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A NUMERICAL ILLUSTRATION OF OPTIMAL SEMILINEAR
CREDIBILITY*

FL. D E VYLDER AND Y. BALLEGEER

INTRODUCTION

The homogeneous (in time) model of credibility theory is defined by a sequence
0, Xi, Xz, . . . of random variables, where for 0 = 6 fixed, the variables
Xi, Xz, ... are independent and equidistributed. The structure variable 0
may be interpreted as the parameter of a contract chosen at random in a
fixed portfolio, the variable X^ as the total cost (or number) of the claims of
the kth year of that contract.

Biihlmann's linear credibility premium of the year t + 1 may be written in
the form

(1) f(Xi) + ... + f(Xt),

where / is a linear function. In optimal semilinear credibility, we look for an
optimal / , not necessarily linear, such that (l) is closest to Xt+1 in the least
squares sense. In the first section we prove that this optimal/, denoted by/*,
is solution of an integral equation of Fredholm type, which reduces to a system
of linear equations in the case of a finite portfolio. That is a portfolio in which
0 and Xic can assume only a finite number of values.

In the second section we see that the structure of such a portfolio is closely
connected with the decomposition of a quadratic form in a sum of squares of
linear forms.

In the last section we calculate numerically the optimal premium for a
concrete portfolio in automobile insurance. We limit ourselves to the considera-
tion of the number of claims. The optimal premium is compared with the usual
linear premium. The difference is far from negligible.

As basic statistics we need the probabilities

In the third section we give a simple general solution to the subsidiary
problem of adjusting the matrix pq of such probabilities.

1. THE FUNDAMENTAL RESULT

1.1. Hypotheses. Notations. Definitions

We consider a sequence 0, Xi, X2,... of random variables such that for 0 = 6 fix-
ed, the variables Xi, X2,... are conditionally independent and equidistributed.

* Presented at the 12th ASTIN Colloqium, Portimao, October 1975.
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132 FL. DE VYLDER AND Y. BALLEGEER

All variables considered are supposed to have finite second order moments.
The risk premium of each year is defined by

mQ = E{Xi | 0).

Here, and also hereafter in similar situations, the index 1 could be replaced
by another one. The variables X%, X%, . . . are exchangeable in the sense of
De Finetti. More generally, for each function / of one variable, we denote by
f& the random variable

/ e = E{f{X±) | 0)

Hereafter t will be a fixed positive integer. It is the number of years that we
have already observed our portfolio. We have to make forecasts for the year
t + l. Since t is fixed, the dependence on t is not always indicated in our nota-
tions.

1.2. Lemma

(1) For each couple / , g of functions of one variable:

(2) E(f(X,) g(Xz)) = E(fBg(X*)) = E{f(X,)g9) = E{fBg9)

(II) For each function / of one variable and each function cpoft variables:

(3) E ( « p ( X i , . . . , X t ) f ( X t + 1 ) ) = E(<p(Xu . . . , X t ) f Q )

(III) For each function/of one variable:

(4) E ( f ( X t + 1 ) | X x , X * , . . . , X t ) = E(fQ \XX,..., X t )

Demonstration.

(i) Using the conditional independence of Xi, X2 for fixed 0 :

E{f(X1)g(X2)) = EE(f(Xx)g(Xa)\@) =

E{E{f{Xi) | 0) E(g(X2) | 0)) = E(f0g&)

Also

E(feg(X*)) = EE(f@g(X,) \ 0) = E(f@E(g(X2) | 0)) =

and similarly

(ii) Writing

we have in a similar way the more general result

E(9(Xlt ...,Xt)f(Xt+1)) = E(9&f@) = E(<p(Xi, ...,Xt)f&)
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(iii) From the conditional independence of Xi, X2, . . . , Xt+i, for fixed 0 , it
follows that

/ e = E(f(Xt+1) | 0 ) = E(f(Xt+1) {Q.Xx,..., Xt)

Then, by applying the operator E(. | Xi, ...,Xt) and using a general
property of conditional expectations:

E{fB \Xlt...,Xt) = E(E(f(Xt+i) I ©, Xu . . ., Xt) | Xu ..., Xt) =

E(f(Xt+1) 1 X u . . . , X t )

1.3. Theorem

Let / * be a solution of

(5) E(Xz I X i ) = / * ( Z i ) + (t-i) E(f*(X2) I X i )

Then, for every function/:

(6) % - / ' ( Z i ) - . . . - /* (**) ) a ^ E(mB-f(Xx) - . . .

