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Resolutions of Associative and Lie Algebras

Ron Adin and David Blanc

Abstract. Certain canonical resolutions are described for free associative and free Lie algebras in the category
of non-associative algebras. These resolutions derive in both cases from geometric objects, which in turn
reflect the combinatorics of suitable collections of leaf-labeled trees.

1 Introduction

We describe here certain explicit canonical resolutions for free associative and free (graded)
Lie algebras, in the category of non-associative algebras. Both resolutions are based on the
combinatorics of suitable collections of leaf-labeled trees.

The Lie case was needed for the second author’s description of higher homotopy oper-
ations in rational homotopy theory, in [B2]: it turns out that in order to describe all such
higher operations, one must resolve the differential graded Lie algebra L∗ over Q (repre-
senting the rational homotopy type of a given space X) simplicially, by suitable free (differ-
ential) graded Lie algebras. The higher homotopy operations correspond to relations and
syzygies for these free graded Lie algebras, thought of as non-associative algebras over Q .
Since we must replace all the Lie algebras by the corresponding free differential algebras in a
functorial manner (to preserve the simplicial structure of the original resolution of L∗), we
need canonical resolutions of free Lie algebras in the category of non-associative algebras,
as described in this paper. The construction is closely related to “strongly homotopy Lie
algebras” (see Section 3.21 below).

Our main interest is indeed in the Lie case. The associative case, which is based on work
of Stasheff in [Sts], is included mainly as a preliminary illustration of the ideas involved,
and to fix notation.

As might be expected, the resolutions, being canonical, are far from minimal: this is re-
flected in the fact that the resolution for the free Lie algebra L = L〈x1, . . . , xg〉 has genera-
tors in all dimensions≤ g, while if L is considered as a non-associative (skew-commutative)
algebra, its homology vanishes above dimension 1, by Theorem 4.6 below (so that the gen-
erators for a minimal resolution are restricted to dimensions ≤ 1). Nevertheless, such
canonical resolutions are often needed for functorial constructions (as noted above), and
we hope the combinatorics involved may be of independent interest.
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4 Ron Adin and David Blanc

1.1 Notation and Conventions

A graded object over any category C is a sequence of objects X∗ = (X0,X1, . . . ) from C; we
write |x| = n if x ∈ Xn.

All vector spaces and algebras will be over a field k of characteristic 0 (though the appli-
cation we have in mind is to the case of k = Q , the rationals). The (graded) vector space
with the (graded) set X as its basis is denoted by V〈X〉, and the vector space dual of V is
V � := Homk(V, k).

We denote by Alg the category of not-necessarily-associative algebras over k, by Alga ⊂
Alg the full subcategory of associative algebras, and by Algc ⊂ Alg the full subcategory
of skew-commutative not-necessarily-associative algebras, satisfying xy = −yx for all x, y.
Lie denotes the category of Lie algebras.

Similarly, we denote by A the category of graded not-necessarily-associative algebras,
which we shall call GNAs. An object A∗ ∈ A is thus a graded vector space A∗ = ⊕∞n=0An,
equipped with a bilinear graded product · : Ap ⊗ Aq → Ap+q for each p, q ≥ 0.

We denote by Aa ⊂ A the full subcategory of graded associative algebras (GAAs), and
by Ac ⊂ A the full subcategory of graded-skew-commutative not-necessarily-associative
algebras, satisfying y · x = (−1)|x||y|+1x · y, which we call GCAs. L ⊂ Ac denotes the
subcategory of graded Lie algebras (GLAs); the product [ , ] : Lp ⊗ Lq → Lp+q in a GLA L∗
satisfies the (graded) Jacobi identity

(−1)|x||z|
[
[x, y], z

]
+ (−1)|y||x|

[
[y, z], x

]
+ (−1)|z||y|

[
[z, x], y

]
= 0.(1.2)

Note that we can embed Alg in A by thinking of A ∈ Alg as a graded algebra A∗ with
A0 = A and Ai = {0} for i ≥ 1; similarly for Alga ⊂ Aa, and so on. Thus results stated for
graded algebras of various sorts include the ungraded versions as a special case.

There are also differential versions of all the above categories of graded algebras. In par-
ticular, a differential graded (not-necessarily-associative) skew-commutative algebra, called
a DGCA, is a GCA (A∗, ·) ∈ Ac, equipped with a differential (i.e., a map ∂ = ∂A

n : An →
An−1 for each n > 0 such that ∂2 = 0) which is a graded derivation in the sense that if
x ∈ Ap, y ∈ Aq then ∂(x · y) = ∂(x) · y + (−1)px ·∂(y). The category of DGCAs is denoted
by dAc. Similarly for differential graded not-necessarily-associative algebras, or DGNAs.

Notation 1.3 For any GNA (A∗, ·) ∈ A, let [x, y] denote 1
2

(
x · y + (−1)|x||y|+1 y · x

)
. We

then have [y, x] = (−1)|x||y|+1[x, y], so (A∗, [ , ]) is now a (non-associative) graded algebra
with a graded-skew-commutative multiplication.

Definition 1.4 A differential bigraded (not-necessarily-associative) skew-commutative al-
gebra, or DBGCA, is a bigraded vector space A∗,∗ = ⊕∞p=0 ⊕

∞
s=0 Ap,s, equipped with a

bilinear graded product · : Ap,s ⊗ Aq,t → Ap+q,s+t for each p, q, s, t ≥ 0 and a differ-
ential ∂ = ∂A

p,s : Ap,s → Ap−1,s satisfying x · y = (−1)(p+s)(q+t)+1 y · x and ∂(x · y) =
∂(x) · y + (−1)p+sx · ∂( y) for x ∈ Ap,s and y ∈ Aq,t . The category of such DBGCAs will be
denoted by dbAc.

