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Variations of Integrals in Diffeology
Patrick Iglesias-Zemmour

Abstract. We establish a formula for the variation of integrals of differential forms on cubic chains
in the context of diffeological spaces. Then we establish the diffeological version of Stokes’ theorem,
and we apply that to get the diffeological variant of the Cartan–Lie formula. Still in the context of
Cartan–De Rham calculus in diffeology, we construct a chain-homotopy operator K, and we apply
it here to get the homotopic invariance of De Rham cohomology for diffeological spaces. This is the
chain-homotopy operator that is used in symplectic diffeology to construct the moment map.

Introduction

The formula for the variation of the integral of differential forms on chains and the
chain-homotopy operator are two essential tools for the Cartan–De Rham calculus
in diffeology, and are used to establish some important formulas like the Cartan–
Lie formula, linking Lie derivatives, contractions, and exterior differential of forms.
These constructions are also interesting in differential geometry of manifolds even if
it does not give new results. The possibility of using differential forms and the diffeo-
logical differential techniques on the space of paths of a manifold — which is never a
manifold (except in trivial cases) — radically simplifies some proofs of fundamental
theorems, and may shed new light on their structural nature. But, even if diffeology
can be used as a shortcut in the classical framework, the purpose of this work is not
to give new proofs for old theorems. I felt it necessary to publish these constructions
and theorems independently, because as the main tools for the Cartan–De Rham cal-
culus in diffeology, I used them in parallel works. In particular, I have used them in
the construction of the moment maps in diffeology, and to show (by the way) how
every symplectic manifold is a coadjoint orbit of its group of symplectomorphisms
[Piz07].

I would emphasize the fact that all these constructions apply to a large category
of spaces, from quotients of manifolds to spaces of smooth functions. Diffeology
preserves the main classical results and theorems without ever involving any of the
functional topology or analysis heavy tools. And that is a huge saving in terms of
technical investment.

Note Diffeology is an extension of the category of smooth real domains. It is a
Cartesian closed category, complete and cocomplete, and contains fully and faithfully
the category of manifolds. The axiomatics of Diffeology have been formulated by J.-
M Souriau in [Sou81]. They are a variant of Chen’s structure [Che77]. They have
been extended then by his students in [Don84, DI85, Igl85], etc. A few years ago I
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began to write a textbook on diffeology [Piz05], where the reader can find all the
details of constructions used here.

1 Differential Forms on Diffeological Spaces

I remind the reader of the main constructions related to differential calculus in dif-
feology; the basics of the general theory are assumed to be known. The proofs of the
claims can be found in [Piz05].

1.1 Differential Forms on Diffeological Spaces

Let X be a diffeological space. A differential k-form of X (or defined on X) is a map α
that associates with any plot P of X a smooth k-form α(P) defined on the domain of
P such that, for every smooth parametrization F of the domain of P,

α(P ◦ F) = F∗(α(P)).

Let us summarize formally: α is a k-form of X if and only if

(1) for all integers n, for all n-plots P : U → X, α(P) ∈ C∞(U ,Λk(Rn)), where
Λk(Rn) denotes the space of linear k-forms of Rn;

(2) for all m domains V , for all smooth parametrizations F : V → U , for all v ∈ V
and for all k vectors ξ1 . . . ξk ∈ Rm,

α(P ◦ F)(v)(ξ1) · · · (ξk) = α(P)(F(v))(D(F)(v)(ξ1)) · · · (D(F)(v)(ξk)),

where D(F)(v) denotes the tangent linear map of F at v.

The condition α(P ◦ F) = F∗(α(P)) is called the smooth compatibility condition,
and we say that α(P) represents the differential form α in the plot P. The space of
differential k-forms of X will be denoted by Ωk(X), and we shall see that it is naturally
a diffeological vector space.

Note 1 Let U be an n-domain, that is, an open subset of Rn. There is a subtle
difference between a smooth k-form a ∈ C∞(U ,Λk(Rn)) on U and the differential
k-form [a] on U (regarded as a diffeological space) defined by [a](F) = F∗(a). We
may identify a = [a](1U ) and [a], by abuse of notation.

Note 2 As an example of differential form, let us give this one, adapted from
[Don94], and defined on the group G = Diff(S1). We consider the universal cov-
ering G̃ represented by the diffeomorphisms f of R satisfying f (x + 2π) = f (x) + 2π.
Let P : U → G̃ be an n-plot, let r ∈ U , δr ∈ Rn, and let α̃ be defined by

α̃(P)r(δr) =

∞∑
n=0

1

2n

∂

∂s

{
P(r)−1 ◦ P(s)(n)

}
s=r

(δr).

One can check that α̃ is a left invariant 1-form on G̃, and invariant by 2πZ. It defines
a unique left invariant 1-form α on Diff(S1). The coadjoint orbit of this momemtum
by Diff(S1) is an example of a nonregular coadjoint orbit in the sense of Kirillov.
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1.2 Functional Diffeology of the Space of Forms

The set Ωk(X) of all differential k-forms on a diffeological space X is a real vector
space. For all α, α ′ ∈ Ωk(X), for all real number s, and for all plots P of X,

(α + α ′)(P) = α(P) + α ′(P)

(s× α)(P) = s× α(P).

The set of parametrizations φ : V 7→ Ωk(X) defined by the following condition, is a
diffeology of vector spaces.

♣ For every plot P : U → X, the map (s, r) 7→ φ(s)(P)(r) defined from V ×U to
Λk(Rn) is smooth, that is, [(s, r) 7→ φ(s)(P)(r)] ∈ C∞(V ×U ,Λk(Rn)).

We call this diffeology, the (standard) functional diffeology of Ωk(X).

1.3 Pullbacks of Differential Forms

Let X and X ′ be two diffeological spaces. Let α ′ ∈ Ωk(X ′), and let f : X → X ′ be a
smooth map. The pullback f ∗(α ′) of α ′ by f , defined for all plots P of X by

( f ∗(α ′))(P) = α ′( f ◦ P),

is a differential k-form on X. The pullback of differential forms is contravariant. Let
X, X ′, and X ′ ′ be three diffeological spaces, and let f : X → X ′ and g : X ′ → X ′ ′ be
two smooth maps. Let α ′ ′ ∈ Ωk(X ′ ′), then

(g ◦ f )∗(α ′ ′) = f ∗
(

g∗(α ′ ′)
)
.

Moreover, the pullback operation

f ∗ : Ωk(X ′)→ Ωk(X ′)

is a smooth linear map for the functional diffeology of the spaces of forms.

Note Let α ∈ Ωk(X) and P : U → X be a plot. The differential k-form P∗(α) de-
fined on U , regarded as a diffeological space, is characterized by α(P) = P∗(α)(1U ).
Therefore, α is just defined by the family of its pullbacks by the plots of X.

1.4 Exterior Differentials of Forms

Let X be a diffeological space. Let α be a p-form of X. The exterior differential dα of
α is the (p + 1)-differential form defined by

(dα)(P) = d(α(P)),

for all plots P of X. The linear operator so defined, d : Ωp(X)→ Ωp+1(X), is smooth,
where Ωp(X) and Ωp+1(X) are equipped with their functional diffeology defined in
Subsection 1.2.
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Thanks to the commutativity between pullback and exterior differential of smooth
forms, the pullback of differential forms on diffeological spaces commutes with the
exterior differential. Let X ′ be another diffeological spaces and let f : X → X ′ be a
smooth map. Then, for all differential forms α ′ of X ′,

d
(

f ∗(α ′)
)

= f ∗(dα ′).

1.5 Exterior Products of Differential Forms

Let X be a diffeological space, let α ∈ Ωk(X) and β ∈ Ω`(X). There exists a k + `
differential form α ∧ β, defined on X by

(α ∧ β)(P) = α(P) ∧ β(P),

for all plots P of X. The form α ∧ β is called the exterior product of α with β. The
exterior product, regarded as a map:

∧ : Ωk(X)× Ω`(X)→ Ωk+`(X) with ∧ (α, β) = α ∧ β,

is a smooth bilinear map, for the functional diffeology of the spaces of forms.
The basic properties of the exterior product of smooth forms extend naturally to

the exterior product of differential forms on diffeological spaces:

α ∧ β = (−1)k`β ∧ α. and f ∗(α ∧ β) = f ∗(α) ∧ f ∗(β),

where f is a smooth map.

2 Lie Derivatives and Contractions

In this section, we define the Lie derivative of differential forms of diffeological spaces,
along slidings, that is, (germs of) paths of diffeomorphisms centered at the identity.
We define also the notion of contractions of differential forms by arcs of plots, which
extend the contractions by slidings.

2.1 The Lie Derivative of Differential Forms

Let X be a diffeological space, let α ∈ Ωk(X), and let h : R → Diff(X) be a 1-plot
for the functional diffeology, centered at the identity, that is, h(0) = 1X . Then there
exists a k-form of X denoted by Lh(α), called the Lie derivative of α by h and defined
by

Lh(α) =
∂

∂t

{
h(t)∗α

}
t=0
.

This means precisely that, for every integer n, for every n-plot P : U → X, for every
r ∈ U and any set of k vectors v1, . . . , vk ∈ Rn,

Lh(α)(P)(r)(v1) · · · (vk) =
∂

∂t

{
α(h(t) ◦ P)(r)(v1) · · · (vk)

}
t=0
.

The Lie derivative, Lh : Ωk(X) → Ωk(X) is a smooth linear map for the functional
diffeology of forms.
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Note The Lie derivative Lh(α) depends only on the “1-jet” of the plot h at 0; that
is, if h and h ′ are two 1-plots of Diff(X) centered at the identity, such that h ′ = h ◦ f ,
with f (0) = 0 and D( f )(0) = 1, then Lh(α) = Lh ′(α). This is the case in particular
when h and h ′ coincide on an open neighborhood of 0 (have the same germ at 0).