The mean square error in the approximation oi m@ by f*(Xi) + . .. +
f*(Xt) is given by

(7) E{m9-f*(X!) - . . . - f*(Xt))* = E(XiX2) - tE(Xif*(X*))

If ^* also satisfies

(8) E(X* I Xi) = g*(Xi) + (t-i) E(g*(X2) I Xi),

then

(9) / W = g*(Xi) a.e.

Demonstration.

Multiplying (5) by/(Xi) and taking the mean value, we have

(10) E ( / ( X 0 Xa) =

In particular, for/=/*, we have

(n) £(/*(^x) X*) = £(/*(^i))2 + 0-1) E(f*(Xi)f*(Xa))

Using (2), we have for every/:

£ ( « e - / ( X i ) - . . . - f(Xt))* =
E(m%) - 2tE{m@f{Xl)) + E(f{Xx) + . . .

£ « ) - 2tE{mJ{Xx)) + tEfiXJ + t{t-x)E{f{X1)f{Xi)) =

(12) £(XiX2) - 2tE(f(X1) X.)) + * £/2(X!) + f0 - 1) E(/(Xi) /(Xa))
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134 FL- D E VYLDER AND Y. BALLEGEER

Taking/=/* and using (11), we have

£(me-/*(Xx) - . . . -f*(Xt))* =

E&X,) - 2tE(f*(X1)X2) + t[E(f*{Xx)Y + (t-i)E(f*(X1)f*(X2))]

= EiXxXz) - 2t E{J*{XX) Xt) + tE(f*(Xi)Xa) =

(13) E{XvX,) - tE(f*(X1)X2)

Since Xi and X2 are exchangeable, this proves (7). Neglecting a factor t,
using (12) and (13), the difference between the second and the first member of
(6) equals

d = E(/*(Xi)Xs) - 2E(f(X1)X2) +

Replacing the first two terms by their expression given by (10) and (11)
and using (2), we have

2E[f(X1)f*{X1)) - 2(t-i)E(f(X1)f*(Xi))

(t-i)E{f(Xi)f(Xa)) =
2 - 2£(/e/^) + E(f&)2} =

+ (t-i) £ ( / « - / e ) 2 > 0

This proves (6) and it only remains to show that (9) is true. Writing h* =
/ * — g*, we have from (5) and (8):

o = h*(Xi) + (t-i) E{h*{X*) I Xi)

Multiplying this last relation by h*(Xx) and taking the mean value, we have

o = E(h*(Xi))* + (t-i) E(h*{Xx) h*(Xa))

or, by (2):

0 = EQiCXJ)* + (t-i)E(h%)2

This implies

E{h*{Xx)Y = 0

and thus (9).

1.4. Corollary

Let/* be solution of (5). Then, for each/:

(14) E{Xt+1-f*(Xi) - . . . - f*(Xt))*^E(Xt+i-f(X1

Demonstration.

Using (3) it easily follows that for every function <p of t variables we have

i, ...,Xt)Y =
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The difference between the members of (14) then is the same as that between
the members of (6).

1.5. Remark. Notation. Definition

In DE VYLDER (1976), the fundamental relation (5) is derived in a geometrical
way. In that paper the existence of / * is proved.

The optimal semilinear credibility premium of the year t + 1 is defined and
denoted by

(15) E*{Xt+i \X1,...,Xt)= /*(Xi) + . . . + f*{Xt),

where/* is solution of (5).

1.6. Theorem

(16) E E*(Xt+1 \Xlt...,Xt) = E(Xt+1)

Demonstration.

Follows from (5) and (15) by taking the mean values.

1.7. Determination of the Optimal Premium

If the variables Xi and X2 have a joint density p(x, y), then equation (5)
becomes

(17) J yp(x, y) dy = /•(*) J p(x, y) dy + (t- 1) J/*(y) p(x, y) dy

This is an integral equation of Fredholm type for the unknown function / * .
If Xi can only assume, with probability one, a finite number of values, say

o, 1, 2, . . ., n, then (5) becomes the linear system

(18) 2

: where
i

i (19) Pn=

(20) / ; = f(i).

Equations (17) and (18) may serve as well for theoretical investigations as
for the numerical computation of the optimal premium. Only the joint distri-
bution of Xi and X% is needed.

