A NUMERICAL ILLUSTRATION OF OPTIMAL SEMILINEAR CREDIBILITY*

Fl. De Vylder and Y. Ballegeer

INTRODUCTION

The homogeneous (in time) model of credibility theory is defined by a sequence $\Theta, X_{1}, X_{2}, \ldots$ of random variables, where for $\Theta=\theta$ fixed, the variables X_{1}, X_{2}, \ldots are independent and equidistributed. The structure variable Θ may be interpreted as the parameter of a contract chosen at random in a fixed portfolio, the variable X_{k} as the total cost (or number) of the claims of the k th year of that contract.

Bühlmann's linear credibility premium of the year $t+1$ may be written in the form

$$
\begin{equation*}
f\left(X_{1}\right)+\ldots+f\left(X_{t}\right) \tag{1}
\end{equation*}
$$

where f is a linear function. In optimal semilinear credibility, we look for an optimal f, not necessarily linear, such that (1) is closest to X_{t+1} in the least squares sense. In the first section we prove that this optimal f, denoted by f^{*}, is solution of an integral equation of Fredholm type, which reduces to a system of linear equations in the case of a finite portfolio. That is a portfolio in which Θ and X_{k} can assume only a finite number of values.

In the second section we see that the structure of such a portfolio is closely connected with the decomposition of a quadratic form in a sum of squares of linear forms.

In the last section we calculate numerically the optimal premium for a concrete portfolio in automobile insurance. We limit ourselves to the consideration of the number of claims. The optimal premium is compared with the usual linear premium. The difference is far from negligible.

As basic statistics we need the probabilities

$$
p_{i j}=P\left(X_{1}=i, X_{2}=j\right)
$$

In the third section we give a simple general solution to the subsidiary problem of adjusting the matrix $p_{i j}$ of such probabilities.

1. THE FUNDAMENTAL RESULT

1.1. Hypotheses. Notations. Definitions

We consider a sequence $\Theta, X_{1}, X_{2}, \ldots$ of random variables such that for $\Theta=\theta$ fixed, the variables X_{1}, X_{2}, \ldots are conditionally independent and equidistributed.

[^0]All variables considered are supposed to have finite second order moments. The risk premium of each year is defined by

$$
m_{\Theta}=E\left(X_{1} \mid \Theta\right)
$$

Here, and also hereafter in similar situations, the index 1 could be replaced by another one. The variables X_{1}, X_{2}, \ldots are exchangeable in the sense of De Finetti. More generally, for each function f of one variable, we denote by f_{Θ} the random variable

$$
f_{\Theta}=E\left(f\left(X_{1}\right) \mid \Theta\right)
$$

Hereafter t will be a fixed positive integer. It is the number of years that we have already observed our portfolio. We have to make forecasts for the year $t+1$. Since t is fixed, the dependence on t is not always indicated in our notations.

1.2. Lemma

(I) For each couple f, g of functions of one variable:
(2) $\quad E\left(f\left(X_{1}\right) g\left(X_{2}\right)\right)=E\left(f_{\Theta} g\left(X_{2}\right)\right)=E\left(f\left(X_{1}\right) g_{\Theta}\right)=E\left(f_{\Theta} g_{\Theta}\right)$
(II) For each function f of one variable and each function φ of t variables:

$$
\begin{equation*}
E\left(\varphi\left(X_{1}, \ldots, X_{t}\right) f\left(X_{t+1}\right)\right)=E\left(\varphi\left(X_{1}, \ldots, X_{t}\right) f_{\Theta}\right) \tag{3}
\end{equation*}
$$

(III) For each function f of one variable:

$$
\begin{equation*}
E\left(f\left(X_{t+1}\right) \mid X_{1}, X_{2}, \ldots, X_{t}\right)=E\left(f_{\Theta} \mid X_{1}, \ldots, X_{t}\right) \tag{4}
\end{equation*}
$$

Demonstration.
(i) Using the conditional independence of X_{1}, X_{2} for fixed Θ :

$$
\begin{aligned}
& E\left(f\left(X_{1}\right) g\left(X_{2}\right)\right)=E E\left(f\left(X_{1}\right) g\left(X_{2}\right) \mid \Theta\right)= \\
& E\left(E\left(f\left(X_{1}\right) \mid \Theta\right) E\left(g\left(X_{2}\right) \mid \Theta\right)\right)=E\left(f_{\Theta^{g} \Theta}\right)
\end{aligned}
$$

Also

$$
E\left(f_{\Theta} g\left(X_{2}\right)\right)=E E\left(f_{\Theta} g\left(X_{2}\right) \mid \Theta\right)=E\left(f_{\Theta} E\left(g\left(X_{2}\right) \mid \Theta\right)\right)=E\left(f_{\Theta} g_{\Theta}\right)
$$

and similarly

$$
E\left(f\left(X_{1}\right) g_{\Theta}\right)=E\left(f_{\Theta} g_{\Theta}\right)
$$

(ii) Writing

$$
\varphi_{\theta}=E\left(\varphi\left(X_{1}, \ldots, X_{t}\right) \mid \Theta\right)
$$

we have in a similar way the more general result

$$
E\left(\varphi\left(X_{1}, \ldots, X_{t}\right) f\left(X_{t+1}\right)\right)=E\left(\varphi_{\Theta} f_{\Theta}\right)=E\left(\varphi\left(X_{1}, \ldots, X_{t}\right) f_{\Theta}\right)
$$

(iii) From the conditional independence of $X_{1}, X_{2}, \ldots, X_{t+1}$, for fixed Θ, it follows that

$$
f_{\Theta}=E\left(f\left(X_{t+1}\right) \mid \Theta\right)=E\left(f\left(X_{t+1}\right) \mid \Theta, X_{1}, \ldots, X_{t}\right)
$$