Proof Let us show that Lh(α) is a well-defined differential form of X. Let P : U → X
be a n-plot of X, and let h · P be the (p + 1)-plot defined by

h · P(t, r) = (h(t) ◦ P)(r) = h(t)(P(r)), where (t, r) ∈ R×U .

By definition, α(h · P) is a differential form on R ×U . But α(h(t) ◦ P) is the pull-
back of α(h · P) by the injection jt : r 7→ (t, r) from U into R ×U , i.e., α(h(t) ◦ P)
is the restriction of α(h · P) on {t } × U . Since α(h(t) ◦ P) is a smooth form, the
map t 7→ α(h(t) ◦ P) � {t } ×U is a smooth parametrization in Λk(Rn). Thus, its
derivative is still a smooth parametrization of Λk(Rn). Therefore, the definition of
Lh(α) makes sense.

Now let us check now the fundamental property of differential forms (Subsec-
tion 1.1). Let F : V → U be a smooth parametrization in U , then

Lh(α)(P ◦ F) =
∂

∂t

{
α
(

h(t) ◦ (P ◦ F)
)}

t=0
=

∂

∂t

{
α
(

(h(t) ◦ P) ◦ F
)}

t=0

=
∂

∂t

{
F∗
(
α(h(t) ◦ P)

)}
t=0

= F∗
( ∂

∂t

{
α(h(t) ◦ P)

}
t=0

)
= F∗

(
Lh(α)(P)

)
.

Hence, Lh(α) is a differential k-form of X.
(1) Obviously, since the derivative is local, the Lie derivative is local, and Lh(α)

only depends on the germ of h. Now, if h ′ = h ◦ f with f (0) = 0, then

Lh ′(α)(P)(r)[v] = D
(

s 7→ α
(

h( f (s)
)
◦ P
)

(r)[v])(0)(1),

where [v] denotes the k vectors (v1) · · · (vk). But[
s 7→ α(h( f (s)) ◦ P)(r)[v]

]
=
[

t 7→ α(h(t) ◦ P)(r)[v]
]
◦
[

s 7→ f (s)
]
,

thus

Lh ′(α)(P)(r)[v] = D
(

t 7→ α(h(t) ◦ P)(r)[v]
)

(0)
(

D( f )(0)(1)
)

= D( f )(0)(1)× Lh(α)(P)(r)[v].

Therefore, if D( f )(0)(1) = 1, then Lh(α) = Lh ′(α).
(2) It is clear that the Lie derivative is linear. Let us prove that Lh is smooth.

Let φ : V → Ωk(X) and P : U → X be two plots. We want to check that (s, r) 7→
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Lh(φ(s))(P)(r) is smooth. But,

Lh(φ(s))(P)(r) =
∂

∂t

(
h(t)∗(φ(s))(P)(r)

)
t=0

=
∂

∂t

(
φ(s)(h(t) ◦ P)(r)

)
t=0

=
∂

∂t

(
j∗t (φ(s)(h · P))(r)

)
t=0
.

Now, (s, t, r) 7→ φ(s)(h · P)(t, r) is a smooth map, and j∗t (φ(s)(h · P))(r) is just its
restriction to V × {t} ×U . Thus, Lh(φ(s))(P)(r) is a partial derivative of a smooth
map, hence smooth. Therefore, the Lie derivative Lh is a smooth endomorphism of
Ωk(X).

2.2 Lie Derivative along Homomorphisms

Let X be a diffeological space, and let h be a smooth homomorphism from R to
Diff(X). Then, for all t0 in R we have,

∂h(t)∗(α)

∂t

∣∣∣
t=t0

= h(t0)∗(Lh(α)).

In particular, if Lh(α) = 0, then h(t)∗(α) = α, for all t . Note that it is not necessary
for h to be defined on all R; it is enough to be defined on a small interval centered at
the origin and such that h(t + t ′) = h(t) ◦ h(t ′) whenever it makes sense.

Proof Let us compute the derivative of [t 7→ h(t)∗(α)] at the point t0,

∂h(t)∗(α)

∂t

∣∣∣
t=t0

= lim
ε→0

h(t0 + ε)∗(α)− h(t0)∗(α)

ε

= lim
ε→0

h(t0)∗
[ h(ε)∗(α)− α

ε

]
.

Let us denote βε = (h(ε)∗(α)− α)/ε. Then, for every n-plot P : U → X, every point
r ∈ U , every k vectors u1, . . . , uk ∈ Rn,

∂h(t)∗(α)

∂t

∣∣∣
t=t0

(P)(r)(u1) · · · (uk) = lim
ε→0

h(t0)∗(βε)(P)(r)(u1) · · · (uk)

= lim
ε→0

βε(h(t0) ◦ P)(r)(u1) · · · (uk)

= Lh(α)(h(t0) ◦ P)(r)(u1) · · · (uk)

= h(t0)∗(Lh(α))(P)(r)(u1) · · · (uk).

Hence,
∂h(t)∗(α)

∂t

∣∣∣
t=t0

= h(t0)∗(Lh(α)).

Now, if Lh(α) = 0, then ∂[h(t)∗(α)]/∂t = 0 for all t and h(t)∗(α) is constant, that
is, equal to α = h(0)∗(α).
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2.3 Contraction of Differential Forms

Let X be a diffeological space, and let D be its diffeology. Let P : U → X be an n-plot
and let F : ]−ε,+ε[→ D be an arc of D, centered at P; that is,

(a) F(0) = P, and for all s ∈ ]−ε, ε[, F(s) is a plot of X defined on the same fixed
domain U than P;

(b) F̄ : (s, r) 7→ F(s)(r), defined on ]−ε, ε[×U , is a plot of X.

In particular, F is a smooth path of D, equipped with the functional diffeology
[Piz05]. Now, let α be a k-form of X, k ≥ 1. For all r ∈ U , α(F̄) is a k-form of
]−ε,+ε[×U . The restriction to {0} ×U of the contraction of α(F̄) with the vector
(1, 0) ∈ R × Rn is a smooth (k − 1)-form of U . That is, for all r in U , and for all
(k− 1) vectors v2, . . . , vk of Rn,

r 7→
[

(v2, . . . , vk) 7→ α(F̄)(0
r)

(
1

0

)(
0

v2

)
· · ·
(

o

vk

)]
∈ C∞(U ,Λk−1(Rn)).

Let F and F ′ be two arcs of D, centered at P. We shall say that F and F ′ define the
same variation δP of the n-plot P, if for all k-forms α of X, k ≥ 1, for all r in U , for
any (k− 1) vectors v2, . . . , vk ∈ Rn, we have

(2.1) α(F̄ ′)(0
r)

(
1

0

)(
0

v2

)
· · ·
(

0

vk

)
= α(F̄)(0

r)

(
1

0

)(
0

v2

)
· · ·
(

o

vk

)
.

Thus, the variation δP of the plot P can be regarded as the class of the arc F of D for
the equivalence relation defined by (2.1), and F represents δP.

For every differential form α ∈ Ωk(X), k ≥ 1. For every n-plot P : U → X, for ev-
ery variation δP of the plot P, we call contraction of α by δP, the smooth (k− 1)-form
defined on U by

(2.2) α(δP)(r)(v2) · · · (vk) = α(F̄)(0
r)

(
1

0

)(
0

v2

)
· · ·
(

o

vk

)
,

where F represents δP, r ∈ U , and v2, . . . vk ∈ Rn,

α(δP) ∈ C∞(U ,Λk−1(Rn)).

Note 1 We shall denote by αcδP ∈ Ωk−1(U ) the differential form of U , defined by
(αcδP)(1U ) = α(δP), where U is regarded as a diffeological space.

Note 2 The contraction of a k-form of X, by some arc of plots, is not a (k−1)-form
of X, since it is not defined on the plots of X but on the domain of the target P of the
arc of plots. However, in some particular situations, for example in Subsection 2.4,
this definition gives rise to a true (k− 1)-form of X.

Note 3 In the definition of the variation δP, the value s = 0, where the variation is
computed, does not really matter. We can also define the variation, denoted by δPs,
to be the variation for s = 0 of the translated arc Fs : s ′ 7→ F(s ′ + s), which gives

α(δPs)(r)(v2) · · · (vk) = α(F̄)(s
r)

(
1

0

)(
0

v2

)
· · ·
(

o

vk

)
.
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2.4 Contracting Differential Forms on Slidings

Let X be a diffeological space, and let Diff(X) be its group of diffeomorphisms,
equipped with the functional diffeology [Piz05]. We call a sliding of X any 1-plot
F of Diff(X) centered at the identity, or more conveniently,

F : ]−ε,+ε[→ Diff(X) and F(0) = 1X,

where ε is any positive real number. Let P : U → X be any n-plot, for some integer n,
we denote by F · P the following (n + 1)-plot of X

F · P : ]−ε,+ε[×U → X with F · P : (t, r) 7→ F(t)(P(r)).

Next, let α ∈ Ωp(X) be any differential p-form with p ≥ 1. The contraction of α by
the arc of plots t 7→ [r 7→ F · P(t, r)] (Subsection 2.3), will be denoted by iF(α)(P).
It is defined, for every r ∈ U , and for any (p − 1) vectors v2, . . . , vp ∈ Rn, by

(2.3) iF(α)(P)r(v2) · · · (vp) = α(F · P)(0
r)

(
1

0

)(
0

v2

)
· · ·
(

0

vp

)
.

(1) The sliding F being given, the map iF(α) defined by (2.3) is a differential
(p − 1)-form of X. It will be called the contraction of α by the sliding F.