1.8. The Linear Credibility Premium

We shall denote the usual linear credibility premium of the year t + 1 by

(21) E(Xt+1 \Xlt...,Xt)= (l-Z) E(Xx) + - (Xi + ... + Xt),
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I36 FL. DE VYLDER AND Y. BALLEGEER

where

t covjXu X2)

^22> XXx+ (t-i)cov(Xx,X2)

The mean square error in the approximation of m% by this premium equals

(23) (l-Z)cov(X1,X2).

By what precedes, it is never less than the mean square error in the ap-
proximation of m% by the optimal premium, given by (7).

2. FINITE PORTFOLIOS AND QUADRATIC FORMS

2.1. Hypotheses. Definition

From now on we assume that the range of values of Xi is a finite set of numbers
say 0, 1,2, . . ., n.

We use the notation (19) for py and set

pi = P(Xi = i) = i pa (* = o, 1, . . ., n)
1-0

We denote by Qp the quadratic form in the variables xo, x\, . . ., xn:

(24) Qp = 2 p

(In the notation Qp, p is of course not a numerical index, but a fixed symbol
related to the notation py.)

If 0 also can only assume a finite number of distinct values, say 0o, 81, . . ., 8V,
we call the portfolio a finite portfolio and we write

(25) ^ =

(26) A-/a = P(X, = i\Q = 0a). I* = 0, 1, . • •, »

The numbers (25) and (26) completely describe our portfolio. For example:
V

(27) p i j k . . . = P ( X i = i , X 2 = j , X 3 = k , . . . ) = £ UapHxpjioLpici* • • •

Note that it is not assumed that the portfolio be finite in the following
theorem.

2.2. Theorem

The (#+l ) x (n + 1) matrix [pif\ is semidefinite positive.

Demonstration.

For every function / of one variable, we have by (2):
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Writing f(i) = xj, this gives

Qv = S _/>
« • , , • - o

for every value of %o, xi, . . ., xn

2.3. Theorem
Let [qtj] be an arbitrary (n + l) x (n + l) symmetric matrix with nonnegative

i elements adding up to unity. Define qi(i = o, . . ., n) by

Then, if one of the matrices [qtj] or [#y — q%qj\ is semidefinite positive, so is
the other.

Demonstration.

Let Qq and Rq be the quadratic forms
n

Qq = 2 q

Then

(?, = Rg + ( S ? i XiY
• - 0

and if i?e is semidefinite positive, so is QQ, a fortiori.
Conversely, let Qq be semidefinite positive. Define the couple of random

variables Y\, Y2 by

P(Yi = i, Yz=j) = qtj {i,j=o, 1, . . ., n)

For every / we have, setting f(i) = X{:

since ()9 is semidefinite positive. In particular, for the function /— Ef(Yi)
f-Ef(Y2), we have

Yx) - Ef(Y,)) (/(Y2) - Ef(Ya))) > o

or

Ra = i
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2.4. Theorem

In the finite portfolio the form Qp equals

Qp = 2 Ua{ 2 pijaXi)2

a-o J - o

Demonstration.

By (27):
n v n n v n

Qp = 2 pij X%Xj = 2 Ua 2 ^>J/a #2 2 pjla Xj — 2 Wa ( 2 ^i/a •

2.5. Theorem
n

Let ()9 = 2 ^y # ^ be a quadratic form with nonnegative symmetric coeffi-

cients qij adding up to unity. Then, to every decomposition
i> v n

( 2 8 ) Q q = 2 qij X{Xj = 2 ( 2 ^ i a ^ i ) 2

i,f = o a - o i = o

of Qq in a sum of squares of linear forms with nonnegative coefficients «<„,
there corresponds a finite portfolio for which

(29) /># = gty,

(30) «a = ( 2 a4x)
2.

n

(31) ^ / a = «ia/ 2 «{a
»-0

(j = o, . . . , w; a = 0, . . . , v)

Demonstration.

We suppose of course that no linear form of the decomposition is the zero
form.

Define ua and^j/a by (30) and (31). From (31) we have
n

2 pi/a = 1 (a=o, . . ., v).

V

By setting xo = %\ = . . . = %n = l in (28), we have S ua = l

Also
V V

en =* 0 ot = 0

by taking the coefficient of x&j in (28) and using (30) and (31).
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2.6. Remarks

(I) Given the matrix [py], every possible finite portfolio for which (19) is
valid thus results from a decomposition of Qp in a sum of squares of linear
forms with nonnegative coefficients. For all such possible portfolios, the
credible premium (optimal or linear) will be the same.