Each DBGCA (A∗,∗, ∂A) has an associated DGCA (A∗, ∂A), defined An =
⊕

p+q=n Ap,q

(same ∂A); some authors re-index A∗,∗ so that Âp,s = Ap,p+s, and then A∗ is obtained from
Â∗,∗ by ignoring the first (homological) grading. n = p + s is called the total degree in A∗,∗.
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Resolutions of Associative and Lie Algebras 5

1.5 Organization

In Section 2 we describe the simpler case of resolutions of free associative algebras, and in
Section 3 we describe resolutions of free Lie algebras. In Section 4 we explain the connec-
tion to the homology of non-associative algebras.

1.6 Acknowledgements

We would like to thank Jean-Louis Loday for pointing out Theorem 4.6 to us, Alan Robin-
son for providing us with a preprint of [RW], and Steve Shnider and Richard Stanley for
several useful conversations. We would also like to thank the referee for his comments.

2 Associative Algebras

We begin with a description of our canonical resolution for a free associative algebra by
free non-associative algebras. We do so mainly because the underlying combinatorics, as
well as the corresponding geometric objects, are more transparent in this case than for Lie
algebras. For simplicity we deal here only with the non-graded case. First, some definitions.
Fix once and for all a finite set X = {x1, . . . , xg} (which we think of as a set of generators
for a free algebra).

2.1 Trees

Recall that a rooted plane tree T (see [Stn]) consists of a (non-empty) finite set of nodes,
with one designated node called the root r(T); each node v has a linearly-ordered set of kv

other nodes, called its children; v is called their parent. If kv = 0, then v is called a leaf;
otherwise it is called an internal node of T, and the set of all internal nodes is denoted by
int(T). The set of all leaves of T has the obvious natural linear order “from left to right”.
In this paper we require that kv �= 1 for all nodes v, i.e., all internal nodes have at least two
children.

Note that the smallest rooted plane tree has a single node which is both the root and a
leaf; in all other trees the root is an internal node.

Definition 2.2 Let In = {1, 2, . . . , g}n. For I = (i1, . . . , in) ∈ In, let T[I] denote the
collection of all rooted plane trees with n leaves labeled xi1 , xi2 , . . . , xin , in that order. Write
Tn for

⋃
I∈In

T[I], and T :=
⋃∞

n=1 Tn.
Defining the excess of an internal node v of T to be e(v) := kv − 2, the total excess of

each tree determines a lower grading on T by

T ∈ Tn
k ⇔ k =

∑
v∈int(T)

e(v).(2.3)

Thus Tn
0 consists precisely of the binary trees, for which every internal node has exactly

two children; such trees correspond to complete parenthesizations on (the labels of) the

leaves, e.g.:
(

x1

(
(x3x2)x1

))
. More generally, trees in Tn

k (0 ≤ k ≤ n − 2) correspond to

partial parenthesizations with n − k − 1 pairs of parentheses (including an external pair,
when n ≥ 2)—e.g.,

(
x1(x3x2)x1

)
∈ T4

1 .
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2.4 Associahedra

Consider the (n−2)-dimensional associahedron Kn−2 of [Sts, Sections 2, 6], whose vertices
are indexed by the possible “associations” (i.e., full parenthesizations) on n letters: it has a
realization as a convex polytope in Rn−2, and its boundary ∂Kn−2 is thus homeomorphic to
the (n−3)-sphere Sn−3 (cf. [Z, p. 18]). The dual polytope is simplicial, so that its boundary
complex Pn is an (n − 3)-dimensional simplicial complex, in which the top-dimensional
faces correspond to the vertices of Kn−2, i.e., to binary trees. In general, the k-simplices of
Pn are in one-to-one correspondence with the trees in Tn

n−3−k. Note that the indexing is the
reverse of the one we described above: the binary trees now appear in the top dimension.

By choosing various sequences of labels I ∈ In = Xn
∗ to serve as the “letters”, we obtain

isomorphic copies of Pn, which we denote by Pn[I], with the corresponding rational sim-
plicial chain complexes being C[I]∗ := C∗(Pn[I]; k); similarly C[I]∗ := Homk(C[I]∗; k)
are the simplicial cochain complexes.

Definition 2.5 We denote by Alg〈X〉 the free non-associative algebra generated by the set
X. This is just the non-associative tensor algebra on the vector space V〈X〉, so we may write
Alg〈X〉 =

⊕∞
i=0 An(X), where An(X) = V〈Tn

0〉 (cf. Section 1.1). The multiplication in
Alg〈X〉 is defined by concatenation: if T ∈ T

p
0 and T ′ ∈ T

q
0, then T · T ′ ∈ T

p+q
0 is obtained

by adjoining a root r(T ·T ′) as the common parent of r(T) and r(T ′), in that order. The free
associative algebra on X, denoted by Alga〈X〉, and the free graded non-associative algebra
on a graded set X∗, denoted by Alg〈X∗〉, are defined similarly.

Definition 2.6 Given an associative algebra B ∈ Alga, we may think of it as an object in
Alg. As such, it cannot be free (even if B = Alga〈X〉, say), so we can try to resolve it: that is,
construct a DGNA (E∗, ∂E) ∈ dA which is free as a GNA, together with an augmentation
ε : E0 → B such that the augmented chain complex E∗ → B—called a (dA-)resolution – is
acyclic. Of course, the same can be done for any GNA B (e.g., if B is a Lie algebra).

A bigraded dbA-resolution F∗,∗ of a graded algebra A∗ ∈ Aa is defined analogously.