(2) The map (F, α) 7→ iF(α) is smooth, where F belongs to the space of slidings
of X and α belongs to Ωp(X), equiped with their respective functional diffeologies.
In particular, the contraction operation iF : Ωp(X) → Ωp−1(X), with p ≥ 1, is a
smooth linear map.

Note To use the notation of Subsection 2.3, iF(α)(P) = α(δP), where δP is the
variation of the arc of plots [t 7→ [r 7→ F(t)(P(r))]].

Proof Let us prove that iF(α) is a differential form on X. Then let P : U → X be
an n-plot of X and let ψ : V → U be a smooth parametrization. Let us check the
compatibility condition iF(α)(P ◦ ψ) = ψ∗(iF(α)(P)). Let s ∈ V and u2, . . . , up ∈
Rm; we have

iF(α)(P · ψ)s(u2, . . . , up) = α(F · (P ◦ ψ))(0
s)

(
1

0

)(
0

u2

)
· · ·
(

0

up

)
.

But

F · (P ◦ ψ)(t, s) = F(t)
(

P ◦ ψ(s)
)

= F(t)
(

P(ψ(s))
)

= F · P
(

t, ψ(s)
)

= (F · P) ◦ (1× ψ)(t, s),

where 1× ψ(t, v) = (t, ψ(v)). Let us use the more compact notation(
0

u

)
=

(
0

u2

)
· · ·
(

0

up

)
.
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We have, from the above,

α(F · (P ◦ ψ))(0
s)

(
1

0

)(
0

u

)
= α((F · P) ◦ (1× ψ))(0

s)

(
1

0

)(
0

u

)
= (1× ψ)∗(α(F · P))(0

s)

(
1

0

)(
0

u

)
= α(F · P)( 0

ψ(s))

(
1

0

)(
0

v

)
,

where (
0

v

)
=

(
0

v2

)
· · ·
(

0

vp

)
with vi = D(ψ)s(ui).

Thus, denoting D(ψ)s(u) for (D(ψ)s(u2)) · · · (D(ψ)s(up)), we get finally

α(F · (P ◦ ψ))(0
s)

(
1

0

)(
0

u

)
= iF(α)(P)ψ(s)(D(ψ)s(u))

= ψ∗(iF(α)(P))s(u).

Hence, iF(α)(P ◦ ψ) = ψ∗(iF(α)(P)), and iF(α) is a (p − 1)-form of X.
Let us prove now that (F, α) 7→ iF(α) is smooth. Let Q : s 7→ (Fs, αs) be a plot

of C∞loc(R,Diff(X))×Ωp(X), where C∞loc(R,Diff(X)) is the space of 1-plots of Diff(X)
and Fs is centered at the identity for all s, Fs(0) = 1X . According to the definition of
the functional diffeology of a diffeology [Piz05], for any s0 ∈ dom(Q) there exists a
small neighborhood W of s0 such that dom(Fs) = dom(Fs0 ) for all s ∈ W . We can
restrict the domain of Q to W and choose dom(Fs) = ]−ε,+ε[ for some ε > 0. For
a parametrization s 7→ Fs to be a plot means that (s, t, x) 7→ Fs(t)(x) is smooth. Now
let us check that s 7→ iFs (αs) is a plot of Ωp−1(X). Let P : U → X be a plot; we have

iFs (αs)(P)r(v) = αs(Fs · P)(0
r)

(
1

0

)(
0

v

)
,

with the same notations as above for v. But (s, t, r) 7→ (s, t, P(r)) 7→ Fs(t)(P(r)) =
(Fs · P)(t, r) is a plot of X. Thus, by the definition of the functional diffeology of
Ωp(X), (s, t, r) 7→ αs(Fs · P)(t,r) is smooth. Hence,

(r, s) 7→ αs(F · P)(0
r)

(
1

0

)
is smooth. Therefore, (r, s) 7→ iF(αs)(P)r is locally a plot of Ωp−1(X), thus a plot, and
(F, α) 7→ iF(α) is a smooth map that is clearly linear in α.

3 Integration of Differential Forms

In this section we shall study some properties of the integration of differential forms
on chains, in diffeology. For the sake of simplicity, we integrate differential forms on
cubic chains, which are related to cubic homology, because they only depend on the
computation of multiple integrals in real spaces, which is a simple procedure. For
more details on cubic chains and associated cubic homology; see [Piz05].
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3.1 Integrating Forms on Chains

Let us consider the real vector space Rp, oriented by its canonical basis B =
(e1, . . . , ep); that is, oriented by the canonical volume volp associated with B, volp =
e1 ∧ · · · ∧ ep or dx1 ∧ · · · ∧ dxp with ei = dxi . As we know, any smooth p-form ω, on
a real domain U ⊂ Rp, is proportional to volp. That is, for all ω ∈ C∞(U ,Λp(Rp)),
there exists a unique f ∈ C∞(Rp,R) such that

ω = f × volp, and f (x) = ωx(e1, . . . , ep).

Now, let α be a p-form on a diffeological space X. And let σ ∈ Cubp(X) =
C∞(Rp,X) be a smooth p-cube, that is, a smooth map from Rp to X. The integral
of the p-form α on the p-cube σ is defined by

(3.1)

∫
σ

α =

∫
Ip

α(σ),

where I = [0, 1]. Sinceα(σ) is a smooth p-form of Rp, there exists a smooth function
fσ such that α(σ) = fσ × volp. Hence, the integral of α over σ can also be written∫

σ

α =

∫
Ip

fσ × dx1 ∧ · · · ∧ dxp with α(σ) = fσ × vol .

Then, the integral of α on σ becomes∫
σ

α =

∫ 1

0
dx1 · · ·

∫ 1

0
fσ(x) dxp, with x = (x1, . . . , xp),

where fσ(x) = α(σ)x(e1, . . . , ep). Note that, the space Rp having been oriented once
and for all, there is no ambiguity on the value or the sign of the function fσ .

The integral of p-forms on cubic p-chains is defined by linear extension of the
integral of p-forms on p-cubes,∫

c
α =

∑
σ

nσ

∫
σ

α for all c =
∑
σ

nσσ ∈ C p(X).

The space C p(X) of cubic p-chains in X is the set of linear combinations of p-cubes
in X, with coefficients in Z, and finitely supported. The support of the p-chain c =∑

σ nσσ is the set of p-cubes σ such that nσ 6= 0.

3.2 Pairing Chains and Forms

The pairing operation (c, α) 7→
∫

c α, with (c, α) ∈ C p(X) × Ωp(X), satisfies the
following properties:

(1) The pairing is a bilinear operation:∫
nc+n ′c ′

(sα + s ′α ′) = ns

∫
c
α + ns ′

∫
c
α ′ + n ′s

∫
c ′
α + n ′s ′

∫
c ′
α ′.
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(2) On cubes, the pairing is smooth:[
(σ, α) 7→

∫
σ

α

]
∈ C∞(Cubp(X)× Ωp(X),R),

where Cubp(X) is equipped with its functional diffeology of space of smooth
maps from Rp to X and Ωp(X) is equipped with its functional diffeology of space
of forms.

(3) A p-form vanishes identically if and only if its integral on any smooth p-cube
vanishes,

α = 0 if and only if

∫
σ

α = 0, for all σ ∈ Cubp(X),

which is equivalent to saying that two p-forms coincide if and only if their inte-
grals on any p-cube coincide.

Proof The bilinearity of the pairing is a direct consequence of the definitions of sum
of chains and sums of forms.

For the second point, let r 7→ (σr, αr) be a plot of C∞(Cubp(X) × Ωp(X)), and
then ∫

σr

αr =

∫
Ip

αr(σr).

The parametrization r 7→ αr being a plot of Ωp(X) means that, for any plot
P : U → X, the map (r, s) 7→ αr(P)(s) is smooth (Subsection 1.1). On the other
hand, s 7→ σs is a plot of Cubp(X), which means that S : (s, t) 7→ σs(t) is a plot of X.
Then (r, s, t) 7→ αr(S)(s, t) is smooth. But [(r, t) 7→ αr(σr)(t)] is the restriction of
(r, s, t) 7→ αr(S)(s, t) for s = r. Thus, [(r, t) 7→ αr(σr)(t)] is smooth, which means
that there exists a smooth function (r, t) 7→ fr(t) such that αr(σr)(t) = fr(t)× volp.
Therefore, ∫

σr

αr =

∫
Ip

fr × volp .

And r 7→
∫
σr
αr is smooth, because the integration over the cube Ip is a smooth

operation.
For the third point, let us assume that

∫
σ
α = 0 for all p-cube σ and that α 6= 0.

Then there exists a p-plot P : U → X such that α(P) 6= 0. That means that there
exists r ∈ U , such that α(P)(r) 6= 0. But α is a p-form on a domain of dimension p.
Hence, there exists f ∈ C∞(U ,R) such that α(P) = f × vol, and α(P)(r) 6= 0 means
that f (r) 6= 0. Let us assume that f (r) > 0 (it would be equivalent to assume that
f (r) < 0). By continuity, there exists a small cube C , centered at the point r, such
that f (r ′) > 0 for all r ′ ∈ C . Since f � C is positive, the integral of f over the cube C
is positive, ∫

C
f × volp > 0.
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But there exists a positive diffeomorphism ϕ from Rp onto an open neighborhood of
r, mapping the standard cube Ip to C . Hence, σ = P ◦ϕ is a smooth p-cube of X and∫

σ

α =

∫
Ip

α(P ◦ ϕ) =

∫
Ip

ϕ∗(α(P)) =

∫
Ip

ϕ∗( f × volp).