(II) By 2.2., a necessary condition on a given matrix [qij] to be the [py]
matrix of some portfolio, finite or not, is that [qy] be semidefinite positive.

(III) In the classical theory of decomposition of a quadratic form in a sum
of squares of linear forms, the latter are generally independent and in
number not larger than the dimension of the matrix of the quadratic
form. For a decomposition giving rise to a portfolio, this is no longer
needed. On the other side, we need linear forms with nonnegative coef-
ficients, which is not the case in the classical theory.

(IV) As a simple illustration, we consider the form Q in two variables

Q = — (3** + izxy +

Among a lot of others, three possible decompositions are

4 /* VV 9 (x 2yV 16 /* 3y\a

Q = —[- + -) + — - + -~ + — \~ + —29 \2 2/ 29 \3 3 / 29 \4 4

27 [x 2y\2 2 /
29 V3 3 / 29 \ -

200 (3% jyV 3 / V
Q = — + — + — \ix+oy)

203 \ i o 10/ 203 \ /

To these three decompositions correspond three different finite port-
folios with same [py] matrix equal to

[3/29 |
[6/29 14/29J

For each of the three portfolios we would find the same optimal premium
and the same linear credibility premium.

If we had a decomposition with only one square of a linear form, the
two variables Xi and X2, should be independent. So the third decomposi-
tion shows that, in the present case, these variables are "nearly" in-
dependent.
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3. ADJUSTMENT OF A [pij] MATRIX

3.1. The Problem

In the next section, we apply the theory to a concrete portfolio in automobile
insurance. We limit ourselves to the consideration of the number of claims.
Then py is the probability of i claims in one year, say the first, and j claims in
another year, say the second, for a contract chosen at random in the portfolio.

Practically, the probability pij is estimated by an observed frequency qtj.
Except perhaps for estimates from very large samples, the matrix [qy], of
course symmetrized in the obvious way, does not fit in the theory because
generally it is not semidefinite positive. So it must be transformed, as slightly
as possible, in a usable matrix

3.2. Smoothing on a Fixed Ascending Diagonal

Suppose, for a moment, that the parameter 0 of each fixed contract is inter-
preted as the mean number of claims in one year, and that the arrivals are
poissonnian. Then we should have

(32) P(Xi = « | 0 = 6) = e~Q ^ (* = o, 1,2, . . . )

But since, for practical reasons, we do not consider a number of claims in
one year greater than a fixed integer n, we replace (32) by

0*
(33) P(Xi = * | 0 = 6) = cn,ee-6 ~ ( t=o, i, ...,n)

where cm,e is the suitable norming factor.

Denoting by £7(6) the structure function of the portfolio, we have, for a
contract chosen at random

Pij = J 4,o e~w — dU(Q) (i, j = 0, 1, . . ., n)

0

For the probability of k (k = 0, l, . . ., 2w) claims in two years, we have then

\ i,j-o l- 3 • J
(34) 4* = 2

i+j-t \i+j-k / 0

So, for i + j — k (i,j=o, 1, . . . , n), pi} and 2pic are related by

(35) Pij = aijspk
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where

(36) ai}

7 —
If we take

(37)

and then use (35) with 2pk=2q/c, we have a first adjustment of the matrix
Since, for fixed k, the elements ay of (36) add up to unity, it is immediate that
the sum of the elements of each ascending diagonal is the same in the initial
and the adjusted matrix.

We reached (35), starting from a poissonnian hypothesis. Now we keep only
(35) and abandon the poissonnian hypothesis, because this relation is in fact
true in a more general situation. For example, if the factor c\ e <? ~26 is replaced
by another one not depending on i or _;, then (35) remains true with «y given
by (36).

3.3. Extrapolation for the Last Ascending Diagonals

For statistics deriving from small samples, the above method does not yet
furnish a semidefinite positive [py] matrix. So a preliminary smoothing of the
sqic's is necessary.

If, again for one moment, we make the poissonnian hypothesis and do not
neglect claims in number greater than n in one year, then we have

(38) *p* = U ^ - f - dU(Q), (k = o,i,2,...)

0

Writing

(39) Tjc = k\ 2p!c {k = 0, 1, 2, . . .)

we have

rk = J e"29 (2&)*dU{Q) {k = o, 1, 2, . . .)