Then, by applying the operator $E\left(. \mid X_{1}, \ldots, X_{t}\right)$ and using a general property of conditional expectations:

$$
\begin{array}{r}
E\left(f_{\Theta} \mid X_{1}, \ldots, X_{t}\right)=E\left(E\left(f\left(X_{t+1}\right) \mid \Theta, X_{1}, \ldots, X_{t}\right) \mid X_{1}, \ldots, X_{t}\right)= \\
E\left(f\left(X_{t+1}\right) \mid X_{1}, \ldots, X_{t}\right)
\end{array}
$$

1.3. Theorem

Let f^{*} be a solution of
(5) $\quad E\left(X_{2} \mid X_{1}\right)=f^{*}\left(X_{1}\right)+(t-1) E\left(f^{*}\left(X_{2}\right) \mid X_{1}\right)$

Then, for every function f :

$$
\begin{equation*}
E\left(m_{\Theta}-f^{*}\left(X_{1}\right)-\ldots-f^{*}\left(X_{t}\right)\right)^{2} \leqslant E\left(m_{\Theta}-f\left(X_{1}\right)-\ldots-f\left(X_{t}\right)\right)^{2} \tag{6}
\end{equation*}
$$

The mean square error in the approximation of m_{Θ} by $f^{*}\left(X_{1}\right)+\ldots+$ $f^{*}\left(X_{t}\right)$ is given by
(7) $E\left(m_{\Theta}-f^{*}\left(X_{1}\right)-\ldots-f^{*}\left(X_{t}\right)\right)^{2}=E\left(X_{1} X_{2}\right)-t E\left(X_{1} f^{*}\left(X_{2}\right)\right)$

If g^{*} also satisfies

$$
\begin{equation*}
E\left(X_{2} \mid X_{1}\right)=g^{*}\left(X_{1}\right)+(t-1) E\left(g^{*}\left(X_{2}\right) \mid X_{1}\right), \tag{8}
\end{equation*}
$$

then
(9)

$$
f^{*}\left(X_{1}\right)=g^{*}\left(X_{1}\right) \quad \text { a.e. }
$$

Demonstration.
Multiplying (5) by $f\left(X_{1}\right)$ and taking the mean value, we have

$$
\begin{equation*}
E\left(f\left(X_{1}\right) X_{2}\right)=E\left(f\left(X_{1}\right) f^{*}\left(X_{1}\right)\right)+(t-1) E\left(f\left(X_{1}\right) f^{*}\left(X_{2}\right)\right) \tag{10}
\end{equation*}
$$

In particular, for $f=f^{*}$, we have

$$
\begin{equation*}
E\left(f^{*}\left(X_{1}\right) X_{2}\right)=E\left(f^{*}\left(X_{1}\right)\right)^{2}+(t-1) E\left(f^{*}\left(X_{1}\right) f^{*}\left(X_{2}\right)\right) \tag{11}
\end{equation*}
$$

Using (2), we have for every f :

$$
\begin{gather*}
E\left(m_{\Theta}-f\left(X_{1}\right)-\ldots-f\left(X_{i}\right)\right)^{2}= \\
E\left(m_{\Theta}^{2}\right)-2 t E\left(m_{\Theta} f\left(X_{1}\right)\right)+E\left(f\left(X_{1}\right)+\ldots+f\left(X_{t}\right)\right)^{2}= \\
E\left(m_{\Theta}^{2}\right)-2 t E\left(m_{\Theta} f\left(X_{1}\right)\right)+t E f^{2}\left(X_{1}\right)+t(t-1) E\left(f\left(X_{1}\right) f\left(X_{2}\right)\right)= \\
\left.E\left(X_{1} X_{2}\right)-2 t E\left(f\left(X_{1}\right) X_{2}\right)\right)+t E f^{2}\left(X_{1}\right)+t(t-1) E\left(f\left(X_{1}\right) f\left(X_{2}\right)\right) \tag{12}
\end{gather*}
$$

Taking $f=f^{*}$ and using (11), we have

$$
\begin{gather*}
E\left(m_{\Theta}-f^{*}\left(X_{1}\right)-\ldots-f^{*}\left(X_{t}\right)\right)^{2}= \\
E\left(X_{1} X_{2}\right)-2 t E\left(f^{*}\left(X_{1}\right) X_{2}\right)+t\left[E\left(f^{*}\left(X_{1}\right)\right)^{2}+(t-1) E\left(f^{*}\left(X_{1}\right) f^{*}\left(X_{2}\right)\right)\right] \\
=E\left(X_{1} X_{2}\right)-2 t E\left(f^{*}\left(X_{1}\right) X_{2}\right)+t E\left(f^{*}\left(X_{1}\right) X_{2}\right)= \\
E\left(X_{1} X_{2}\right)-t E\left(f^{*}\left(X_{1}\right) X_{2}\right) \tag{13}
\end{gather*}
$$

Since X_{1} and X_{2} are exchangeable, this proves (7). Neglecting a factor t, using (12) and (13), the difference between the second and the first member of (6) equals

$$
d=E\left(f^{*}\left(X_{1}\right) X_{2}\right)-2 E\left(f\left(X_{1}\right) X_{2}\right)+E f^{2}\left(X_{1}\right)+(t-1) E\left(f\left(X_{1}\right) f\left(X_{2}\right)\right)
$$

Replacing the first two terms by their expression given by (10) and (11) and using (2), we have

$$
\begin{array}{cc}
d=E\left(f^{*}\left(X_{1}\right)\right)^{2} & +(t-1) E\left(f^{*}\left(X_{1}\right) f^{*}\left(X_{2}\right)\right) \\
-2 E\left(f\left(X_{1}\right) f^{*}\left(X_{1}\right)\right) & -2(t-1) E\left(f\left(X_{1}\right) f^{*}\left(X_{2}\right)\right) \\
+E\left(f\left(X_{1}\right)\right)^{2} & +(t-1) E\left(f\left(X_{1}\right) f\left(X_{2}\right)\right)= \\
E\left(f^{*}\left(X_{1}\right)-f\left(X_{1}\right)\right)^{2}+(t-1)\left[E\left(f_{\Theta}^{*}\right)^{2}-2 E\left(f_{\Theta} f_{\Theta}^{*}\right)+E\left(f_{\Theta}\right)^{2}\right]= \\
E\left(f^{*}\left(X_{1}\right)-f\left(X_{1}\right)\right)^{2}+(t-1) E\left(f_{\Theta}^{*}-f_{\Theta}\right)^{2} \geqslant 0
\end{array}
$$