2.7 Constructing the Resolution

Since ∂Kn−2 � Sn−3, we have H̃iC[I]∗ = k for i = n− 3 and H̃iC[I]∗ = 0 for i �= n − 3.
Let us re-index each C∗ = C[I]∗ by setting Ĉi = Cn−4−i for −1 ≤ i ≤ n − 4, and
Ĉn−3 = k, so Ĉ∗ = Ĉ[I]∗ is an acyclic augmented chain complex. Note that Ĉ−1 is the free
vector space on all full parenthesizations of i1, . . . , in. Thus if we set

E∗ =
∞⊕

n=1

⊕
I∈In

Ĉ[I]∗,

we have a dA-resolution of E−1
∼= B = Alga〈X〉. Moreover, E∗ has the structure of a

DGNA, with the product extended bilinearly from the concatenation of trees defined in
Section 2.5.
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3 Lie Algebras

We can now deal with the analogous resolution of a free graded Lie algebra, thought of as
an object in Ac. Let L〈X∗〉 ∈ L denote the free graded Lie algebra generated by the graded
set X∗ = {x1, . . . , xg}. Ideally, we would like a Lie analogue of the associahedron Kn−2

(cf. Section 2.4): i.e., a (combinatorial) topological space which encodes the combinatorics
of the resolution of L〈X∗〉. Apparently this does not exist, in general; however, there is
a version of the dual simplicial complex Pn—namely, Boardman’s “space of fully-grown
trees” (see [Bo, Section 6]). This can be thought of as an n-dimensional generalization of
the “Lie-hedron” of [MS]—but only for Lie expressions without repetitions (see Section 3.6
below).

In this section we again use the notation of Section 2.2, but now we must pay greater
attention to the grading on X∗, as well as to the resulting signs. This is because in the
case of Lie algebras we must deal separately with expressions in which the same generator
appears more than once.

Definition 3.1 Let I = (i1, . . . , in) be an n-tuple of distinct indices of elements in X∗,
and T ∈ T[I] a rooted plane tree with leaves labeled xi1 , . . . , xin , in that order. For each
node v ∈ int(T) the symmetric group Σkv permutes the kv children of v, changing T into
a combinatorially isomorphic tree T ′ ∈ T[I ′] (where I ′ is the permutation of I), and
the actions of the symmetric groups at different nodes commute; so we define the branch
automorphism group of T to be B-Aut(T) :=

∏
v∈int(T) Σkv . (The elements ϕ ∈ B-Aut(T)

are, strictly speaking, not automorphisms of T, but only of the collection 〈T〉 of all rooted
plane trees combinatorially isomorphic to T.)

Equivalently, we may think of B-Aut(T) as the subgroup of the symmetric group Σn

consisting of all linear orderings of the leaf labels xi1 , . . . , xin of T which are compatible
with the tree structure of T.

If we identify a tree T with the corresponding partially parenthesized expression α in
the letters xi1 , . . . , xin , then we may write B-Aut(α) for B-Aut(T), and think of the group
as permuting letters or parenthesized sub-blocks of α.

Definition 3.2 For T as above, define the degree |v| of any node v of T inductively by
setting the degree of a leaf labeled by x ∈ X∗ to be |x| (as in Section 1.1), and if v ∈ int(T)
has children u1, . . . , uk, let |v| := |u1| + · · · + |uk| + k − 2. In particular, the total degree
of T, denoted by |T|, is defined to be the degree of its root r(T). Thus T[I] is bigraded
(with the homological degree defined by (2.3)) and we write T ∈ T[I]k,s if |T| = k and T is
in homological degree s. If all the generators in X∗ have degree 0, the two degrees are the
same.

Note that the action of B-Aut(T) respects the degrees of the nodes, so we may define
the Koszul sign ε(ϕ) of a branch automorphismϕ ∈ B-Aut(T) to be the product of Koszul
signs signX∗

(σ), taken over all the constituent permutations σ ∈ Σkv . (The Koszul sign of a

permutation acting on a graded set X∗ is defined by letting signX∗

(
(k, k + 1)

)
= (−1)pq+1,

for an adjacent transposition (k, k + 1) which switches two elements (in our case: nodes) of
degrees p, q respectively.)
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Remark 3.3 The Koszul sign we use actually differs by −1 from that usually used by
algebraists, so as to conform to the topological usage needed for our application in [B2].

Definition 3.4 For T as above, we define the complexity cx(v) of any node v inductively
by setting cx

(
r(T)
)
= 0, where r(T) is the root of T, and if v ∈ int(T) has k children, then

cx(u) = cx(v) + k for each child u of v.

Definition 3.5 For each T ∈ T[I] ⊂ Tn
k as above, let +〈T〉 ⊂ Tn

k denote the collection of
all trees T ′ obtainable from T under some ϕ ∈ B-Aut(T) with ε(ϕ) = +1, and similarly
define −〈T〉 (with ε(ϕ) = −1). We think of ±〈T〉 as the equivalence class of the tree T,
with respect to the relation of abstract combinatorial isomorphism, partitioned by sign into
two subclasses.

Write În for the collection of (unordered) n-multisets of elements of X∗, and set T̂[Î] :=⋃
I∈Î

⋃
T∈T[I]±〈T〉. We may think of T̂[Î] as the collection of all rooted trees T̂ with n

leaves labeled xi1 , xi2 , . . . , xin , without a specified planar embedding, but with a sign de-
termining which of the two classes of possible embeddings we have chosen. Set T̂n :=⋃

Î∈În
T̂[Î].

Definition 3.6 The space of trees is the n-dimensional simplicial complex whose k-
simplices consist, in our notation, of the unsigned equivalence classes 〈T〉 = +〈T〉 ∪ −〈T〉
of rooted trees T ∈ Tn+3

n−k[Î], for some fixed set Î ∈ În+3 of n + 3 distinct labels. It is denoted
by Tn in [RW, Section 1], but to avoid over-use of the letter T we shall denote it here by
Mn. See also [HW].