From this relation it can be proved that

(40) r\ < rk_1 rk+1, (A = 1,2,. . .)

and that equality for some k can only hold in a portfolio of homogeneous
composition (that means: 0 = constant a.e.), in which case it holds for every
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k. In the case of a binomial negative distribution for the total number of claims
in a fixed period (here 2 years), which amounts to a gamma density for 0, it can
be verified that, for k —> 00, we have

ffc-1 ?k +1
- > 1

r*.

These considerations suggest the following method of adjustment. We take

r0 = 0! 2qo, n = l! gqi, . .., rko = ko\ 2qko

and, from ko on, taken as large as possible, we set

' \ 1
(41) rk = (H-s*>8ip,...) {k^ko+i)

where SA.a.g,--- is a positive quantity, decreasing with increasing k and con-
taining parameters a, (3, . . . to be determined in function of some requirements
for the adjusted matrix. There is of course some arbitrariness in the choice of
S/fc.a.p,-", but as we shall see in our numerical illustration of next section, this
quantity, when properly chosen, introcuces only very small probabilities.

From the preceding discussion we only retain (41) and (39), because it is
not difficult to see that (40) is valid in a more general situation than the
poissonnian from which we started.

4. NUMERICAL ILLUSTRATION

4.1. Basic Statistics

The statistics used are those of Table 1.

TABLE 1 : BASIC STATISTICS

\i
* \
0

1

2

3
4
5

0

784
119

18
1

0

1

1

103
33

5
1

0

0

2

13
5
3
0

0

0

3

2

1

2

0

0

0

4

2
0

0

1

0

0

5

0

0

0

0

0

0

The number at the intersection of row i and column j in this table is the
number of automobiles with i claims one year and j claims the following year
among 1094 automobiles.

These statistics were established by P. Thyrion and used in THYRION (1972)
and afterwards in D E VYLDER (1975).

On dividing by 1094 and symmetrizing, we obtain the matrix [gy] of Table 2.
Most of our following numerical results were computed with a precision of

15 a 16 significant digits. Often, however, we reproduce the intermediate
results with 3 significant digits only.
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TABLE 2: NON ADJUSTED SYMMETRIZED MATRIX

I = 0

1 = 1

J = 2
J = 3
» = 4
* = 5

•717
.101

.0142

.00137

.000914

.000457

•835

j = 0

0

0

j

.717

.101

.0302

.00457

.000914

•137

= 1

.203

.0142
•00457
.00274
.000914

0

0

.0224

y = 2

•0585

.00137

.000914

.000914

0

.000457
0

.00366

.0119

.000914

0

0

.000457
0

0

.00137

; = 4

0

0

0

0

0

i

.00640

.000457

.000457

= 5

0

0

0

0

.00274

.000914

TABLE 3 : ADJUSTED MATRIX [pij]

t = 0

1=1

i = 2

4 = 3

j = 4

i = 5

.717

.101

.0146

.00149

.000308

.0000815

•835

j = o

.717

.101

.0293

.00446

.00123

.000408

.000134

•137

j=i

.203

.0146

.00446

.00185

.000815

•000335

.000127

.0222

y = 2

•0585

.00149

.00123

.000815

.000447

.000211

.0000909

.00428

y=3

.0119

.000308

.000408

000335
.000211

.000114

.0000579

.00143

y=4

.00493

.0000815

.000134

.000127

.0000909

.0000579

.0000410

.000532

y=s

.00261

.00139

.000676

.000296

.000116

.0000410

4.2. Adjustment

Our aim is to find a semidefinite positive matrix (py] as close as possible to the
matrix [qtj].

Following the method explained in the preceding section, we take

2po = qoo = .717
2px = £01 + ?io = .203
2p% = qoz + <?ii + (720 = .0585

We tried of course to keep also for 2pi the observed corresponding frequency
.00640, but this was unsuccessfull. From the above values, we have the value
of ro, n, r2, rz by (39). We set

a \ rl_t
rk = | i + ^T4 — (£ = 4 , 5 , • • • , 1 0 )
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because we observed that a quantity £fc,«,3,... in (41) rapidly converging to zero
gives a 2pt closer to .00640 than one converging more slowly to zero. From the
values of the rjc (k = 4, 5, . . . , 10) we deduce those of the p/c by (39) and choose
a and [3 to satisfy