This proves (6) and it only remains to show that (9) is true. Writing $h^{*}=$ $f^{*}-g^{*}$, we have from (5) and (8):

$$
\mathrm{o}=h^{*}\left(X_{1}\right)+(t-1) E\left(h^{*}\left(X_{2}\right) \mid X_{1}\right)
$$

Multiplying this last relation by $h^{*}\left(X_{1}\right)$ and taking the mean value, we have

$$
0=E\left(h^{*}\left(X_{1}\right)\right)^{2}+(t-1) E\left(h^{*}\left(X_{1}\right) h^{*}\left(X_{2}\right)\right)
$$

or, by (2):

$$
0=E\left(h\left({ }^{*} X_{1}\right)\right)^{2}+(t-1) E\left(h_{\Theta}^{*}\right)^{2}
$$

This implies

$$
E\left(h^{*}\left(X_{1}\right)\right)^{2}=0
$$

and thus (9).

1.4. Corollary

Let f^{*} be solution of (5). Then, for each f :
(14) $E\left(X_{t+1}-f^{*}\left(X_{1}\right)-\ldots-f^{*}\left(X_{t}\right)\right)^{2} \leqslant E\left(X_{t+1}-f\left(X_{1}\right)-\ldots-f\left(X_{t}\right)\right)^{2}$

Demonstration.
Using (3) it easily follows that for every function φ of t variables we have

$$
E\left(X_{t+1}-\varphi\left(X_{1}, \ldots, X_{t}\right)\right)^{2}=E\left(X_{t+1}-m_{\Theta}\right)^{2}+E\left(m_{\Theta}-\varphi\left(X_{1}, \ldots, X_{t}\right)\right)^{2}
$$

The difference between the members of (14) then is the same as that between the members of (6).

1.5. Remark. Notation. Definition

In De Vylder (1976), the fundamental relation (5) is derived in a geometrical way. In that paper the existence of f^{*} is proved.

The optimal semilinear credibility premium of the year $t+1$ is defined and denoted by

$$
\begin{equation*}
E^{*}\left(X_{t+1} \mid X_{1}, \ldots, X_{t}\right)=f^{*}\left(X_{1}\right)+\ldots+f^{*}\left(X_{t}\right) \tag{15}
\end{equation*}
$$

where f^{*} is solution of (5).
1.6. Theorem

$$
\begin{equation*}
E E^{*}\left(X_{t+1} \mid X_{1}, \ldots, X_{t}\right)=E\left(X_{t+1}\right) \tag{16}
\end{equation*}
$$

Demonstration.
Follows from (5) and (15) by taking the mean values.

1.7. Determination of the Optimal Premium

If the variables X_{1} and X_{2} have a joint density $p(x, y)$, then equation (5) becomes
(17) $\quad \int y p(x, y) d y=f^{*}(x) \int p(x, y) d y+(t-1) \int f^{*}(y) p(x, y) d y$

This is an integral equation of Fredholm type for the unknown function f^{*}.
If X_{1} can only assume, with probability one, a finite number of values, say $0,1,2, \ldots, n$, then (5) becomes the linear system

$$
\begin{equation*}
\sum_{i=0}^{n} j p_{i j}=f_{i}^{*} \sum_{i=0}^{n} p_{i j}+(t-1) \sum_{i=0}^{n} f_{j}^{*} p_{i j}(i=0, \ldots, n) \tag{18}
\end{equation*}
$$

where

$$
\begin{equation*}
p_{i j}=P\left(X_{1}=i, X_{2}=j\right) \tag{19}
\end{equation*}
$$

$$
\begin{equation*}
f_{i}^{*}=f^{*}(i) \tag{20}
\end{equation*}
$$

Equations (17) and (18) may serve as well for theoretical investigations as for the numerical computation of the optimal premium. Only the joint distribution of X_{1} and X_{2} is needed.

1.8. The Linear Credibility Premium

We shall denote the usual linear credibility premium of the year $t+1$ by

$$
\begin{equation*}
\bar{E}\left(X_{t+1} \mid X_{1}, \ldots, X_{t}\right)=(1-Z) E\left(X_{1}\right)+\frac{Z}{t}\left(X_{1}+\ldots+X_{t}\right) \tag{21}
\end{equation*}
$$

where

$$
\begin{equation*}
Z=\frac{t \operatorname{cov}\left(X_{1}, X_{2}\right)}{\operatorname{var} X_{1}+(t-1) \operatorname{cov}\left(X_{1}, X_{2}\right)} \tag{22}
\end{equation*}
$$

The mean square error in the approximation of m_{Θ} by this premium equals

$$
\begin{equation*}
(1-Z) \operatorname{cov}\left(X_{1}, X_{2}\right) \tag{23}
\end{equation*}
$$

By what precedes, it is never less than the mean square error in the approximation of m_{Θ} by the optimal premium, given by (7).

2. FINITE PORTFOLIOS AND QUADRATIC FORMS

2.1. Hypotheses. Definition

From now on we assume that the range of values of X_{1} is a finite set of numbers say $0,1,2, \ldots, n$.