Thus, the k-simplices Mn
k are in one-to-one correspondence with the isomorphism

classes of leaf-labeled trees—without a specified planar embedding—having exactly k + 2
internal vertices, and with leaves labeled xi1 , . . . , xin+3 , say, not necessarily in that order.
As Robinson and Whitehouse show, Mn is homotopy equivalent to a wedge of (n + 2)! n-
spheres (cf. [RW, Thm. 1.5]). However, we cannot use their results as they stand, since we
need to be careful with signs. So we make the following definitions:

Definition 3.7 For I = (i1, . . . , in) as above, let J∗ = J[I]∗ denote the (bi)graded vector
space with J[I]k spanned by T̂[I]∗,n−3−k for −1 ≤ k ≤ n− 2. (For simplicity we suppress
the “topological” grading due to the grading of X∗, since it is not relevant at this stage.) We
define a differential ∂ = ∂ J

k : Jk → Jk−1 as follows:

Represent any 〈T〉 ∈ T̂[I]∗,n−3−k by a partially parenthesized expression α in the letters
xi1 , . . . , xin ; then ∂[T̂] will be represented by the sum of all expressions obtained from α by
omitting a pair of parentheses (equivalently: by contracting one internal edge of T, i.e., an
edge connecting two internal vertices)—with appropriate signs. These signs are determined
recursively by the following three rules:

(1) If α =
(

(a1a2 · · · ak)b1 · · · bm

)
, where each ai or b j is a partially parenthesized ex-

pression (possibly just a generator x ∈ X∗), then the summand (a1a2 · · · akb1 · · · bm)
appears in the expansion of ∂[α] with the sign (−1)m+1.

(2) If α = (ab1 · · · bm), where a (and each b j) is a partially parenthesized expression, then
the sum comprising (∂[a]b1 · · · bm) appears in the expansion of ∂[α] with the sign
(−1)m+1.
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(3) If α = (a1 · · · akbc1 · · · cm), where each of ai , b and c j is a partially parenthesized ex-
pression, then

∂[α] = (−1)(
∑k

i=1|ai |)|b|+k∂
[
(ba1 · · · akc1 · · · cm)

]
.

We set ∂[x] := 0 for any generator x ∈ X∗.

Example 3.8 For any partially parenthesized expressions a, b, c, d we have

∂
[(

(ab)c
)]
= (abc) +

(
(∂[a]b)c

)
+ (−1)|a|

(
(a∂[b])c

)
+ (−1)|a|+|b|

(
(ab)∂[c]

)
and

∂
[((

(ab)c
)
d
)]
=
(

(ab)cd
)

+
(
(abc)d

)
+
((

(∂[a]b)c
)

d
)

+ (−1)|a|
((

(a∂[b])c
)

d
)

+ (−1)|a|+|b|
((

(ab)∂[c]
)

d
)

+ (−1)|a|+|b|+|c|
((

(ab)c
)
∂[d]
)
.

Note 3.9 Rules (1) and (2) say that if α =

((
· · ·
(
(ā)b1

1 · · · b
1
m1

)
· · ·
)

bt
1 · · · b

t
mt

)
, where

the expression ā := a1a2 · · · ak is initial in α (with only left parentheses preceding it),

then the sequence αā =
((
· · · (a1a2 · · · akb1

1 · · · b
1
m1

) · · ·
)
bt

1 · · · b
t
mt

)
, obtained from α by

omitting the outer parentheses around ā, appears in the expansion of ∂[α] with the sign
(−1)cx(ā) (Def. 3.4).

Rule (3) says that if one wishes to omit the outer parentheses around ā when it is not
initial in α, and T is the rooted plane tree corresponding to α, then one must move ā to the
left of all its siblings, and similarly for all its ancestors, by a suitable branch automorphism
ϕ ∈ B-Aut(T)—which introduces the sign ε(ϕ)—and then apply the previous rule. Note
that this ϕ is not unique (unless we specify a preferred choice for the automorphism); but
it is not hard to see that the various choices of ϕ differ by elements of the isotropy subgroup
of B-Aut(T) which leaves the node corresponding to ā fixed, and that the correspondence
α �→ αā commutes with the action of this subgroup. So the sign of the resulting class±〈αā〉
in the expansion of ∂ J[α]—and thus ∂ J itself—is well defined.

Lemma 3.10 ∂ J is a differential on J∗.

Proof Given a partially parenthesized expressionα =
((
· · · (ā1)ā2

)
· · · āt

)
, with each āi =

ai
1ai

2 · · · a
i
ki

, we must verify that, for any two pairs of parentheses in α, omitting them in the

two possible orders yields opposite signs in the expansion of ∂
[
∂[α]
]
. Using the recursive

rules of Section 3.7, one must check the following cases:

(i) α =
(
(ā)(b̄)c̄

)
, where ā := a1 · · · ak, b̄ := b1 · · · b� and c̄ := c1 · · · cm. We see that if

|ā| := |a1| + · · · + |ak| and so on, then the two orders of omitting parentheses yield

(
(ā)(b̄)c̄

)
�→ (−1)2+m

(
ā(b̄)c̄

)
= (−1)(2+m)+|ā|(|b̄|+�−2)+k

(
(b̄)āc̄

)
�→

(−1)(m+|ā|(|b̄|+�)+k)+k+m+1(b̄āc̄) = (−1)(|ā|(|b̄|+�)+1)+|ā| |b̄|+k�(āb̄c̄) =

(−1)(|ā|+k)�+1(āb̄c̄)
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and

(
(ā)(b̄)c̄

)
= (−1)(|ā|+k)(|b̄|+�)+1

(
(b̄)(ā)c̄

)
�→ (−1)((|ā|+k)(|b̄|+�)+1)+2+m

(
b̄(ā)c̄

)
= (−1)(|ā|+k)�+�+1+m

(
(ā)b̄c̄

)
�→ (−1)(|ā|+k)�(āb̄c̄)

respectively, which indeed differ in sign.
The remaining cases, namely:

(ii)
((

(ā)b̄
)

c̄
)
�→ ±(āb̄c̄),

(iii)
(
a(b̄)c̄

)
�→ ±(∂[a]b̄c̄),

(iv)
(
(ab̄)c̄

)
�→ ±(∂[a]b̄c̄),

(v) (abc̄) �→ ±(∂[a]∂[b]c̄),

are dealt with in a similar fashion.