But since ϕ is a positive diffeomorphism, by a change of coordinates, we get∫
Ip

ϕ∗( f × volp) =

∫
Ip

f ◦ ϕ× det(D(ϕ))× volp =

∫
C

f × volp .

Then
∫
σ
α > 0, and we have a smooth p-cube σ on which the integral of α is non

zero, which contradicts with the hypothesis. Therefore, for each plot P of X, α(P) =
0, that is, α = 0.

3.3 Pulling Back and Forth Forms and Chains

Let X and X ′ be two diffeological spaces and f ∈ C∞(X,X ′). For all p-cube σ ∈
Cubp(X), the pushforward of σ by f is denoted by f∗(σ) and is defined by

f∗(σ) = f ◦ σ and f∗ : Cubp(X)→ Cubp(X ′).

The pushforward of p-chains by f is defined by linear extension of the pushforward
of p-cubes. Let c =

∑
σ nσσ be a p-chain, then

f∗(c) =
∑
σ ′

nσ ′ σ
′, where nσ ′ =

∑
σ∈Supp(c)
σ ′= f∗(σ)

nσ.

Now, for all α ′ ∈ Ωp(X ′), we have∫
f∗(c)

α ′ =

∫
c

f ∗(α ′).

Note Since for any p-cube σ = 1p∗(σ), where 1p : Rp → Rp is the identity, we
have an equivalent formulation of the integral of a p-form on a p-cube,∫

σ

α =

∫
1p

σ∗(α).

This expression will be used in the paragraph about the variations of the integrals of
forms on chains.

Proof By definition, for any smooth p-cube σ, we have∫
f∗(σ)

α ′ =

∫
1p

[ f∗(σ)]∗(α ′) =

∫
1p

( f ◦ σ)∗(α ′) =

∫
1p

σ∗( f ∗(α ′)) =

∫
σ

f ∗(α ′).
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Now, let c =
∑

σ nσ σ, and let c ′ = f∗(c). Thus, on the one hand we have∫
c ′
α ′ =

∑
σ ′

nσ ′
∫
σ ′
α ′ =

∑
σ ′

[ ∑
σ∈Supp(c)
f∗(σ)=σ ′

nσ

] ∫
f∗(σ)

α ′,

and on the other hand,∫
c

f ∗(α ′) =
∑
σ

nσ

∫
σ

f ∗(α ′) =
∑
σ

nσ

∫
f∗(σ)

α ′

=
∑
σ ′

[ ∑
σ∈Supp(c)
σ ′= f∗(σ)

nσ

] ∫
f∗(σ)

α ′.

Therefore,
∫

f∗(c) α
′ =

∫
c f ∗(α ′).

3.4 Changing the Coordinates of a Cube

Let X be a diffeological space. Let σ ∈ Cubp(X) and α ∈ Ωp(X). Let ϕ be a pos-
itive diffeomorphism of Ip, that is, ϕ ∈ Diff(Rp), ϕ(Ip) = Ip, and for all x ∈ Ip,
det[D(ϕ)(x)] > 0. Then ∫

σ∗(ϕ)
α =

∫
σ

α.

Note that, in the notation σ∗(ϕ), ϕ is regarded as a smooth cube and σ a smooth
map. Note that ϕ does not need to be defined on the whole Rp, but only on any open
neighborhood of the cube Ip ⊂ Rp.

Proof This proposition is a result of the change of variables of a multiple integral.
Let f such that α(σ) = f × volp. Thus,∫

σ∗(ϕ)
α =

∫
Ip

α(σ ◦ ϕ) =

∫
Ip

ϕ∗(α(σ)) =

∫
Ip

ϕ∗( f × volp)

But ϕ∗( f × volp) = ( f ◦ ϕ)× ϕ∗(volp). Hence,∫
Ip

ϕ∗( f × volp) =

∫
Ip

( f ◦ ϕ)× ϕ∗(volp) =

∫
Ip

( f ◦ ϕ)× det(D(ϕ))× volp .

But, since det(D(ϕ)) > 0, we have∫
Ip

( f ◦ ϕ)× det(D(ϕ))× volp =

∫
Ip

( f ◦ ϕ)× | det(D(ϕ))| × volp .

But, by application of the change of variables x 7→ ϕ(x), in a multiple integral, we get∫
Ip

( f ◦ ϕ)× | det(D(ϕ))| × volp =

∫
ϕ(Ip)

f × volp =

∫
Ip

f × volp =

∫
σ

α.

Therefore,
∫
σ∗(ϕ) α =

∫
σ
α.
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4 Variations of the Integrals of Forms on Chains

In this section we establish some theorems relative to the variations of integrals of
forms on chains. We begin with the diffeological version of the Stokes theorem. Then
we give a formula for any variation of the integral of a p-form on a p-chain. This for-
mula mixes the form, its exterior differential, and the contractions with the variation
of the chain. We deduce then the diffeological version of the Cartan–Lie formula and
the homotopic invariance of the De Rham cohomology of diffeological spaces.

4.1 The Stokes Theorem

Let X be a diffeological space and let α ∈ Ωp−1(X) and c ∈ C p(X), p ≥ 1, then∫
c

dα =

∫
∂c
α.

Proof By linearity we need just to prove the statement for a p-cube σ ∈ Cubp(X).
We assume that Stokes’ theorem is known for a p-form in Rp−1, then∫

σ

dα =

∫
Ip

dα(σ) =

∫
Ip

d[α(σ)] =

∫
∂Ip

α(σ) =

∫
∂σ

α.

The covariant nature of diffeology makes the Stokes theorem reduce to the simplest
case of smooth (p − 1)-forms on standard p-cubes.

4.2 Variation of the Integral of a Form on a Cube

Let X be a diffeological space. And, let r 7→ (σr, αr) ∈ C∞(U ,Cubp(X)× Ωp(X)) be
a plot of the product, defined on some real domain U of Rm, m ∈ N. Let us write
simply α for α0 and σ for σ0. Then, since the pairing of chains and forms is a smooth
map (Subsection 3.2), we have[

r 7→
∫
σr

αr

]
∈ C∞(U ,R).

The variation of the integral of α on σ, at some point r ∈ U , applied to a vector
δr ∈ Rm, is the number denoted and defined by

δ

∫
σ

α =
∂

∂r

{∫
σr

αr

}
r

(δr),

where the partial derivative ∂/∂r denotes the tangent linear map. Let us give an
equivalent formulation of the variation of the integral. Let us consider the following
map, defined on a small real interval ]− ε, ε[,

s 7→
∫
σs

αs where σs = σr+sδr and αs = αr+sδr,
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then

δ

∫
σ

α =
∂

∂s

{∫
σs

αs

}
s=0

.

Thus, the variations of the integral involves only 1-plot of cubes and forms. For this
reason we shall continue only with 1-plot variations of

∫
σ
α.

Now, for any arc of p-cube s 7→ σs of X centered at σ, for any arc of p-form s 7→ αs

of X centered at α, we have the following identity:

(4.1) δ

∫
σ

α =

∫
1p

dαcδσ +

∫
1p

d[αcδσ] +

∫
1p

σ∗(δα),

where

(i) dα is the exterior differential of α defined in (Subsection 1.4);
(ii) δα is the p-form of X,

δα = P 7→ ∂

∂s

{
αs(P)

}
s=0
,

defined, for every n-plot P of X, r ∈ U and v1, . . . , vp ∈ Rn, by

∂

∂s

{
αs(P)

}
s=0

(r)(v1) · · · (vp) =
∂

∂s

{
αs(P)(r)(v1) · · · (vp)

}
s=0

;

(iii) αcδσ and dαcδσ are the contractions of the forms α and dα with the arc of
plots s 7→ σs defined in Subsection 2.3.

Note 1 Thanks to the Stokes theorem (Subsection 4.1), the variation of the integral
α on the cube σ can also be written

(4.2) δ

∫
σ

α =

∫
1p

dαcδσ +

∫
∂1p

αcδσ +

∫
1p

σ∗(δα).

Note 2 The variation formula (4.1) still applies, mutatis mutandi, to the variation
δσs (Subsection 2.3, Note 3), for any s ∈ ]−ε,+ε[.

Proof Let us consider the decomposition of the pairing

s 7→
(

s

s

)
7→
∫
σs

αs, with

(
s

t

)
7→
∫
σs

αt ,

such that,
∂

∂s

{∫
σs

αs

}
s=0

=
∂

∂s

{∫
σs

α

}
s=0

+
∂

∂t

{∫
σ

αt

}
t=0

.

https://doi.org/10.4153/CJM-2012-044-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2012-044-5


1270 P. Iglesias-Zemmour

Let us use the variable r ∈ Rp = dom(σ), let r =
∑p

k=1 rkek and drk = ek, k =
1, . . . p. The second term of the right-hand sum of this identity gives

∂

∂t

{∫
σ

αt

}
t=0

=
∂

∂t

{∫
Ip

αt (σ)

}
t=0

=
∂

∂t

{∫
Ip

αt (σ)(r)(e1) · · · (ep) e1 ∧ · · · ∧ ep

}
t=0

=

∫
Ip

∂

∂t

{
αt (σ)(r)(e1) · · · (ep)

}
t=0

e1 ∧ · · · ∧ ep

=

∫
Ip

(δα)(σ)(r)(e1) · · · (ep)

}
t=0

e1 ∧ · · · ∧ ep

=

∫
σ

δα.