10

(42) 2 2pk = 1

From the values of the 2pu we then deduce those of the py by (35).
For fixed [3 it is not difficult to determine a, with the required precision,

from (42). So we still dispose of (3. For a previously indicated reason, we try to
take p as large as possible. Now, by calculating the characteristic values, we
observed that for [3 = 2, we obtained a semidefinite positive matrix [py], while
for [3 = 4, there appeared one negative characteristic value. We then tried the
values [3 = 2.1, (3 = 2.2, . . ., (3 = 3.8, [3 = 3.9 and found that for (3 = 3 all charac-
teristic were still positive, while for [3 = 3.1 there appeared a negative one. In
fact, for (3 = 3 there was a characteristic value so small that we preferred to
take [3 = 2.9, although this was not essential. The corresponding value of a is
a = 1.723 569 981 730 550. The characteristic values of the adjusted [py]
matrix are .732 .0151 .00154 -0000835 .0000096 .000000081. For the adjusted
matrix, the mean value of the number of claims in one year is .202607, while
for the original matrix it is .200640. Instead of (42), we could have used the
relation making these mean values equal, but then, unless we introduced a
new parameter, we would have had to change proportionally the now kept
fixed quantities 2po, 2pi, zpi, 2ps- Since the difference between the two means
is small in our actual adjustment, we keep it as it is.

A glance at Tables 2 and 3 is enough to be convinced of the quality of our
adjustment, especially when one looks at the partial sums indicated in the
margins.

A characteristic of our adjustment is that it used only the numbers 2pk a n d
not the decomposition of such a number on the corresponding ascending
diagonal. In other words, instead of Table l, we used only the frequencies of k
claims in two years. It seems that our method can be adapted for the case were
the frequency of k claims in one year is the only statistical material.

4.3. A Theorically Possible Portfolio Compatible with the [pij] Matrix

If we decompose the quadratic form Qv by hagrange's method (successive
completion of squares), taking the variables in the order xo, Xi, ..., X5, we
find after some normalisations:

Qp = 2 py Xi Xj =
i,i-o
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.972 (.859*0 + .122*1 + .0175*2 + .00178*3 + .000369*4 + .0000983*5)*
+ .0237 (-793*1 + .127 *2 + .0545 *3 + .0194 *4 + .00652 * 5 ) 2

+ .OO4OI (-54° xi + .287 *3 + .125 *4 + .O488 * 6 ) 2

+ .OOO285 (.392 *3 + .373 Xi + .235 * 6 ) 2

+ .000025 (.32 *4 + .68 * B ) 2

+ .OOOOO32 ( *5)2

145

As explained in section 2, this decomposition defines a portfolio for which the
matrix is our adjusted [pi}].

This portfolio does not serve in the sequel, but we calculated it to make sure
that our adjusted [pi}] matrix is not a theorically impossible one.

4.4. The Optimal Premium and the Linear Premium

To make comparisons sensefull, these premiums are of course calculated both
for the adjusted [pi}] matrix.

4.4. l. The optimal premium

From (18), we obtain, in table 4, the values of the/? for the indicated values
of t+ 1.

TABLE 4 : COMPONENTS OF THE OPTIMAL PREMIUM
E*(Xt+l ! Xl, . . ., Xt) = /£, + /£, + . . . +/£,

t+l

2

3
4
5
6
7
8
9
10

20

30
50
99
100

ft
.163922
.070165
.041312
.027911
.020394
.015681
.012500
.010237
.008562
.002613
.001290
.000526
.000159
.000156

/*

.322485

.201312

•154117
.127399
.109677
.096841
.087009
.079179
.072763
.041181
.029042
.018364
.009688
.009596

ft
.566282

.385665
•301413
.249519

•213655
.187171
.166728

•150432
.137116
.073446
.050507
.031328
.016461
.016305

ft
1.285385

•938154
.748922
.624949
.536605
.470247
.418507
.377009

•342977
.179860
.121616
.073604
.037222
.036848

ft
1.712988

1-252583
.993612
.822816
.701129
•609979

•539185
.482654

•436504
.219454
.144603
.084674
.040897
.040458

ft
2.060772
1.495804
1.174104
.962363
.812356
.700767

•614733
•546539
•491274
• 238560

•155734
.091804
.046423

.045969

TABLE 5 : PROBABILITY pi OF I CLAIMS IN ONE YEAR

po

•834599

pi

.136944 .0222O8 .OO4283 .OOI434 .OOO532
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From this table it follows, for example, that the optimal semilinear forecast
of the number of claims in the 4th year, for a driver with 2, 2, 0 claims in the
preceding years is

E*(Xa\X1 = 2,X2 = 2, X3 = 0) = fl +fl +/o =
.301413+ .301413+ .041312 = .644138

To make a verification possible of relation (16) which amounts to

tE{fXi) =
or

t S pj\ = E(XJ

where
E(Xi) = .202607

we give, in table 5, the values of pi, the probability of i claims in one year,
with a precision greater than in Table 3.