To show that J[I]∗ is acyclic except in the top dimension for each I, we mimic the geo-
metric proof of Robinson and Whitehouse. This requires another

Definition 3.11 Given any subset A = {i1, . . . , ik} of I with k ≥ 2, let J̃[A]∗ denote the
subcomplex of J[I]∗ spanned by all trees T in which xi1 , . . . , xik all have the same parent
node (i.e., in the corresponding expression α, the letters xi j are not separated by unbal-
anced pairs of parentheses). Since ∂ J is defined by omitting parentheses, this is clearly a
subcomplex. Compare [RW, Def. 1.3], and [RW, Lemma 1.4] for the following

Lemma 3.12 For any A ⊆ I with |A| ≥ 2, the complex J̃[A]∗ is acyclic.

Proof Write x̄ := xi1 · · · xik . We define a contracting homotopy δ = δA
m : J̃[A]m → J̃[A]m+1

on basis elements T ∈ T̂[I]∗,n−3−m (or equivalently, on the corresponding partially paren-
thesized expression α), and extend linearly:

If T has a node whose leaves are precisely xi1 , . . . , xik (i.e., if α has (x̄) as a sub-

expression), then δ(α) := 0; while if α =
((
· · · (x̄ā1) · · ·

)
āt
)

(where each āi =

ai
1ai

2 · · · a
i
ki

), we set δ(α) := (−1)cx(x̄)

((
· · ·
(
(x̄)ā1

)
· · ·
)

āt

)
. By requiring that δ

(
ϕ(α)

)
=

(−1)ε(ϕ)ϕ
(
δ(α)
)

for any ϕ ∈ B-Aut(α) (as long as both sides of the equation make sense),
we have defined δ on all of J̃[A]∗.

Using the rules of Section 3.7 above, one may verify that δ is indeed a contracting ho-
motopy for J̃[A]∗ (i.e., ∂ ◦ δ + δ ◦ ∂ = id).

This implies the following variant of [RW, Thm. 1.5]:

Proposition 3.13 For any n distinct indices I = (i1, . . . , in) we have Hi( J[I]∗) = 0 for
−1 ≤ i < n− 3, and Hn−3( J[I]∗) ∼= k(n−1)!.

Proof Let C∗ :=
⋃

1≤k<�<n J̃[(ik, i�)]∗. (This is a subcomplex of J[I]∗.) The intersection⋂r
t=1 J̃[(ikt , i�t )]∗ is acyclic (and nonempty) for any subcollection (kt , �t )r

t=1 of pairs, as can

https://doi.org/10.4153/CMB-2000-001-6 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2000-001-6


Resolutions of Associative and Lie Algebras 11

be seen by using the contracting homotopy δA of Lemma 3.12, where the subset A = Ar

of {k1, �1, . . . , kr, �r} is defined by induction on 1 ≤ s ≤ r by letting A1 := {k1, �1},
As+1 = As if As ∩{ks+1, �s+1} = ∅, and As+1 = As ∪{ks+1, �s+1} otherwise. Lemma 3.12 and
the Mayer-Vietoris sequence imply that C∗ itself is acyclic, and (n− 3)-dimensional.

Now any partially parenthesized expression α ∈ J[I]∗ is actually in C∗, unless it is in
fact fully parenthesized (corresponding to a binary tree, so in dimension n− 3), and of the

form α =

((
· · ·
(

(xnxσ(1))xσ(2)

)
· · ·
)

xσ(n−1)

)
for some σ ∈ Σn−1. Since ∂[α] is a cycle in

Cn−4, there is some β ∈ Cn−3 (unique, for dimensional reasons) such that α− β is a cycle
in J[I]∗. Thus Hn−3( J[I]∗) ∼= k(n−1)!.

3.14 The Leaf Action

Note that a multiset Î = {i1, . . . , in} ∈ În (Section 3.5) may be thought of as the collection
of orbits of ordered n-tuples I ∈ In under the action of the symmetric group Σn. For
simplicity we may take our set of labels to be simply I = n := (1, . . . , n), and think of Σn

as acting on the leaves (i.e., on the labels) of any T ∈ T[n]k. This action, extended linearly
to J[n]∗, commutes with the differential and with the action of the branch automorphism
groups, which therefore makes sense of the following

Definition 3.15 Any multiset Î = (i1 = · · · = i1; i2 = · · · = i2; · · · ; ik = · · · = ik), with
a total of n = n1 + n2 + · · · + nk entries counted with repetitions, may be thought of as the
orbit set of n under the action a leaf automorphism group L-Aut(Î) = Σn1 × · · ·Σnk ⊆ Σn.
We define the corresponding chain complex J[Î]∗ to be the quotient of J[n]∗ under the
action of L-Aut(Î)—though this is no longer associated to a geometric object in the way
that J[n]∗ was associated (up to signs) to Mn.

3.16 The Resolution F∗,∗

To produce our candidate for the dbAc-resolution of L = L〈X∗〉, we must again re-index,
as in Section 2.7, by setting G[Î]i := ( J[Î]n−3−i)� (vector space dual) for 0 ≤ i ≤ n− 3, so
that 〈G[n]∗, ∂�〉 is (up to sign) the re-indexed cochain complex for Mn. We then define

F∗,∗ :=
∞⊕

n=0

⊕
Î∈În+3

G[Î]∗.(3.17)

(We have re-inserted the “topological” grading into our notation at this stage, to call atten-
tion to the fact that we have constructed a bigraded resolution.)