We use the notation (19) for $p_{i j}$ and set

$$
p_{i}=P\left(X_{1}=i\right)=\sum_{j=0}^{n} p_{i j} \quad(i=0,1, \ldots, n)
$$

We denote by Q_{p} the quadratic form in the variables $x_{0}, x_{1}, \ldots, x_{n}$:

$$
\begin{equation*}
Q_{p}=\sum_{i, j-0}^{n} p_{i j} x_{i} x_{j} \tag{24}
\end{equation*}
$$

(In the notation Q_{p}, p is of course not a numerical index, but a fixed symbol related to the notation $p_{i j}$.)

If Θ also can only assume a finite number of distinct values, say $\theta_{0}, \theta_{1}, \ldots, \theta_{y}$, we call the portfolio a finite portfolio and we write

$$
\begin{array}{ll}
u_{\alpha}=P\left(\Theta=\theta_{\alpha}\right), & \binom{\alpha=0,1, \ldots, \nu}{i=0,1, \ldots, n} \\
p_{i / \alpha}=P\left(X_{1}=i \mid \Theta=\theta_{\alpha}\right) . & \tag{26}
\end{array}
$$

The numbers (25) and (26) completely describe our portfolio. For example:
(27) $\quad p_{i j k} \ldots=P\left(X_{1}=i, X_{2}=j, X_{3}=k, \ldots\right)=\sum_{\alpha=0}^{\nu} u_{\alpha} p_{i / \alpha} p_{j / \alpha} p_{k / \alpha} \ldots$

Note that it is not assumed that the portfolio be finite in the following theorem.

2.2. Theorem

The $(n+1) \times(n+1)$ matrix $\left[p_{i j}\right]$ is semidefinite positive.
Demonstration.
For every function f of one variable, we have by (2):

$$
E\left(f\left(X_{1}\right) f\left(X_{2}\right)\right)=E f_{\Theta}^{2} \geqslant 0
$$

Writing $f(i)=x_{j}$, this gives

$$
Q_{p}=\sum_{i, j=0}^{n} p_{i j} x_{i} x_{j} \geqslant 0
$$

for every value of $x_{0}, x_{1}, \ldots, x_{n}$

2.3. Theorem

Let $\left[q_{i j}\right]$ be an arbitrary $(n+1) \times(n+1)$ symmetric matrix with nonnegative elements adding up to unity. Define $q_{i}(i=0, \ldots, n)$ by

$$
q_{i}=\sum_{i=0}^{n} q_{i j}
$$

Then, if one of the matrices $\left[q_{i j}\right]$ or $\left[q_{i j}-q_{i} q_{j}\right]$ is semidefinite positive, so is the other.

Demonstration.
Let Q_{q} and R_{q} be the quadratic forms

$$
\begin{gathered}
Q_{q}=\sum_{i, j=0}^{n} q_{i j} x_{i} x_{j} \\
R_{q}=\sum_{i, j \sim 0}^{n}\left(q_{i j}-q_{i} q_{j}\right) x_{i} x_{j}=Q_{q}-\left(\sum_{j=0}^{n} q_{i} x_{i}\right)^{2}
\end{gathered}
$$

Then

$$
Q_{q}=R_{q}+\left(\sum_{i=0}^{n} q_{i} x_{i}\right)^{2}
$$

and if R_{q} is semidefinite positive, so is Q_{q}, à fortiori.
Conversely, let Q_{q} be semidefinite positive. Define the couple of random variables Y_{1}, Y_{2} by

$$
P\left(Y_{1}=i, Y_{2}=j\right)=q_{i j} \quad(i, j=0,1, \ldots, n)
$$

For every f we have, setting $f(i)=x_{i}$:

$$
E\left(f\left(Y_{1}\right) f\left(Y_{2}\right)\right)=\sum_{i, j=0}^{n} f(i) f(j) q_{i j}=\sum_{i, j=0}^{n} q_{i j} x_{i} x_{j} \geqslant 0
$$

since Q_{q} is semidefinite positive. In particular, for the function $f-E f\left(Y_{1}\right)=$ $f-E f\left(Y_{2}\right)$, we have

$$
E\left(\left(f\left(Y_{1}\right)-E f\left(Y_{1}\right)\right)\left(f\left(Y_{2}\right)-E f\left(Y_{2}\right)\right)\right) \geqslant 0
$$

or

$$
R_{q}=\sum_{i, i=0}^{n}\left(q_{i j}-q_{i} q_{j}\right) x_{i} x_{j} \geqslant 0
$$

2.4. Theorem

In the finite portfolio the form Q_{p} equals

$$
Q_{p}=\sum_{\alpha=0}^{\nu} u_{\alpha}\left(\sum_{i=0}^{n} p_{i / \alpha} x_{i}\right)^{2}
$$

Demonstration.
By (27):

$$
Q_{p}=\sum_{i, j=0}^{n} p_{i j} x_{i} x_{j}=\sum_{\alpha=0}^{\stackrel{\nu}{2}} u_{\alpha} \sum_{i=0}^{n} p_{i / \alpha} x_{i} \sum_{i=0}^{n} p_{j / \alpha} x_{j}=\sum_{\alpha=0}^{\nu} u_{\alpha}\left(\sum_{i=0}^{n} p_{i / \alpha} x_{i}\right)^{2}
$$

2.5. Theorem

Let $Q_{q}=\sum_{i, j=0}^{n} q_{i j} x_{i} x_{j}$ be a quadratic form with nonnegative symmetric coefficients $q_{i j}$ adding up to unity. Then, to every decomposition

$$
\begin{equation*}
Q_{q}=\sum_{i, i-0}^{n} q_{i j} x_{i} x_{j}=\sum_{\alpha=0}^{\nu}\left(\sum_{i=0}^{n} a_{i \alpha} x_{i}\right)^{2} \tag{28}
\end{equation*}
$$

of Q_{q} in a sum of squares of linear forms with nonnegative coefficients $a_{i \alpha}$, there corresponds a finite portfolio for which

$$
\begin{align*}
& p_{i j}=q_{i j} \tag{29}\\
u_{\alpha}= & \left(\sum_{i=0}^{n} a_{i z}\right)^{2} \\
p_{i / \alpha}= & a_{i \alpha} / \sum_{i-0}^{n} a_{i \alpha} \\
& (i=0, \ldots, n ; \quad \alpha=0, \ldots, v)
\end{align*}
$$

Demonstration.
We suppose of course that no linear form of the decomposition is the zero form.