The variation of the pairing decomposes into two parts,

(4.3) δ

∫
σ

α = δ

∫
σ

α

∣∣∣∣
δα=0

+

∫
σ

δα,

the first term corresponding to a zero variation of α. Let us then introduce

σ(s, r) = σs(r) and js : r 7→ (s, r),

with σ a (p + 1)-plot defined on ]− ε, ε[×Ip and js the injection from Ip to ]− ε, ε[
×Ip at the height s. Now, using σs = σ ◦ js, we have∫

σs

α =

∫
Ip

α(σs)(r)(e1) · · · (ep) e1 ∧ · · · ∧ ep

=

∫
Ip

α(σ ◦ js)(r)(e1) · · · (ep) e1 ∧ · · · ∧ ep

=

∫
Ip

j∗s (α(σ))(r)(e1) · · · (ep) e1 ∧ · · · ∧ ep

=

∫
Ip

α(σ)

(
s

r

)(
0

e1

)
· · ·
(

0

ep

)
e1 ∧ · · · ∧ ep.

Note that α(σ) is a p-form on the (p +1)-domain ]−ε, ε[×Rp. Then let us introduce
the (p + 1) coordinates ai = [(s, r) 7→ ai], with i = 0, 1, . . . , p, and let e0 = ds. We
have

α(σ)(s, r) = a0 e1 ∧ e2 ∧ e3 ∧ · · · ∧ ep

+ a1 e0 ∧ e2 ∧ e3 ∧ · · · ∧ ep

+ a2 e0 ∧ e1 ∧ e3 ∧ · · · ∧ ep

...

+ ap e0 ∧ e1 ∧ e2 ∧ · · · ∧ ep−1,
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or, equivalently

α(σ)(s, r) =

p∑
k=0

ak e0 ∧ · · · [ek] · · · ∧ ep,

where the bracket [ek] means that ek is omitted. Thus,∫
σs

α =

∫
Ip

a0 e1 ∧ · · · ∧ ep with a0 = α(σ)

(
s

r

)(
0

e1

)
· · ·
(

0

ep

)
.

Now, since everything is smooth, integration and derivation commute, and the
derivative with respect to the variable s becomes

∂

∂s

{∫
σs

α

}
s=0

=

∫
Ip

∂a0

∂s

∣∣∣
s=0

e1 ∧ · · · ∧ ep.

Next, let us introduce the exterior differential of α(σ),

d[α(σ)](s
r) = dα(σ)(s

r) =

{
∂a0

∂s
− ∂a1

∂r1
+ · · · + (−1)p ∂ap

∂rp

}
e0 ∧ e1 ∧ · · · ∧ ep.

After contracting the two terms of this identity by the vector of coordinates (1, 0) ∈
R× Rp, we get

∂a0

∂s
e1 ∧ · · · ∧ ep = dα(σ)(s

r)

(
1

0

)
−
{ p∑

k=1

(−1)k ∂ak

∂rk

}
e1 ∧ · · · ∧ ep.

The first term of the right-hand side is the inner product of the value of the p-form
dα(σ) at the point (s, r), with the vector of coordinates (1, 0). Evaluated at the point
(0, r), and restricted to Rp, it is exactly the contraction dα with the arc of p-cubes
s 7→ σs from (2.2). Hence,

∂a0

∂s

∣∣∣
s=0

e1 ∧ · · · ∧ ep = dα(δσ)r −
{ p∑

k=1

(−1)k ∂ak(0, r)

∂rk

}
e1 ∧ · · · ∧ ep.

The second term of the right-hand side of this identity is just the exterior differential
of the contraction α(δσ). Indeed, let v2, . . . , vp be p − 1 vectors of Rp, using the
above expression of α(σ), we get

α(δσ)r(v2) · · · (vp)

= α(σ)(0
r)

(
1

0

)(
0

v2

)
· · ·
(

0

vp

)

=

[ p∑
k=0

ak(0, r) dr0 ∧ · · · [drk] · · · ∧ drp

](
1

0

)(
0

v2

)
· · ·
(

0

vp

)

=

[ p∑
k=1

ak(0, r) dr1 ∧ · · · [drk] · · · ∧ drp

]
(v2) · · · (vp).
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Thus,

α(δσ)r =

p∑
k=1

ak(0, r) dr1 ∧ · · · [drk] · · · ∧ drp.

Then

d
[
α(δσ)

]
r

=

p∑
k=1

∂ak(0, r)

∂rk
ek ∧ e1 ∧ · · · [ek] · · · ∧ ep

=

p∑
k=1

(−1)p−1 ∂ak(0, r)

∂rk
e1 ∧ · · · ∧ ek ∧ · · · ∧ ep

= −
{ p∑

k=1

(−1)k ∂ak(0, r)

∂rk

}
e1 ∧ · · · ∧ ep.

Hence,
∂a0

∂s

∣∣∣
s=0

e1 ∧ · · · ∧ ep = dα(δσ)r + d[α(δσ)]r.

Therefore,

∂

∂s

{∫
σs

α

}
s=0

=
∂a0

∂s

∣∣∣
s=0

e1 ∧ · · · ∧ ep =

∫
Ip

dα(δσ) + d
[
α(δσ)

]
(4.4)

=

∫
1p

dαcδσ +

∫
1p

d[αcδσ]

Finally, combining (4.3) and (4.4) we obtain the formula (4.1) of the variation of the
integral of a p-form on a p-cube.

4.3 Variation of the Integral of Forms on Chains

Let X be a diffeological space. Let c =
∑

σ nσ σ be a cubic p-chain. Let α be a
differential p-form. The pullback of α by c is defined by linearity,

c∗(α) =
∑
σ

nσ σ
∗(α) ∈ Ωp(Rp).

And since the support of c is finite, the sums involved are finite. We can also write
α(c) =

∑
σ nσ α(σ) ∈ C∞(Rp,Λp(Rp)). Now, the parametrizations r 7→ cr, from U

to C p(X), satisfying the following property define a diffeology.

♠ For all r0 ∈ U , there exists a open neighborhood V of r0, a finite family of indices
I, a family {ni}i∈I, with ni ∈ Z, a family {σi}i∈I, with σi ∈ C∞(V,Cubp(X)),
such that cr =

∑
i∈I ni σi,r for all r ∈ V .

The proof that♠ defines a diffeology is left to the reader. Now, let s 7→ cs be an arc of
cubic p-chains centered at c, that is, a 1-plot of C p(X), defined on an interval ]−ε,+ε[
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such that c0 = c. Let cs =
∑

σ nσ σs, where the σs are a finite family of p-cubes of X.
We define the variation δc as the sum of the variations δσ, δc =

∑
σ nσ δσ. That is

for all p-forms α ∈ Ωp(X),

α(δc) = α

(∑
σ

nσδσ

)
=
∑
σ

nσ α(δσ).

Or directly, according to the definition (Subsection 2.3),

α(δc)(r)(v2) · · · (vp) = α(c)(0
r)

(
1

0

)(
0

v2

)
· · ·
(

0

vp

)
=
∑
σ

nσ α(σ)(0
r)

(
1

0

)(
0

v2

)
· · ·
(

0

vp

)
,

where c is the plot (s, r) 7→ cs(r), with (s, r) ∈ ]−ε,+ε[×Rp, and c =
∑

σ nσ σ, with
σ(s, r) = σs(r). Now, thanks to the linearity of all these constructions, we have the
formula of the variation of the integral of p-forms on p-chains,

δ

∫
c
α =

∫
1p

dαcδc +

∫
1p

d[αcδc] +

∫
1p

c∗(δα).

Note As well as for the variation of the integral of α on a cube, applying Stokes’
theorem, we have the alternative formula

δ

∫
c
α =

∫
1p

dαcδc +

∫
∂1p

αcδc +

∫
1p

c∗(δα).

4.4 The Cartan-Lie Formula

Let X be a diffeological space, and let its group of diffeomorphisms Diff(X) be
equipped with the functional diffeology. Let F : R → Diff(X) be a sliding, that is,
a 1-plot centered at the identity (Subsection 2.4), and let α be any differential k-form
of X, with k ≥ 1. The Lie derivative LF(α) of α by F (Subsection 2.1) satisfies the
identity

(4.5) LF(α) = iF(dα) + d(iF(α)),

where iF is the contraction by F defined in (Subsection 2.4). This is the extension to
diffeological spaces of the classical Cartan–Lie formula for manifolds.

Proof Let F : R → Diff(X) be a 1-plot, and let σ ∈ Cubk(X) be a k-cube on X, and
let

αt = F(t)∗(α) = (F(t)−1)∗(α)

σt = (F(t))∗(σ) = F(t) ◦ σ.
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Then, thanks to Subsection 3.3, for all t ∈ R:∫
σt

αt =

∫
F(t)∗(σ)

F(t)∗(α) =

∫
σ

F(t)∗ ◦ F(t)∗(α) =

∫
σ

α.

Now, by differentiation with respect to the parameter t , we get on the one hand

δ

∫
σt

αt = δ

∫
σ

α = 0, with δ =
∂

∂t

∣∣∣
t=0
,

and on the other hand, by the formula of the variation of integral of differential
forms (4.1),

(4.6) δ

∫
σt

αt =

∫
1p

dαcδσ +

∫
1p

d[αcδσ] +

∫
1p

δσ∗(α).

But:

δα =
∂αt

∂t

∣∣∣
t=0

=
∂

∂t
F(t)∗(α)

∣∣∣
t=0

=
∂

∂t
(F(t)−1)∗(α)

∣∣∣
t=0

= −LF(α);(a)

σt = F(t) ◦ σ and δ =
∂

∂t

∣∣∣
t=0

implies αcδσ = σ∗(iF(α)), for all α.(b)

Hence, the above identity (4.6) becomes

0 =

∫
σ

iF[d α] +

∫
σ

d
[

iF(α)
]
−
∫
σ

LF(α) =

∫
σ

iF[d α] + d
[

iF(α)
]
− LF(α).