4.4.2. The linear premium

The credibility factor Z in (21), given in (22), is expressed in Table 6 for
various values of t+ 1. Intermediate values computed from the not printed
15 digits precise [pij] matrix are also indicated.

TABLE 6: CREDIBILITY FACTOR Z

IN LINEAR FORECAST

E(Xt+1
(i—Z)E(Xi)

t+ l

2

3
4
5
6

7
8
9

1O

2 O

3 0

5o
99

1 0 0

E{X1)
E(X\)
77/ V" V

var(AY
cov(Xi

I V V \

1 Ai, . . ., Xt) =+ Z//(Xi+ . . . +Xt)

z

•231545
.376024
•474773
•546537
.601048
•643859
•678373
.706788
•73O59O
.851300
•897310
.936566
.967244
•967564
= .202607
= -300577

2) = .101142

) = -259527
, ^2) = .060092
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The linear forecast for the above considered driver is

E(X3\X1 = 2, Z 2 = 2 , Z 3 = o) = (i-Z)E(Xi) + Z ( 2 + 2 + o ) / 3 = 739445

4.4.3. The mean quadratic errors

Table 7 gives, for different values ol t + 1, the mean square error in the ap-
proximation of the risk premium m& by the optimal premium and the linear
premium. The formulae used are (7) and (23).

As expected, the optimal premium is always closer to m%, and thus
than the linear premium.

TABLE 7 : MEAN SQUARE ERROR FOR THE

OPTIMAL AND THE LINEAR PREMIUM

t+ 1

2

3
4
5
6

7
8

9
10

20

3°
5°
99

100

Optimal

.0438

•O347
.0288
.0247
.0217
.0193

•oi75
.0164
.0147
.00822
•00574
•00359
.00188
.00186

Linear

.0462

•O375
.0316
.0272
.0240
.0214
.0193
.0176
.0162
.00894
.00617
.00381
.00197
.00195

4.4.4. Comparative Tables

The values of the optimal premium and the linear one are given in Tables 8
and 9 for t + 1 = 2 and t + 1 = 3 respectively. As is seen, these values may differ
very much, even for relatively small values of Xi, X2. Consider, for example
the case Xi = o, X2 = 3 in Table 9.

TABLE 8 : OPTIMAL AND LINEAR FORECAST

FOR SECOND YEAR (t + 1 = 2 )

O

1

2

3
4
5

Optimal

.163922
•322485
.566282
1.285385
1.712988
2.060772

Linear

•155694

.387239

.618784

.850329
1.081873

1-313419
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TABLE 9: OPTIMAL AND LINEAR FORECAST FOR THE THIRD YEAR (t + 1 = 3) a

0

1

2

3

4

5

0

.140330

.126422

.271477

•314434

•455830
.502446

1.008319
.690458

1.322748
.878470

1.565969
1.066482

1

.271477

•314434

.402624

.502446

.586977

.690458

1.139466
.878470

1-453895
1.066482

1.697116

1.254494

2

•455830
.502446

.586977

.690458

•771330
.878470

1.323819
1.066482

1.638248

1.254494

1.881469
1.442506

3

1.008319
.690458

1.139466
.878470

1.323819
1.066482

1.876308

1.254494

2.190737
1.442506

2433958
1.630518

4

1.322748
.878470

1-453895
1.066482

1.638248
1.254494

2.190737
1.442506

2.505166
1.630518

2.748387
1.818530

5

1 565969
1.066482

1.697116

1 254494

1.881469
1.442506

2433958
1.630518

2.748387
1.818530

2.991608
2.006542

a The first number indicated is the optimal premium, the number beneath it, the
linear one.

In Table 9, the linear premium does of course not very on an ascending
diagonal. This is not the case for the optimal premium. For example, 3 and
0 claims respectively in the first and the second year is much worse than 2
and l claim.
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