Define u_{α} and $p_{i / \alpha}$ by (30) and (31). From (31) we have

$$
\sum_{i=0}^{n} p_{t / \alpha}=1 \quad(\alpha=0, \ldots, v)
$$

By setting $x_{0}=x_{1}=\ldots=x_{n}=1$ in (28), we have $\sum_{\alpha=0}^{v} u_{\alpha}=1$
Also

$$
q_{i j}=\sum_{\alpha-0}^{\nu} a_{i \alpha} a_{j \alpha}=\sum_{\alpha-0}^{\nu} u_{\alpha} p_{i / \alpha} p_{j / \alpha}=p_{i j}
$$

by taking the coefficient of $x_{i} x_{j}$ in (28) and using (30) and (31).

2.6. Remarks

(I) Given the matrix [$p_{i j}$], every possible finite portfolio for which (19) is valid thus results from a decomposition of Q_{p} in a sum of squares of linear forms with nonnegative coefficients. For all such possible portfolios, the credible premium (optimal or linear) will be the same.
(II) By 2.2., a necessary condition on a given matrix $\left[q_{i j}\right]$ to be the $\left[p_{i j}\right]$ matrix of some portfolio, finite or not, is that $\left[q_{i j}\right]$ be semidefinite positive.
(III) In the classical theory of decomposition of a quadratic form in a sum of squares of linear forms, the latter are generally independent and in number not larger than the dimension of the matrix of the quadratic form. For a decomposition giving rise to a portfolio, this is no longer needed. On the other side, we need linear forms with nonnegative coefficients, which is not the case in the classical theory.
(IV) As a simple illustration, we consider the form Q in two variables

$$
Q=\frac{1}{29}\left(3 x^{2}+12 x y+14 y^{2}\right)
$$

Among a lot of others, three possible decompositions are

$$
\begin{aligned}
& Q=\frac{4}{29}\left(\frac{x}{2}+\frac{y}{2}\right)^{2}+\frac{9}{29}\left(\frac{x}{3}+\frac{2 y}{3}\right)^{2}+\frac{16}{29}\left(\frac{x}{4}+\frac{3 y}{4}\right)^{2} \\
& Q=\frac{27}{29}\left(\frac{x}{3}+\frac{2 y}{3}\right)^{2}+\frac{2}{29}(0 x+1 y)^{2} \\
& Q=\frac{200}{203}\left(\frac{3 x}{10}+\frac{7 y}{10}\right)^{2}+\frac{3}{203}(1 x+0 y)^{2}
\end{aligned}
$$

To these three decompositions correspond three different finite portfolios with same $\left[p_{i j}\right]$ matrix equal to

$$
\left[\begin{array}{rr}
3 / 29 & 6 / 29 \\
6 / 29 & 14 / 29
\end{array}\right]
$$

For each of the three portfolios we would find the same optimal premium and the same linear credibility premium.

If we had a decomposition with only one square of a linear form, the two variables X_{1} and X_{2} should be independent. So the third decomposition shows that, in the present case, these variables are "nearly" independent.

3. adjustment of a $\left[\rho_{i j}\right]$ Matrix

3.1. The Problem

In the next section, we apply the theory to a concrete portfolio in automobile insurance. We limit ourselves to the consideration of the number of claims. Then $p_{i j}$ is the probability of i claims in one year, say the first, and j claims in another year, say the second, for a contract chosen at random in the portfolio.

Practically, the probability $p_{i j}$ is estimated by an observed frequency $q_{i j}$. Except perhaps for estimates from very large samples, the matrix [$q_{i j}$], of course symmetrized in the obvious way, does not fit in the theory because generally it is not semidefinite positive. So it must be transformed, as slightly as possible, in a usable matrix $\left[p_{i j}\right]$.

3.2. Smoothing on a Fixed Ascending Diagonal

Suppose, for a moment, that the parameter θ of each fixed contract is interpreted as the mean number of claims in one year, and that the arrivals are poissonnian. Then we should have

$$
\begin{equation*}
P\left(X_{1}=i \mid \Theta=\theta\right)=e^{-\theta} \frac{\theta^{i}}{i!}(i=0,1,2, \ldots) \tag{32}
\end{equation*}
$$

But since, for practical reasons, we do not consider a number of claims in one year greater than a fixed integer n, we replace (32) by

$$
\begin{equation*}
P\left(X_{1}=i!\Theta=\theta\right)=c_{n, \theta} e^{-\theta} \frac{\theta^{i}}{i!}(i=0,1, \ldots, n) \tag{33}
\end{equation*}
$$

where $c_{n, \theta}$ is the suitable norming factor.
Denoting by $U(\theta)$ the structure function of the portfolio, we have, for a contract chosen at random

$$
p_{i j}=\int_{0}^{\infty} c_{n, \theta}^{2} e^{-2 \theta} \frac{\theta^{i+i}}{i!j!} d U(\theta) \quad(i, j=0,1, \ldots, n)
$$

For the probability of $k(k=0,1, \ldots, 2 n)$ claims in two years, we have then

$$
\begin{equation*}
{ }_{2} p_{k}=\sum_{\substack{i, j=0 \\ i+j=k}}^{n} p_{i j}=\left(\sum_{\substack{i, j=0 \\ i+j=k}}^{n} \frac{1}{i!j!}\right) \int_{0}^{\infty} c_{n, \theta}^{2} e^{-2 \theta} \theta^{i+j} d U(\theta) \tag{34}
\end{equation*}
$$