Remark 3.18 Note that G[Î]∗ once more reverses the indexing, so that for I consisting of
distinct indices, at least, G[Î]k is spanned by all trees of lower (homological) degree k, as
defined in (2.3). Similarly, ∂�(T), which we defined by the vector space dual of ∂ J , could be
described directly as the signed sum of all trees obtained from T by adding internal edges—
or equivalently, adding parentheses to the corresponding partially parenthesized expression
α, with the signs again given by Section 3.7. This is in fact more natural algebraically, as the
following examples show:
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Example 3.19 For any partially parenthesized expressions a, b, and c in F∗,∗, one has

∂�
[
(abc)

]
=
(
(ab)c

)
+ (−1)|a||b|+|a||c|

(
(bc)a

)
+ (−1)|a||c|+|b||c|

(
(ca)b

)
+
(
(∂�[a]b)c

)
+ (−1)|a|

(
(a∂�[b])c

)
+ (−1)|a|+|b|

(
(ab)∂�[c]

)

(compare Example 3.8). In particular, for any three generators x, y, z ∈ X∗ one has

∂�
[
(xyz)

]
=
(
(xy)z

)
+ (−1)|x| |y|+|x| |z|

(
(yz)x

)
+ (−1)|x| |z|+|y| |z|

(
(zx)y

)
,

which up to the action of B-Aut(T) is the usual graded Jacobi identity of (1.2).
Similarly, for x, y, z,w ∈ X∗

∂F
[
(xyzw)

]
= −
(

(xy)zw
)

+ (−1)|y||z|((xz)yw) + (−1)|y||w|+|z||w|+1
(
(xw)yz

)
+ (−1)|x||y|+|x||z|+1

(
(yz)xw

)
+ (−1)|x||y|+|x||w|+|z||w|+1

(
(yw)xz

)
+ (−1)(|x|+|y|)(|z|+|w|)

(
(zw)xy

)
+
(
(xyz)w

)
+ (−1)|z||w|+1

(
(xyw)z

)
+ (−1)|y|(|z|+|w|)

(
(xzw)y

)
(−1)|x|(|y|+|z|+|w|+1)

(
(yzw)x

)
,

(3.20)

which can be thought of as a “second order Jacobi identity”.

F∗,∗ has an augmentation ε : F∗,0 → L〈X∗〉, which takes any fully parenthesized ex-
pression in the elements xi to the corresponding iterated Lie bracket. In fact, with the
product structure extended linearly from concatentation of trees, as in Section 2.5, F∗,∗ is a
DBGCA (see Section 1.4; or a DGCA, when X∗ is ungraded). The product is graded-skew-
commutative, and Rule (2) of Section 3.7 implies that ∂�[a ·b] = ∂�[a] ·b + (−1)|a|a ·∂�[b]
for any a, b ∈ F∗,∗.

Remark 3.21 In fact, F∗,∗ is not merely a free bigraded skew-commutative not necessarily
associative algebra, but also is the free strongly homotopy Lie algebra on the graded set X∗.
The analogous singly-graded objects, first introduced by Stasheff and Schlessinger in [SS2]
(see also [SS2]) play a role in deformation theory, in rational homotopy theory, and in
mathematical physics. See also [GK, Section 1.3.9], and [LM, 2.1], where these are called
L(∞)-structures. Martin Markl has pointed out to us that the resolution for free Lie algebras
we define can also be obtained by the methods of [GK] and [M].

Theorem 3.22 F∗,∗ is a resolution of L = L〈X∗〉.

Proof It is clear from the construction that H0(F∗,∗) ∼= L, and that F∗,∗ is free as a DBGCA,
so it suffices to show that F∗,∗ is acyclic in positive degrees. Since F∗,∗ is defined as a direct
sum of chain complexes (3.17), it is enough to consider each summand separately. Thus,
for each Î ∈ În+3 (fixed for the remainder of the proof), it suffices to show that J[Î]∗ is
acyclic in degrees< n.

To do so, first consider the corresponding multiset I ′ without repetitions. Because J[I ′]∗
is acyclic by Proposition 3.13 above, it has (many possible) contracting chain homotopies.
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We now proceed to make a specific choice of such a homotopy (dependent on the origi-
nal I):

Assume that I = I ′/L-Aut(Î) for G = L-Aut(Î) ⊆ Σn as above. Since ∂k+1 commutes
with the action of G, the summand �(∂k+1) of J[I ′]k is invariant under this action. Thus,
by Maschke’s Theorem (see [CR, 10.8]), for each 0 < k ≤ n− 3 we may choose a splitting

J[I ′]k = �(∂k+1)⊕ Sk,

where Sk is also invariant under the action of G, and of course ∂k|Sk is an isomorphism onto
�(∂k) ⊆ J[I ′]k−1 (because �(∂k+1) = Ker(∂k)).

We may thus define a linear map δ ′k : J[I ′]k → J[I ′]k+1 by δ ′k(∂k+1Ti) = Ti , and δ ′k|Sk ≡
0; this is a contracting homotopy for J[I ′]∗. Moreover, it commutes with the action of G,
so it induces a contracting homotopy δ on J[Î]∗, which is thus acyclic.

4 Homology of DGLs

We may use the resolutions constructed above to calculate the homology of a free Lie or as-
sociative algebra, considered as a non-associative algebra. We first recall Quillen’s definition
of homology in model categories:

Definition 4.1 An object X in a category C is said to be abelian if it is an abelian group
object—that is, if HomC(Y,X) has a natural abelian group structure for any Y ∈ C. When
C is Lie, Alg, Alga, L, or A, for example, this is equivalent to requiring that all products
vanish in X.

The full subcategory of abelian objects in C is denoted by Cab ⊂ C. It is equivalent to
the category Vect of vector spaces if C = Lie, Alg, Alga, and so on, and to the category V

of graded vactor spaces if C = L or A; so we see that Cab is an abelian category, in the cases
of interest to us. We then have an abelianization functor Ab : C→ Cab, along with a natural
transformation θ : Id → Ab having the appropriate universal property. In all the examples
above, Ab(X) = X/I(X), where I(X) is the ideal in X ∈ C generated by all non-trivial
products.

4.2 Homology of Algebras

Let C be a category as above, which also has a model category structure (see [Q2, II, Sec-
tion 1]). In [Q1, II, Section 5] (or [Q3, Section 2]), Quillen defines the homology of an
object X ∈ C to be the total left derived functor L(Ab) of Ab, applied to X (cf. [Q1, I,
Section 4]).

