
a \cdot \mathrm{BC}+b \cdot \mathrm{CA}=0 \\
\frac{\mathrm{CA}}{\mathbf{C B}}=\frac{a}{b} . \tag{3}
\end{gather*}
$$

Thus the point C is determined and the problem solved. If the problem is possible, A and B must both be inside or both outside the circle 0 .

Mr Muirhead suggests the following Solution.

A and B are the given points, DEF the given \odot, and ABD the required \odot

In virtue of the equality of angles indicated in Fig.l3, we have

$$
\begin{aligned}
\frac{\text { Power of } \mathrm{A}}{\text { Power of } \mathrm{B}} & =\frac{\mathrm{AD} \cdot \mathrm{AF}}{\mathrm{BD} \cdot \mathrm{BE}} \\
& =\frac{\mathrm{AD}^{2}}{\mathrm{BD}^{2}}=\frac{\mathrm{CA}}{\mathrm{CB}}
\end{aligned}
$$

Discussion on Euclid's Deflnition of Proportion.
Papers by Prof. Gibson and Mr W. J. Macdonald.