So, for $i+j=k(i, j=0,1, \ldots, n), p_{i j}$ and ${ }_{2} p_{k}$ are related by

$$
\begin{equation*}
p_{i j}=a_{i j 2} p_{k} \tag{35}
\end{equation*}
$$

where

$$
\begin{equation*}
a_{i j}=\frac{\frac{1}{i!j!}}{\sum_{\substack{i, j=0 \\ i+j=k}}^{n} \frac{1}{i!j!}},(i, j=0, \ldots, n ; i+j=k) \tag{36}
\end{equation*}
$$

If we take

$$
\begin{equation*}
{ }_{2} q_{k}=\sum_{\substack{i, j=0 \\ i+j=k}}^{n} q_{i j} \tag{37}
\end{equation*}
$$

and then use (35) with ${ }_{2} p_{k}={ }_{2} q_{k}$, we have a first adjustment of the matrix [$q_{i j}$]. Since, for fixed k, the elements $a_{i j}$ of (36) add up to unity, it is immediate that the sum of the elements of each ascending diagonal is the same in the initial and the adjusted matrix.

We reached (35), starting from a poissonnian hypothesis. Now we keep only (35) and abandon the poissonnian hypothesis, because this relation is in fact true in a more general situation. For example, if the factor $c_{n, \theta}^{2} e^{-2 \theta}$ is replaced by another one not depending on i or j, then (35) remains true with $a_{i j}$ given by (36).

3.3. Extrapolation for the Last Ascending Diagonals

For statistics deriving from small samples, the above method does not yet furnish a semidefinite positive [$p_{i j}$] matrix. So a preliminary smoothing of the ${ }_{2} q_{k}$'s is necessary.

If, again for one moment, we make the poissonnian hypothesis and do not neglect claims in number greater than n in one year, then we have

$$
\begin{equation*}
{ }_{2} p_{k}=\int_{0}^{\infty} e^{-2 \theta} \frac{(2 \theta)^{k}}{k!} d U(\theta), \quad(k=0,1,2, \ldots) \tag{38}
\end{equation*}
$$

Writing

$$
\begin{equation*}
r_{k}=k!{ }_{2} p_{k} \quad(k=0,1,2, \ldots) \tag{39}
\end{equation*}
$$

we have

$$
r_{k}=\int e^{-2 \theta}(2 \theta)^{k} d U(\theta) \quad(k=0,1,2, \ldots)
$$

From this relation it can be proved that

$$
\begin{equation*}
r_{k}^{2} \leqslant r_{k-1} r_{k+1}, \quad(k=1,2, \ldots) \tag{40}
\end{equation*}
$$

and that equality for some k can only hold in a portfolio of homogeneous composition (that means: $\Theta=$ constant a.e.), in which case it holds for every
k. In the case of a binomial negative distribution for the total number of claims in a fixed period (here 2 years), which amounts to a gamma density for Θ, it can be verified that, for $k \rightarrow \infty$, we have

$$
\frac{r_{k-1} r_{k+1}}{r_{k}} \rightarrow 1
$$

These considerations suggest the following method of adjustment. We take

$$
r_{0}=0!{ }_{2} q_{0}, r_{1}=1!{ }_{2} q_{1}, \ldots, r_{k_{0}}=k_{0}!{ }_{2} q_{k_{0}}
$$

and, from k_{0} on, taken as large as possible, we set

$$
\begin{equation*}
r_{k}=\left(1+\varepsilon_{k, \alpha, \beta, \ldots)} \frac{r_{k-1}^{2}}{r_{k-2}} \quad\left(k \geqslant k_{0}+1\right)\right. \tag{41}
\end{equation*}
$$

where $\varepsilon_{k, \alpha, \beta, \ldots}$ is a positive quantity, decreasing with increasing k and containing parameters α, β, \ldots to be determined in function of some requirements for the adjusted matrix. There is of course some arbitrariness in the choice of $\varepsilon_{k, \alpha, \beta, \ldots,}$ but as we shall see in our numerical illustration of next section, this quantity, when properly chosen, introcuces only very small probabilities.

From the preceding discussion we only retain (41) and (39), because it is not difficult to see that (40) is valid in a more general situation than the poissonnian from which we started.

> 4. NUMERICAL ILLUSTRATION

4.1. Basic Statistics

The statistics used are those of Table 1.
TABLE 1: BASIC STATISTICS

$i j$	0	1	2	3	4	5
0	784	103	13	2	2	0
1	119	33	5	1	0	0
2	18	5	3	2	0	0
3	1	1	0	0	1	0
4	0	0	0	0	0	0
5	1	0	0	0	0	0

The number at the intersection of row i and column j in this table is the number of automobiles with i claims one year and j claims the following year among 1094 automobiles.

These statistics were established by P. Thyrion and used in Thyrion (1972) and afterwards in De Vylder (1975).

On dividing by 1094 and symmetrizing, we obtain the matrix [$q_{i j}$] of Table 2.
Most of our following numerical results were computed with a precision of 15 à 16 significant digits. Often, however, we reproduce the intermediate results with 3 significant digits only.

TABLE 2: NON ADJUSTED SYMMETRIZED MATRIX [$q_{i j}$]

$=$.717	.203	.0585	.0119	.00640		
								.00274
$i=0$.717	.101	.0142	.00137	.000914	.000457	0	
$i=1$.101	.0302	.00457	.000914	0	0	.000914	
$i=3$.0142	.00457	.00274	.000914	0	0	0	
$i=4$.00137	.000914	.000914	0	.000457	0	0	
$i=5$.000914	0	0	.000457	0	0	0	
	.835	.137	.0224	.00366	.00137	.000457		

TABLE 3: ADJUSTED MATRIX [$\left.p_{i j}\right]$

	.717	.203	.0585	.0119	.00493				
$i=0$.717	.101	.0146	.00149	.000308	.0000815	.00139		
$i=1$.101	.0293	.00446	.00123	.000408	.000134	.000676		
$i=2$.0146	.00446	.00185	.000815	.000335	.000127	.000296		
$i=3$.00149	.00123	.000815	.000447	.000211	.0000909	.000116		
$i=4$.000308	.000408	.000335	.000211	.000114	.0000579	.0000410		
$i=5$.0000815	.000134	.000127	.0000909	.0000579	.0000410			
	.835	.137	.0222	.00428	.00143	.000532			

4.2. Adjustment

Our aim is to find a semidefinite positive matrix ($\left.p_{i j}\right]$ as close as possible to the matrix [$q_{i j}$].