This is satisfied for any k-cube σ. But, a k-form whose integral vanishes on any k-cube
vanishes identically (Subsection 3.2), thus iF[d α)] + d [iF(α)] − LF(α) = 0, and
LF(α) = iF[d α)] + d [iF(α)].

4.5 A Few Additional Examples of Application

Here are a few more examples of application of the variation of the integral of a p-
form on a p-chain and of the Cartan–Lie formula; see [Piz05]. Let X be a connected
diffeological space:

(1) Let h ∈ Hom∞(R,Diff(X)) such that h(t)∗(ω) = λ(t) × ω, where λ is a real
smooth function and ω a differential p-form on X. We call such homomorphisms
Liouville’s rays. Thus, ω is exact and ih(ω) is a primitive.

(2) Let α be a closed 1-form on X, the integral
∫
`
α, where ` ∈ Loops(X), does

not depends on the free homotopy class of `. This also applies for the integrals of a
p-forms on homotopic p-cubes.

(3) If there exists a 1-form whose the integral on a loop is not zero, then the space
X is not simply connected. This is used to easily show that Diff(S1) is not simply
connected by considering the pullback of the fundamental 1-form θ on S1 by the
orbit map 1̂ : f 7→ f (1), and the loop mapping S1 into Diff(S1) as the group of
rotations.
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(4) Any closed 1-form α on a simply connected diffeological space X is exact.
Moreover, if the group of period Pα = {

∫
`
α | ` ∈ Loops(X)} is diffeologically dis-

crete, which is equivalent to being a strict subgroup of R, then there exists a smooth
function f : X → Tα, such that f ∗(θ) = α, where Tα = R/Pα and θ is the funda-
mental 1-form on Tα. In any case there exists a unique smallest Galoisian covering
of X, with structure group Pα, on which the pullback of α is exact. This solves the
universal problem of integrating a closed 1-form.

(5) If ω is a closed 2-form on X and G is a diffeological group preserving ω, then
there exists a Paths Moment Map Ψ : X → G∗, where G∗ denotes the space of left
momenta of G, from which is derived the generalization of the moment map in dif-
feology [Piz07]. Related to the example (Subsection 1.1, Note 2), the moment map µ
of dα on Diff(S1) is then given by

µ(ϕ)(P)r(δr) =

∞∑
n=0

1

2n

∂

∂s

{
ϕ−1 ◦ P(r)−1 ◦ P(s) ◦ ϕ(n)

}
s=r

(δr).

Because a momentum is characterized by its values on arcs centered at the iden-
tity, and because every arc γ centered at the identity in G̃ is tangential to some ray
h ∈ Hom∞(R, G̃), the computation of the stabilizer of α, for the coadjoint action,
is reduced to Donato’s computation in [Don94], and it coincides with the orbits of
2πZ. Thus, dα passes to the coadjoint orbit Oα, which is actually diffeomorphic to
Diff(S1) itself, and symplectic according to the meaning we define in op. cit..

(6) If ω is a closed 2-form on X and if the group of periods Pω of ω is discrete,
then there exists a principal fiber bundle π : Y → X, with structure group Pω and
a connection form λ on Y with curvature ω. This solves a universal problem about
integrating closed 2-forms in the general framework of diffeology,1 and applies in
particular to manifolds.

5 The Chain-Homotopy Operator

The chain-homotopy operator on a diffeological space X is a linear map

K : Ωp(X)→ Ωp−1(Paths(X))

that satisfies K ◦ d + d ◦ K = 1̂∗ − 0̂∗ (Subsection 5.6), with Paths(X) = C∞(R,X),
0̂ and 1̂ map a path γ to its source 0̂(γ) = γ(0) and its target 1̂(γ) = γ(1). Since
the space of paths of X is naturally a diffeological space, it is legitimate to consider
differential forms on Paths(X) and its subspaces. The advantage of the diffeological
approach is the ability to stay in the same category and avoid parallel constructions
and tedious constructions. The chain-homotopy operator has multiple applications;
it implies, for example, the homotopic invariance of the De Rham cohomology (Sub-
section 6.1), and it is crucial for the construction of the moment map of a closed
2-form; see [Piz07].

1This is a work in progress.
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5.1 Integration Operator of Forms Along Paths

Let X be a diffeological space, and let Paths(X) = C∞(R,X) be the space of smooth
paths of X, equipped with the functional diffeology. Let us consider, for each t ∈ R
the evaluation map of paths, at the point t :

t̂ : Paths(X)→ X with t̂(γ) = γ(t).

The map t̂ is a smooth map; this is an immediate consequence of the definition of
the functional diffeology.

(1) For all p > 0, there exists a map Φ : Ωp(X) → Ωp(Paths(X)), which we call
Integration Operator, and which we denote symbolically by

Φ(α) =

∫ 1

0
t̂∗(α) dt, for all α ∈ Ωp(X).

This map is precisely defined, for any n-plot P : U → Paths(X), n ∈ N, for all r ∈ U
and v = (v1 · · · vp), p vectors of Rn, by

Φ(α)(P)(r)(v) =

∫ 1

0
α(t̂ ◦ P)(r)(v) dt, t̂ ◦ P =

[
r 7→ P(r)(t)

]
.

Then Φ maps any differential p-form α of X to the p-form of Paths(X), given by
integrating α along the paths.

(2) The Integration Operator Φ is linear. Let α and α ′ be any two p-forms of X,
and let s ∈ R:

Φ(α + α ′) = Φ(α) + Φ(α ′) and Φ(sα) = s× Φ(α).

(3) The Integration Operator Φ is a smooth map,

Φ ∈ C∞
(

Ωp(X),Ωp(Paths(X))
)
.

Proof (1) Let us check first that Φ(α) is a well-defined p-form on Paths(X). Let
P : U → X be a plot and let F ∈ C∞(V,U ), where V is any real domain. Thus,

Φ(α)(P ◦ F) =

∫ 1

0
α(t̂ ◦ P ◦ F) dt =

∫ 1

0
F∗(α(t̂ ◦ P)) dt

= F∗
(∫ 1

0
α(t̂ ◦ P) dt

)
= F∗(Φ(α)(P)).

(2) Now, let us check that the Integration Operator is linear. Let α and α ′ be any
two p-forms of X. Let Pt = t̂ ◦ P, we have

Φ(α + α ′) =

[
P 7→

∫ 1

0
(α + α ′)(Pt ) dt

]
=

[
P 7→

∫ 1

0
α(Pt ) dt +

∫ 1

0
α ′(Pt ) dt

]
= Φ(α) + Φ(α ′).
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And, for any s ∈ R,

Φ(sα) =

[
P 7→

∫ 1

0
sα(Pt ) dt

]
=

[
P 7→ s

∫ 1

0
α(Pt ) dt

]
= s× Φ(α).

(3) Since the map t̂ : Paths(X) → X is smooth and since integration preserves
smoothness, the integration operator Φ is a smooth linear map from Ωp(X) to
Ωp(Paths(X)).

5.2 The Operator Φ is a Morphism of De Rham Complexes

The Integration Operator Φ of a diffeological space X (Subsection 5.1) is a morphism
of the De Rham complex of X, to the De Rham complex of Paths(X),

d ◦ Φ = Φ ◦ d.

This is summarized by the following commutative diagram, for all p > 0:

Ωp(X) Ωp(Paths(X))

Ωp+1(X) Ωp+1(Paths(X))

Φ

d d

Φ

Proof Let α be a p-form on X, p > 0. Then with the above notation, Pt = t̂ ◦ P,
where P is a plot of Paths(X), we have:

Φ(dα)(P) =

∫ 1

0
(dα)(Pt ) dt =

∫ 1

0
d
[
α(Pt )

]
dt = d

(∫ 1

0
α(Pt ) dt

)
= d
(

Φ(α)(P)
)
.

Thus, Φ(dα) = d(Φ(α)).

5.3 Variance of the Integration Operator Φ

Let X and X ′ be two diffeological spaces, let f : X → X ′ be a smooth map. The map
f leads to a smooth correspondence

fP : Paths(X)→ Paths(X ′) with fP(γ) = f ◦ γ.

The map f also induces the two pullbacks:

f ∗ : Ω?(X ′)→ Ω?(X) and f ∗P : Ω?(Paths(X ′))→ Ω?(Paths(X)).

Let ΦX et ΦX ′ be the two associated Integration Operators (Subsection 5.1), then

ΦX ◦ f ∗ = f ∗P ◦ ΦX ′ .

This is summarized by the following commutative diagram:
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Ωp(X ′) Ωp(Paths(X ′))

Ωp(X) Ωp(Paths(X))

ΦX ′

f ∗ f ∗P

ΦX

Proof Let α be a differential p-form of X ′ and P : U → Paths(X) be a plot. Let us
use the above notation Pt = t̂ ◦ P. On the one hand we have

[
(ΦX ◦ f ∗)(α)

]
(P) =

[
ΦX( f ∗(α))

]
(P) =

∫ 1

0
f ∗(α)(Pt ) dt =

∫ 1

0
α( f ◦ Pt ) dt,

and, on the other hand,

[
( f ∗P◦ΦX ′)(α)

]
(P) =

[
f ∗P(ΦX ′(α))

]
(P) =

[
ΦX ′(α)

]
( fP◦P) =

∫ 1

0
α
[

( fP◦P)t

]
dt .

But, for any r ∈ U ,

( f ◦ Pt )(r) = f (Pt (r)) = f (P(r)(t)),

( fP ◦ P)t (r) = ( fP ◦ P)t (r) = f (P(r)(t)).

Thus, f ◦ Pt = ( fP ◦ P)t , and finally ΦX ◦ f ∗ = f ∗P ◦ ΦX ′ .