In more familiar terms, this means that we construct a resolution A→ X (i.e., replace X
by a weakly equivalent cofibrant object A ∈ C), and then define the i-th homology group
of X by HiX := Hi

(
Ab(A)

)
, where Ab(A) is (equivalent to) a chain complex in an abelian

category, so its homology is defined as usual. One must verify, of course, that this definition
is independent of the choice of the resolution A→ X.

If C itself does not have a closed model category structure, one often defines the homol-
ogy of X ∈ C by embedding C in some category which does have such a structure, which
in most cases may be taken to be sC, the category of simplicial objects over C (see [Q1, II,
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Section 4]). Thus, if ι : C ↪→ sC is the embedding of categories defined by taking ι(C) to be
the constant simplicial object equal to C in all dimensions, then Hi(C) := πi

(
L(Ab ◦ ι)C

)
.

This is the approach usually taken for C = Lie, Alg, A, and so on: to define the
homology of a graded Lie algebra L∗ ∈ L, say, one chooses a free simplicial resolution
A•,∗ → L∗ and then calculates the homotopy groups of the simplicial graded vector space
Ab(A•,∗) ∈ sV.

As for graded Lie algebras and skew-commutative algebras, one can define closed model
category structures on sAc and dbAc (see [BS, Section 2], and [B1, Section 4]), and because
we are working over a field of characteristic 0, we have the following analogue of [Q2,
Props. 2.3 and 4.6, Thm. 4.4]

Proposition 4.3 There are adjoint functors sA
N�

N∗
dbA, which induce equivalences of the

corresponding homotopy categories ho(sA) ≈ ho(dbAc). N∗ takes free DBGCAs to free sim-
plicial GCAs.

Proof See [B2, Props. 2.9, 7.2, 7.3].

Thus we may use DGCAs (resp. DBGCAs) instead of simplicial commutative algebras
(resp. simplicial GCAs) as our free resolutions—as in Section 2.6—and replace the homo-
topy groups by the homology groups of the corresponding (bigraded) chain complex.

Remark 4.4 We gave the definition of homology in its simplicial version, which applies
to more general types of universal algebras, in order to emphasize that our methods do not
apply to associative or Lie algebras over an arbitrary (commutative) ground ring k, because
in that case one cannot resort to differential graded algebras as resolutions. (The case of
k = Z would have been of special interest.)

4.5 Calculating the Homology

In particular, we may use the resolutions E∗ → Alga〈X〉 and F∗,∗ → L〈X∗〉 defined above to
calculate the homology of a free associative or (graded) Lie algebra, considered as an object
in Alg or A. Explicitly, if E• is the simplicial algebra corresponding to the DGNA E∗,
then Hn(Alga〈X〉) is defined to be the n-th homotopy group of the simplicial vector space
Ab(E•), where the abelianization functor is applied in each simplicial dimension separately;
and similarly for H∗(L〈X∗〉).

However, the definition of the correspondence between E∗ and E• (cf. [B2, Proof of
Prop. 2.9]) implies that the indecomposables in the two cases are in bijective correspon-
dence, so that in fact we may calculate Hn(Alga〈X〉) as the n-th homology group of the
differential vector space (i.e., chain complex) Ab(E∗) := E∗/I(E∗). This simply means that
we must replace by 0 all trees in E∗ whose roots have only two children, and compute the
homology of the resulting chain complex. Similarly for F∗,∗.
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Theorem 4.6 Hi(L〈X∗〉) = 0 for i ≥ 2.

Proof As before, let I = (i1, . . . , in) be some n-tuple of distinct indices of elements in
the graded set X∗, and let N∗ = N[I]∗ denote the subcomplex of J∗ = J[I]∗ spanned
by all trees T with kr(T) ≥ 3. We will say that a subcomplex C∗ ⊂ J∗ is �-coconnected if
Hi(C∗) = 0 for i ≤ n− 3− �.

(I) Given any subset A = {i1, . . . , ik} of I, let Ñ [A]∗ denote the subcomplex of N[I]∗
spanned by all trees T in which xi1 , . . . , xik all have the same parent node (compare Sec-
tion 3.11 above). We claim that Ñ [A]∗ is k-coconnected, for any A with k ≥ 2.

This is shown essentially as in the proof of Lemma 3.12. We define a (partial) contracting
homotopy δ : Ñ[A]i → Ñ[A]i+1 for i < n− 3− k as follows:

Write x̄ := xi1 , . . . , xik . If α has (x̄) as a sub-expression, then δ[α] = 0; if α =((
· · · (x̄ā1) · · ·

)
āt
)

, we set δ[α] = (−1)cx(x̄)

((
· · ·
(
(x̄)ā1

)
· · ·
)

āt

)
(and require that

δ[ϕ(α)] = (−1)ε(ϕ)ϕ(δ[α]) for any ϕ ∈ B-Aut(α)). Any other basis element of Ñ [A]∗
is in the subcomplex x̄ J[I \ A]∗—i.e., of the form α = (x̄ā) for some ā = a1 · · · at for
some t ≥ 1, where (ā) ∈ J[I \ A]∗ (again, up to the B-Aut(α)-action). But x̄ J[I \ A]∗
is isomorphic to the complex J[I \ A]∗ shifted up by k, and this has a contracting homo-
topy δ ′ in degrees < n − k − 3 by Proposition 3.13; set δ[(x̄ā)] := δ ′[(ā)] if t = 1, and
δ[(x̄ā)] := δ ′[(ā)] +

(
(x̄)ā
)

if t ≥ 2.
(II) We now show that N∗ = N[I]∗ is 2-coconnected. If we denote the sequence of

chain complexes

(
Ñ [(i1, i2)]∗ , Ñ [(i1, i3)]∗ , . . . , Ñ [(i1, in−1)]∗ , Ñ [(i2, i3)]∗ , . . . , Ñ [(in−2, in−1)]∗

)

by (Dt
∗)

m
t=1, and set Ct

∗ =
⋃t

i=1 Di
∗ for 1 ≤ t ≤ m, then the chain complex Cm

∗ =⋃
1≤k<�<n Ñ [(ik, i�)]∗ is in fact all of N∗, since any α ∈ J[I]∗ not in Cm

∗ is of the form

α =

((
· · ·
(
(xnxσ(1))xσ(2)

)
· · ·
)

xσ(n−1)

)
for some σ ∈ Σn−1—so not in N∗.