Following the method explained in the preceding section, we take

$$
\begin{array}{rlr}
{ }_{2} p_{0}=q_{00} & & =.717 \\
{ }_{2} p_{1}=q_{01}+q_{10} & & =.203 \\
2 p_{2}=q_{02}+q_{11}+q_{20} & & =.0585 \\
2 p_{3}=q_{03}+q_{12}+q_{21}+q_{30} & & =.0119
\end{array}
$$

We tried of course to keep also for ${ }_{2} p_{4}$ the observed corresponding frequency .00640, but this was unsuccessfull. From the above values, we have the value of $r_{0}, r_{1}, r_{2}, r_{3}$ by (39). We set

$$
r_{k}=\left(1+\frac{\alpha}{\beta^{k-4}}\right) \frac{r_{k-1}^{2}}{r_{k-2}} \quad(k=4,5, \ldots, 10)
$$

because we observed that a quantity $\varepsilon_{k, \alpha, \beta}, \ldots$ in (41) rapidly converging to zero gives a ${ }_{2} p_{4}$ closer to .00640 than one converging more slowly to zero. From the values of the $r_{k}(k=4,5, \ldots, 10)$ we deduce those of the p_{k} by (39) and choose α and β to satisfy

$$
\begin{equation*}
\sum_{k=0}^{10}{ }_{2} p_{k}=1 \tag{42}
\end{equation*}
$$

From the values of the ${ }_{2} p_{k}$ we then deduce those of the $p_{i j}$ by (35).
For fixed β it is not difficult to determine α, with the required precision, from (42). So we still dispose of β. For a previously indicated reason, we try to take β as large as possible. Now, by calculating the characteristic values, we observed that for $\beta=2$, we obtained a semidefinite positive matrix [$p_{i j}$], while for $\beta=4$, there appeared one negative characteristic value. We then tried the values $\beta=2.1, \beta=2.2, \ldots, \beta=3.8, \beta=3.9$ and found that for $\beta=3$ all characteristic were still positive, while for $\beta=3.1$ there appeared a negative one. In fact, for $\beta=3$ there was a characteristic value so small that we preferred to take $\beta=2.9$, although this was not essential. The corresponding value of α is $\alpha=1.723569981730550$. The characteristic values of the adjusted [$p_{i j}$] matrix are .732 .0151 .00154 .0000835 .0000096 .000000081 . For the adjusted matrix, the mean value of the number of claims in one year is .202607 , while for the original matrix it is .200640 . Instead of (42), we could have used the relation making these mean values equal, but then, unless we introduced a new parameter, we would have had to change proportionally the now kept fixed quantities ${ }_{2} p_{0},{ }_{2} p_{1},{ }_{2} p_{2},{ }_{2} p_{3}$. Since the difference between the two means is small in our actual adjustment, we keep it as it is.

A glance at Tables 2 and 3 is enough to be convinced of the quality of our adjustment, especially when one looks at the partial sums indicated in the margins.

A characteristic of our adjustment is that it used only the numbers ${ }_{2} p_{k}$ and not the decomposition of such a number on the corresponding ascending diagonal. In other words, instead of Table 1 , we used only the frequencies of k claims in two years. It seems that our method can be adapted for the case were the frequency of k claims in one year is the only statistical material.

4.3. A Theorically Possible Portfolio Compatible with the $\left[p_{i j}\right]$ Matrix

If we decompose the quadratic form Q_{p} by Lagrange's method (successive completion of squares), taking the variables in the order $x_{0}, x_{1}, \ldots, x_{5}$, we find after some normalisations:

$$
Q_{p}=\sum_{i, j=0}^{8} p_{i j} x_{i} x_{j}=
$$

As explained in section 2, this decomposition defines a portfolio for which the [$p_{i j}$] matrix is our adjusted [$p_{i j}$].

This portfolio does not serve in the sequel, but we calculated it to make sure that our adjusted $\left[p_{i j}\right]$ matrix is not a theorically impossible one.

4.4. The Optimal Premium and the Linear Premium

To make comparisons sensefull, these premiums are of course calculated both for the adjusted $\left[p_{i j}\right]$ matrix.
4.4.1. The optimal premium

From (18), we obtain, in table 4, the values of the f_{i}^{*} for the indicated values of $t+1$.

TABLE 4: COMPONENTS OF THE OPTIMAL PREMIUM
$E^{*}\left(X_{t+1} \mid X_{1}, \ldots, X_{t}\right)=f_{X_{1}}^{*}+f_{X_{2}}^{*}+\ldots+f_{X_{i}}^{*}$

$t+1$	f_{0}^{*}	f_{1}^{*}	f_{2}^{*}	f_{3}^{*}	f_{4}^{*}	f_{6}^{*}
2	.163922	.322485	.566282	1.285385	1.712988	2.060772
3	.070165	.201312	.385665	.938154	1.252583	1.495804
4	.041312	.154117	.301413	.748922	.993612	1.174104
5	.027911	.127399	.249519	.624949	.822816	.962363
6	.020394	.109677	.213655	.536605	.701129	.812356
7	.015681	.096841	.187171	.470247	.609979	.700767
8	.012500	.087009	.166728	.418507	.539185	.614733
9	.010237	.079179	.150432	.377009	.482654	.546539
10	.008562	.072763	.137116	.342977	.436504	.491274
20	.002613	.041181	.073446	.179860	.219454	.238560
30	.001290	.029042	.050507	.121616	.144603	.155734
50	.000526	.018364	.031328	.073604	.084674	.091804
99	.000159	.009688	.016461	.037222	.040897	.046423
100	.000156	.009596	.016305	.036848	.040458	.045969

