Notes

99.27 A relationship between Pell numbers and triangular square numbers

It was shown in [1] that the nth triangular square number is

$$
\begin{equation*}
u_{n}=\frac{1}{32}\left[(17+12 \sqrt{2})^{n}+(17-12 \sqrt{2})^{n}-2\right] \tag{1}
\end{equation*}
$$

for $n \geqslant 0$. The first six triangular square numbers are $0,1,36,1225,41616$, 1413721. The Pell numbers are defined recursively by $P_{0}=0, P_{1}=1$ and $P_{n+2}=2 P_{n+1}+P_{n}$ for all $n \geqslant 0$. The first ten Pell numbers are 0,1,2,5, $12,29,70,169,408,985$. The purpose of this note is to show a relationship between the Pell numbers and the triangular square numbers.

The Binet formula for P_{n} is

$$
P_{n}=\frac{1}{2 \sqrt{2}}\left[(1+\sqrt{2})^{n}-(1-\sqrt{2})^{n}\right]
$$

for $n \geqslant 0$. Since $(1+\sqrt{2})^{4}=17+12 \sqrt{2}$ and $(1-\sqrt{2})^{4}=17-12 \sqrt{2}$, equation (1) can be written as

$$
\begin{aligned}
u_{n} & =\frac{1}{32}\left[(1+\sqrt{2})^{4 n}+(1-\sqrt{2})^{4 n}-2\right] \\
& =\frac{1}{4}\left(\frac{1}{8}\right)\left[(1+\sqrt{2})^{2 n}-(1-\sqrt{2})^{2 n}\right]^{2} \\
& =\frac{1}{4}\left\{\frac{1}{2 \sqrt{2}}\left[(1+\sqrt{2})^{2 n}-(1-\sqrt{2})^{2 n}\right]\right\}^{2} \\
& =\frac{1}{4} P_{2 n}^{2} .
\end{aligned}
$$

Reference

1. Problem E 954, Amer. Math. Monthly, 58 (1951), p. 568.
doi:10.1017/mag.2015.89
RUSSELL EULER
Northwest Missouri State University, Maryville, MO 64468, USA

99.28 A generalisation of an intriguing ratio

It is interesting to note how a subtle interplay between numbers can lead to visually appealing results. In [1], the following pattern is studied, in various bases:

$$
\begin{aligned}
\frac{987654312}{123456789} & =8, \text { in base } 10 \\
\frac{54312}{12345} & =4, \text { in base } 6
\end{aligned}
$$