Note that each Di
∗ is 2-coconnected by (I) above, and in fact for any subset {s1, . . . ,

s�} ⊂ {1, 2, . . . ,m} the complex
⋂�

i=1 Dsi
∗ is (� + 1)-coconnected (by Lemma 3.12 and the

argument in the first paragraph of the proof of Proposition 3.13). Since Ct
∗ = Ct−1

∗ ∪ Dt
∗,

where Ct−1
∗ ∩ Dt

∗ = (Ct−2
∗ ∩ Dt

∗) ∪ (Dt−1
∗ ∩ Dt

∗), in the Mayer-Vietoris sequence

· · ·Hi(C
t−2
∗ ∩ Dt−1

∗ ∩ Dt
∗)→ Hi(C

t−2
∗ ∩ Dt

∗)⊕Hi(Dt−1
∗ ∩ Dt

∗)→ Hi(C
t−1
∗ ∩ Dt

∗)

∂
−→ Hi−1(Ct−2

∗ ∩ Dt−1
∗ ∩ Dt

∗)→ Hi−1(Ct−2
∗ ∩ Dt

∗)⊕Hi−1(Dt−1
∗ ∩ Dt

∗) · · ·

we see that Ct−1
∗ ∩Dt

∗ is 3-coconnected if Ct−2
∗ ∩Dt−1

∗ ∩Dt
∗ is 4-coconnected, say. Thus we

can show by descending induction on 0 ≤ � < t that Ct−�
∗ ∩Ds1

∗∩· · ·D
s�
∗ is �+2-coconnected

for any subset {s1, . . . , s�} ⊂ {1, 2, . . . ,m}.
(III) We have shown that N∗ is 2-coconnected, which means that after re-indexing as in

Section 3.16, we obtain a bigraded chain complex F̃∗,∗ (direct sums as in (3.17)), which now
has no homology above dimension 1, since the subcomplexes N[I]∗ are invariant under the
action of the leaf automorphism groups on J[I]∗ (as in the proof of Theorem 3.22).

https://doi.org/10.4153/CMB-2000-001-6 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2000-001-6


16 Ron Adin and David Blanc

Evidently H0(F̃∗,∗) ∼= X∗, since the indecomposables of the original complex F∗,∗, in
homological dimension 0, consist simply of a set of generators for the free non-associative
algebra on X∗. The calculation of H1(F̃∗,∗) will be dealt with elsewhere.

References
[B1] D. Blanc, New model categories from old. J. Pure Appl. Math. 109(1996), 37–60.
[B2] , Homotopy operations and rational homotopy type. Preprint, 1996.
[BS] D. Blanc and C. S. Stover, A generalized Grothendieck spectral sequence. In: Adams Memorial Sympo-

sium on Algebraic Topology, Vol. 1 (Eds. N. Ray and G. Walker), London Math. Soc. Lecture Note Ser.
175(1992), 145–161.

[Bo] J. M. Boardman, Homotopy structures and the language of trees. In: Algebraic Topology, Proc. Sympos.
Pure Math. 22(1971), 37–58.

[CR] C. W. Curtis and I. Reiner, Representation Theory of Finite Groups and Associative Algebras. J. Wiley and
Sons, New York, 1962.

[GK] V. L. Ginzburg and M. M. Kapranov, Koszul duality for operads. Duke Math. J. 76(1994), 203–273.
[H] M. Hall, Jr., A basis for free Lie rings and higher commutators in free groups. Proc. Amer. Math. Soc.

1(1950), 575–581.
[HW] P. Hanlon and M. Wachs, On Lie k-algebras. Adv. Math. 113(1995), 206–236.
[LM] T. J. Lada and M. Markl, Strongly homotopy Lie algebras. Comm. Algebra 23(1995), 2147–2161.
[M] M. Markl, Models for operads. Comm. Algebra 24(1996), 1471–1500.
[MS] M. Markl and S. Shnider, Coherence without commutative diagrams, Lie-hedra and other curiosities.

Preprint, 1996.
[Q1] D. G. Quillen, Homotopical Algebra. Lecture Notes in Math. 20, Springer-Verlag, Berlin-New York, 1963.
[Q2] , Rational homotopy theory. Ann. Math. 90(1969), 205–295.
[Q3] , On the (co-)homology of commutative rings. Applications of Categorical Algebra, Proc. Sympos.

Pure Math. 17(1970), 65–87.
[RW] C. A. Robinson and S. Whitehouse, The tree representation ofΣn+1. J. Pure Appl. Alg. 111(1996), 245–253.
[SS1] M. Schlessinger and J. D. Stasheff, The Lie algebra structure of tangent cohomology and deformation theory.

J. Pure Appl. Alg. 38(1985), 313–322.
[SS2] , Deformation theory and rational homotopy type. Inst. Hautes Études Sci. Publ. Math. (to appear).
[Stn] R. P. Stanley, Enumerative Combinatorics, Vol. I. Wadsworth and Brooks/Cole, Monterey, CA, 1986.
[Sts] J. D. Stasheff, Homotopy associativity of H-spaces, I. Trans. Amer. Math. Soc. 108(1963), 275–292.
[Z] G. M. Ziegler, Lectures on Polytopes. Grad. Texts in Math. 152, Springer-Verlag, Berlin-New York, 1995.

Department of Mathematics
and Computer Science

Bar Ilan University
Ramat Gan 52900
Israel
email: radin@macs.biu.ac.il

Department of Mathematics
University of Haifa
Haifa 31905
Israel
email: blanc@mathcs2.haifa.ac.il

https://doi.org/10.4153/CMB-2000-001-6 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2000-001-6