TABLE 5: PROBABILITY p_{i} OF i CLAIMS IN ONE YEAR

p_{0}	p_{1}	p_{2}	p_{3}	p_{4}	p_{5}
.834599	.136944	.022208	.004283	.001434	.000532

From this table it follows, for example, that the optimal semilinear forecast of the number of claims in the 4 th year, for a driver with $2,2,0$ claims in the preceding years is

$$
\begin{gathered}
E^{*}\left(X_{3} \mid X_{1}=2, X_{2}=2, X_{3}=0\right)=f_{2}^{*}+f_{2}^{*}+f_{0}^{*}= \\
.301413+.301413+.041312=.644138
\end{gathered}
$$

To make a verification possible of relation (16) which amounts to

$$
t E\left(f_{X_{1}}^{*}\right)=E\left(X_{1}\right)
$$

or

$$
t \sum_{i=0}^{5} p_{i} f_{i}^{*}=E\left(X_{1}\right)
$$

where

$$
E\left(X_{1}\right)=.202607
$$

we give, in table 5 , the values of p_{i}, the probability of i claims in one year, with a precision greater than in Table 3.
4.4.2. The linear premium

The credibility factor Z in (21), given in (22), is expressed in Table 6 for various values of $t+1$. Intermediate values computed from the not printed 15 digits precise [$\left.p_{i j}\right]$ matrix are also indicated.

TABLE 6: CREDIBILITY FACTOR Z
IN LINEAR FORECAST
$E\left(X_{t+1} \mid X_{1}, \ldots, X_{t}\right)=$
$(1-Z) E\left(X_{1}\right)+Z / t\left(X_{1}+\ldots+X_{t}\right)$
$t+1$
2
3

The linear forecast for the above considered driver is
$\bar{E}\left(X_{3} \mid X_{1}=2, X_{2}=2, X_{3}=0\right)=(1-Z) E\left(X_{1}\right)+Z(2+2+0) / 3=.739445$

4.4.3. The mean quadratic errors

Table 7 gives, for different values oi $t+1$, the mean square error in the approximation of the risk premium m_{Θ} by the optimal premium and the linear premium. The formulae used are (7) and (23).

As expected, the optimal premium is always closer to m_{Θ}, and thus to X_{t+1}, than the linear premium.
TABLE 7: MEAN SQUARE ERROR FOR THE
OPTIMAL AND THE LINEAR PREMIUM

$t+1$	Optimal	Linear
2	.0438	.0462
3	.0347	.0375
4	.0288	.0316
5	.0247	.0272
6	.0217	.0240
7	.0193	.0214
8	.0175	.0193
9	.0164	.0176
10	.0147	.0162
20	.00822	.00894
30	.00574	.00617
50	.00359	.00381
99	.00188	.00197
100	.00186	.00195

4.4.4. Comparative Tables

The values of the optimal premium and the linear one are given in Tables 8 and 9 for $t+1=2$ and $t+1=3$ respectively. As is seen, these values may differ very much, even for relatively small values of X_{1}, X_{2}. Consider, for example the case $X_{1}=0, X_{2}=3$ in Table 9.

TABLE 8: OPTIMAL AND LINEAR FORECAST
FOR SECOND YEAR $(t+1=2)$

X_{1}	Optimal	Linear
0	.163922	.155694
1	.322485	.387239
2	.566282	.618784
3	1.285385	.850329
4	1.712988	1.081873
5	2.060772	1.313419

TABLE 9: OPTIMAL AND IINEAR FORECAST FOR THE THIRD YEAR $(t+1=3)^{\text {a }}$

X_{1}	0	1	2	3	4	5
	.140330	.271477	.455830	1.008319	1.322748	1.565969
0	.126422	.314434	.502446	.690458	.878470	1.066482
	.271477	.402624	.586977	1.139466	1.453895	1.697116
1	.314434	.502446	.690458	.878470	1.066482	1.254494
	.455830	.586977	.771330	1.323819	1.638248	1.881469
2	.502446	.690458	.878470	1.066482	1.254494	1.442506
	1.008319	1.139466	1.323819	1.876308	2.190737	2.433958
3	.690458	.878470	1.066482	1.254494	1.442506	1.630518
	1.322748	1.453895	1.638248	2.190737	2.505166	2.748387
4	.878470	1.066482	1.254494	1.442506	1.630518	1.818530
	1.565969	1.697116	1.881469	2.433958	2.748387	2.991608
5	1.066482	1.254494	1.442506	1.630518	1.818530	2.006542

a The first number indicated is the optimal premium, the number beneath it, the linear one.

In Table 9, the linear premium does of course not very on an ascending diagonal. This is not the case for the optimal premium. For example, 3 and o claims respectively in the first and the second year is much worse than 2 and 1 claim.

REFERENCES

Bühlmann, H. (1967). Experience Rating and Credibility, The Astin Bulletin, 4, 199-207. Bühlmann, H. (1970). Mathematical Methods in Risk Theory, Berlin: Springer-Verlag.
De Vylder, Fl. (1975). Introduction aux théories actuarielles de crédibilité, Bruxelles: Office des Assureurs de Belgique.
De Vylder, Fl. (9976). Optimal Semilinear Credibility, Mitteilungen der Vereinigung schweizerischer Versicherungsmathematiker, 76, 27-40.
Jewell, W. S. (1973). Multi-Dimensional Credibility, University of California, Berkeley. Thyrion, P. (1972). Quelques observations statistiques sur la variable "nombre de sinistres" en assurance automobile, The Astin Bulletin, 6, 203-211.

[^0]: * Presented at the 12 th ASTIN Colloqium, Portimão, October 1975.