5.4 Derivation along Time Reparametrization

Let X be a diffeological space, and let Paths(X) be the space of its smooth paths,
equipped with the functional diffeology. The group of translations (R,+) acts
smoothly by reparametrization on Paths(X) as a 1-parameter group of diffeomor-
phisms. Let us denote by τ this action. For all γ ∈ Paths(X), and for all e ∈ R,

τ (e) : γ 7→ γ ◦ Te with Te : t 7→ t + e.

Let α be a p-form of X, the Lie derivative (Subsection 2.1) of the p-form Φ(α) by the
1-parameter group τ satisfies:

Lτ (Φ(α)) = 1̂∗(α)− 0̂∗(α).

Proof Let us first check that τ : e 7→ [γ 7→ γ ◦Te] is a smooth homomorphism from
(R,+) into Diff(Paths(X)). Let us check that τ takes its values in Diff(Paths(X)):

(a) for all e ∈ R, τ (e)(γ) = τ (e)(γ ′) implies γ = γ ′, so τ (e) is injective, and the
inverse is given by τ (e)−1 = τ (−e), thus τ (e) is bijective;

(b) for all e ∈ R, τ (e) is smooth.
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Indeed, let P be a plot of Paths(X), that is, (r, t) 7→ P(r)(t) is a plot of X. Then
(τ (e) ◦ P)(r)(t) = (τ (e)(P(r))(t) = P(r)(t + e), and the map (r, t) 7→ (r, t + e) 7→
P(r)(t + e), being a composite of smooth maps, is smooth. Thus τ (e) is smooth, and
since τ (e)−1 = τ (−e), τ (e) is a diffeomorphism of Paths(X). Next, τ is clearly an
homomorphism, τ (e + e ′) = τ (e) ◦ τ (e ′). Then, let us check that τ is smooth, that
is, τ is a plot of Diff(Paths(X)). The parametrization τ is a plot of Diff(Paths(X)
if and only if (e, γ) 7→ τ (e)(γ) and (e, γ) 7→ τ (e)−1(γ) = τ (−e)(γ) are smooth.
That is, for all plots P of Paths(X), if and only if (e, r) 7→ τ (e)(P(r)) = P(r) ◦ Te

is smooth, that is, (e, r, t) 7→ P(r)(t + e) is smooth, which indeed is the case. Thus,
τ ∈ Hom∞(R,Diff(Paths(X))).

Now, let us denote α = Φ(α). We have then, for any plot P de Paths(X),

[Lτα](P) =
∂

∂t

{
[τ (t)∗α](P)

}
t=0

=
∂

∂t

{
α(τ (t) ◦ P)

}
t=0
.

But τ (t) ◦ P : r 7→ P(r) ◦ Tt , thus

α
[
τ (t) ◦ P

]
=

∫ 1

0
α
[

(τ (t) ◦ P)s

]
ds =

∫ 1

0
α
[

r 7→ P(r)(t + s)
]

ds .

Let u = t + s, we get

α
[
τ (t) ◦ P

]
=

∫ 1+t

t
α[r 7→ P(r)(u)] du .

After derivation with respect to t , for t = 0, we get

[Lτα](P) = α
[

r 7→ P(r)(1)
]
− α

[
r 7→ P(r)(0)

]
= [1̂∗α− 0̂∗α](P),

for all plots P of X; that is, Lτ (Φ(α)) = 1̂∗α− 0̂∗α.

5.5 Variance of the Time Reparametrization

Let X and X ′ be two diffeological spaces, let f : X → X ′ be a smooth map. Let
fP : Paths(X) → Paths(X ′) be the action of f on paths defined in (Subsection 5.3)
and f ∗P : Ωp(Paths(X ′)) → Ωp(Paths(X)) be the induced action of fP at the level of
p-forms. Let τ and τ ′ denote the action (R,+) on Paths(X) and Paths(X ′), as defined
in Subsection 5.4. Let iτ and iτ ′ be the contraction associated with these 1-parameter
groups of diffeomorphisms (Subsection 2.4). Then iτ ◦ f ∗P = f ∗P ◦ iτ ′ , summarized
by the following commutative diagram:

Ωp(Paths(X ′)) Ωp(Paths(X))

Ωp−1(Paths(X ′)) Ωp−1(Paths(X))

f ∗P

iτ ′ iτ

f ∗P
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Proof Let β be a p-form on Paths(X ′), P : U → Paths(X) be a n-plot, r ∈ U , and let
v represent (p − 1) vectors of Rn. By definition of the contraction of a p-form by a
1-parameter group of diffeomorphisms (Subsection 2.4), we have:

(1) On the one hand,

[
(iτ ◦ f ∗P)(β)

]
(P)r(v) =

[
iτ ( f ∗P(β))

]
(P)r(v) = f ∗P(β)(τ · P)(0

r)

(
1

0

)(
0

v

)
= β( fP ◦ (τ · P))(0

r)

(
1

0

)(
0

v

)
,

where τ · P(t, r) = τ (t)(P(r)). But,[
fP ◦ (τ · P)

]
(t, r) = fP

(
(τ · P)(t, r)

)
= fP

(
τ (t)(P(r)

)
(5.1)

= fP
[

s 7→ τ (t)(P(r))(s)
]

= fP
[

s 7→ P(r)(s + t)
]

=
[

s 7→ f (P(r)(s + t))
]
.

(2) On the other hand,[
( f ∗P ◦ iτ ′)(β)

]
(P)r(v) =

[
f ∗P(iτ ′(β))

]
(P)r(v) =

[
(iτ ′(β)( fP ◦ P)

]
r
(v)

= β
(
τ ′ · ( fP ◦ P)

)
(0

r)

(
1

0

)(
0

v

)
.

But, [
τ ′ · ( fP ◦ P)

]
(t, r) = τ ′(t)( fP ◦ P(r)) =

[
s 7→ ( fP ◦ P(r))(s + t)

]
(5.2)

=
[

s 7→ f (P(r)(s + t))
]
.

Now, comparing (5.1) and (5.2), we get[
(iτ ◦ f ∗P)(β)

]
(P)r(v) =

[
( f ∗P ◦ iτ ′)(β)

]
(P)r(v),

that is, finally, iτ ◦ f ∗P = f ∗P ◦ iτ ′ .

5.6 The Chain-Homotopy Operator K

Let X be a diffeological space. Let Φ be the integration operator defined in Sub-
section 5.1, let τ be the time-reparametrization defined in (Subsection 5.4), and let
iτ be the contraction by the sliding τ (Subsection 2.4). The operator K : Ωp(X) →
Ωp−1(Paths(X)) defined, for all integers p > 0, by

(5.3) K = iτ ◦ Φ,

satisfies

(5.4) K ◦ d + d ◦ K = 1̂∗ − 0̂∗.
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The operator K will be called the chain-homotopy operator. Moreover, K is smooth
and linear, which is denoted by

K ∈ L∞
(

Ωp(X),Ωp−1(Paths(X))
)
.

Let α ∈ Ωp(X), with p > 1, for p = 1 see (Subsection 5.7). Let P : U → Paths(X) be
an n-plot; the value of Kα on P is explicitly given by

(Kα)(P)r(v2) · · · (vp) =

∫ 1

0
α
[(s

r

)
7→ P(r)(s + t)

]
(0

r)

(
1

0

)(
0

v2

)
· · ·
(

0

vp

)
dt,

where r ∈ U , and v2, . . . , vp are (p − 1) vectors of Rn.

Proof Let α be a p-form of X, p > 0. On the one hand (Subsection 5.4) we have

Lτ (Φ(α)) = 1̂∗(α)− 0̂∗(α),

and on the other hand, applying the Cartan formula (Subsection 4.4) and the com-
mutation d ◦ Φ = Φ ◦ d (Subsection 5.2), we get

Lτ

(
Φ(α)

)
= d
[

iτ (Φ(α))
]

+ iτ
(

d[Φ(α)]
)

= d
[

iτΦ(α)
]

+ iτΦ[dα]

= d
[

K(α)
]

+ K(dα).

Hence, d[K(α)] + K(dα) = 1̂∗(α) − 0̂∗(α), that is, K ◦ d + d ◦ K = 1̂∗ − 0̂∗. Now,
because the contraction operation and the map Φ are smooth (Subsections 2.3 and
5.1), the chain-homotopy operator K is a smooth linear map. The explicit evaluation
on the plot P is a direct application of the definitions.

5.7 The Chain-Homotopy Operator for p = 1

Let X be a diffeological space. Let Paths(X) = C∞(R,X) be the space of paths of X
equipped with the functional diffeology. For every 1-form α ∈ Ω1(X), Fα = K(α)
belongs to Ω0(Paths(X)) = C∞(Paths(X),R); precisely,

K : Ω1(X)→ C∞(Paths(X),R) and K(α) = Fα =

[
γ 7→

∫
γ

α

]
.

The function Fα = K(α) can be extended, by linearity, over the whole space C1(X)
of 1-chains of X, for all

∑
γ nγγ ∈ C1(X),

Fα

(∑
γ

nγγ

)
=
∑
γ

nγFα(γ) =
∑
γ

nγ

∫
γ

α.

And thus, for p = 1, the chain-homotopy operator is just the pairing of 1-forms over
1-chains. Moreover, if γ and γ ′ are two paths such that the juxtaposition γ ∨ γ ′ is
defined, then

(5.5) Fα(γ ∨ γ ′) = Fα(γ + γ ′) = Fα(γ) + Fα(γ ′).
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Note that if the juxtaposition of γ and γ ′ is not a path, then the smashed juxtaposi-
tion γ ? γ ′ = γ? ∨ γ ′ is a path [Piz05] and also satisfies

(5.6) Fα(γ ? γ ′) = Fα(γ + γ ′) = Fα(γ) + Fα(γ ′).

In other words, Fα = K(α) is a morphism from (Paths(X), ?) to (R,+).

Proof If γ ∨ γ ′ is a path of X, the identity (5.5) is just the additivity of the integral

Fα(γ ∨ γ ′) =

∫ 1

0
α(γ ∨ γ ′)(t) dt

=

∫ 1/2

0
α(s 7→ γ(2s))(t) dt +

∫ 1

1/2
α
(

s 7→ γ ′(2s− 1)
)

(t) dt .

And, after a suitable change of variable, we get

Fα(γ ∨ γ ′) =

∫ 1

0
α(γ)(t) dt +

∫ 1

0
α(γ ′)(t) dt = Fα(γ) + Fα(γ ′).

Now, if we need to smash the paths γ and γ ′, the proof is the same. It is just the
formula of change of variable of the integrand

∫ b

a
f (ϕ(t))ϕ ′(t) dt =

∫ ϕ(b)

ϕ(a)
f (t) dt,

applied to the paths γ? = γ ◦ λ and γ ′? = γ ′ ◦ λ, where λ is the smashing function
described in [Piz05].

5.8 The Chain-Homotopy Operator for Manifolds

Let M be a manifold of finite dimension. The chain-homotopy operator K (Subsec-
tion 5.6) of M can be expressed using tangent spaces. Let P : U → Paths(M) be a
n-plot. Let us denote, for any r ∈ U and for any vector δir ∈ Rn,

γr = P(r) : t 7→ γr(t) and δγr : t 7→ D[r → γr(t)](r)(δr).

Let α ∈ Ωp(M), the real Kα(P)(r)(δ2r) · · · (δpr) can be interpreted as Kα, computed
at the point γr and applied to the p − 1 variations δiγr associated with the p − 1
vectors δir. It can be written explicitly as

Kαγr (δ2γr) · · · (δpγr) =

∫ 1

0
αγr(t)

( d γr(t)

d t

)(
δ2γr(t)

)
· · ·
(
δpγr(t)

)
dt .
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5.9 Variance of the Chain-Homotopy Operator

Let X and X ′ be two diffeological spaces. Let f : X → X ′ be a smooth map. Let us
use the notations of the proposition (Subsection 5.3) and let KX and KX ′ be the two
chain-homotopy operators of X and X ′. Then the variance of the chain-homotopy
operators is given by

KX ◦ f ∗ = f ∗P ◦ KX ′ ,

where fP has been defined in subsection 5.3, as the action of the function f on paths.
This is summarized by the following commutative diagram:

Ωp(X ′) Ωp−1(Paths(X ′))

Ωp(X) Ωp−1(Paths(X))

KX ′

f ∗ f ∗P

KX

Proof Let us denote by τ and τ ′ the action of (R,+) on Paths(X) and Paths(X ′)
defined in (Subsection 5.4). Let α ∈ Ωp(X ′). By definition

KX

(
f ∗(α)

)
= (iτ ◦ ΦX)( f ∗(α)) = iτ

(
ΦX( f ∗(α))

)
,

but ΦX ◦ f ∗ = f ∗P ◦ ΦX ′ (Subsection 5.3), thus

KX( f ∗(α)) = iτ (ΦX ◦ f ∗(α)) = iτ ( f ∗P ◦ ΦX ′(α)) = (iτ ◦ f ∗P)(ΦX ′(α)).

Now, thanks to Subsection 5.5, we have iτ ◦ f ∗P = f ∗P ◦ iτ ′ . Hence,

KX( f ∗(α)) = ( f ∗P ◦ iτ ′)(ΦX ′(α)) = f ∗P(iτ ′ ◦ ΦX ′(α)) = f ∗P(KX ′(α)).

Therefore, KX ◦ f ∗ = f ∗P ◦ KX ′ .

5.10 Chain-Homotopy Preserves Invariance

Let X be a diffeological space and let α be a differential p-form on X, p ≥ 1. Let us
denote by Diff(X, α) the group of diffeomorphisms of X preserving α,

Diff(X, α) = { f ∈ Diff(X) | f ∗(α) = α}.

As an application of the proposition above (Subsection 5.9), we get

f ∈ Diff(X, α) ⇒ fP ∈ Diff(Paths(X),Kα).

In other words, if a diffeomorphism f of X preserves α, the action fP of f on
Paths(X) preserves Kα. This property is used to construct the moment maps in dif-
feology [Piz07].
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6 Homotopy and Differential Forms, Poincaré’s Lemma

One crucial property of the De Rham cohomology in the general framework of dif-
feology, is its homotopic invariance, proved in this section. That is, the mapping
induced on the De Rham cohomology by the pullback by a smooth map depends
only of the homotopy class of the map. The equivalent theorem in classical differen-
tial geometry, for the De Rham cohomology of finite dimensional manifolds, can be
regarded as a specialization of this general diffeological result. The transition through
the space of paths, which is impossible in the restricted category of manifolds, offers
a great simplification of this theorem even for the case of manifolds only. The main
tool used in this section is the chain-homotopy operator defined in the previous sec-
tion (Subsection 5.6). This proves that this invariance dwells deep in the general
diffeological structure.

6.1 Homotopic Invariance of the De Rham Cohomology

Let X and X ′ be two diffeological spaces. Let s 7→ fs be a smooth path in C∞(X,X ′).
For all integers p ≥ 1, for all α ′ ∈ Ωp(X ′) such that dα ′ = 0, f ∗0 (α ′) and f ∗1 (α ′) are
cohomologous. The case where p = 0 is trivial:

α ′ ∈ Ωp(X ′) and dα ′ = 0 ⇒ f ∗1 (α ′) = f ∗0 (α ′) + dβ, with β ∈ Ωp−1(X)).

Denoting by f ∗dR : H?
dR(X ′) → H?

dR(X), the action of f ∈ C∞(X,X ′) on the
De Rham cohomology, the above statement means that f ∗dR depends only on the ho-
motopy class of f in C∞(X,X ′).

Proof Let us consider the map ϕ : X → C∞(X,Paths(X ′)):

ϕ : x 7→
[

s 7→ fs(x)
]
, and ϕ ∈ C∞

(
X,Paths(X ′)

)
for the functional diffeology. The pullback by ϕ of the identity satisfied by the chain-
homotopy operator K ◦ d + d ◦ K = 1̂∗ − 0̂∗ (Subsection 5.6) gives

ϕ∗(Kdα + dKα) = ϕ∗
(

1̂∗(α)− 0̂∗(α)
)
.

Using the hypothesis dα = 0 and the commutativity between exterior differential and
pullback (Subsection 1.4), we have on the one hand ϕ∗(Kdα + dKα) = ϕ∗(dKα) =
d(ϕ∗(Kα)), and on the other hand

ϕ∗ ◦ (1̂∗ − 0̂∗)(α) = ϕ∗ ◦ 1̂∗(α)− ϕ∗ ◦ 0̂∗(α) = (1̂ ◦ ϕ) ∗(α)− (0̂ ◦ ϕ) ∗(α)

= f ∗1 (α)− f ∗0 (α).

Therefore, f ∗1 (α) = f ∗0 (α) + d β, with β = ϕ∗(Kα).
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6.2 Closed Forms on Contractible Spaces are Exact

As a corollary of the above proposition (Subsection 6.1), we deduce that every
closed form on a contractible diffeological space X is exact, where contractible means
(smoothly) homotopy equivalent to a point. This is the diffeological variant of a
classic theorem due to Poincaré.

Proof Let ρ be a deformation retraction from a diffeological space X to a point x0.
That is,

ρ ∈ Paths(C∞(X,X)) such that ρ(0) = [x 7→ x0] and ρ(1) = 1X.

With the above notations (Subsection 6.1), for any closed p-form α:

ρ(1)∗(α) = ρ(0)∗(α) + dβ,

but ρ(1)∗(α) = α and ρ(0)∗(α) = [x 7→ x0]∗(α) = 0, and thus α = d β.

6.3 Closed Forms on Centered Paths Spaces

Let X be a diffeological space and x0 ∈ X be some point. Let Paths(X, x0, ?) be the
subspace of paths in X, centered at x0, that is, the subspace of paths γ in X such
that γ(0) = x0. This space is contractible, the map ρ = s 7→ [γ 7→ [γs : t 7→ γ(st)]]
is a deformation retraction from Paths(X, x0, ?) to the constant path [t 7→ x0].
Therefore, any closed form on Paths(X, x0, ?) is exact (Subsection 6.2). That is,
H0

dR(Paths(X, x0, ?)) = R and Hp
dR(Paths(X, x0, ?)) = 0, for all p > 0. This fact

is used to construct geometrical realizations (as diffeological fiber bundles with con-
nections) of closed 1-forms and 2-forms; see [Piz05].

6.4 The Poincaré Lemma

Let X be a diffeological space. As a corollary of (Subsection 6.2), if X is locally con-
tractible [Piz05], then any closed p-form α, p > 0, is locally exact. That is, for each
point x ∈ X there exists a D-open neighborhood U of x, and a (p − 1)-form β, de-
fined on U , such that α � U = dβ. This proposition extends Poincaré’s lemma about
integration of closed forms on star-shaped domains. It applies to a lot of diffeological
spaces, in particular it applies to some diffeological manifolds [Piz06-b].

Note As a corollary, since manifolds are locally diffeomorphic to Rn, they are locally
contractible, and closed forms are locally exact, as we know. But this is no longer the
case in diffeology in general, for example, the irrational tori [Piz05] where every form
is closed but not exact or locally exact.
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