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GENERALISED VARIATIONAL-LIKE INEQUALITIES
AND A GAP FUNCTION

Q.H. ANSARI AND J.C. YAO

In this paper, we study the existence of solutions of generalised variational-like
inequality problems by using a generalised form of the Fan-KKM-Theorem. We
also introduce a gap function for generalised variational-like inequalities.

1. INTRODUCTION AND PRELIMINARIES

Let E be a topological vector space with dual E* and let {E*, E) be the dual
system of E* and E. We denote by 2X the family of all nonempty subsets of a set
X and by F(X) the family of all nonempty finite subsets of X. If X is a subset of a
topological vector space E, we shall denote by X the closure of X in E, and by co(X)
the convex hull of X. Let C and K be nonempty subsets of E and E*, respectively.
Given two maps 0 : CxK -* E* and r\: CxC -> E, and a multifunction T : C -» 2K,
then we consider the following generalised variational-like inequality problems:

PROBLEM 1. Find x € C and s e T(x) such that

(1) (B(x, s), r]{x, y)) ^ 0, for all y e C.

The vector x is called a strong solution of Problem 1. We denote by S(Pl) the set of
all such vectors x.

PROBLEM 2. Find x e C such that for each y € C, there exists s € T(x) such that

(2) (9(x, 5), v(x, y)) ^ 0.

The solution x of this problem is called a weak solution of Problem 1. We denote by
S(P2) the set of all solutions of this problem.
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PROBLEM 3. Find x e C such that

(3) (6(y, t), (x, y)) < 0, for all y e C and t e T{y).

We denote by 5(P3) the set of all its solutions.

Inequalities (1), (2) and (3) are known as generalised variational-like inequalities
(in short, GVLI). Problem 1 was introduced by Parida and Sen [13] in finite dimensional
spaces. They also showed its relation with convex mathematical programming. It was
further studied by Yao [19, 20] with applications in complementarity problems.

When 6(x,s) = s, for any x € C, Problem 1 was considered by Boss [1], Ding [6]
and Siddiqi et al [17].

When d(x, s) — s and rj(x, y) = x — y, for any x, y € C and s £ T(x), the above
three problems were studied by Crouzeix [5] in the setting of finite dimensional spaces.
In this case, Problem 1 was studied for example by Browder [2], Chowdhury and Tan
[3, 4], Ding and Tarafdar [7], Fang and Peterson [9], Saigal [14], Shih and Tan [15],
Siddiqi and Ansari [16], Tan [18], Yao [21], and Yen [22].

In Section 2, we first prove that S(Pl) = S(P2) = S(P3) under certain conditions.
Then we define a gap function [10], which provides an optimisation problem formulation,
for the generalised variational-like inequality (GVLI)(3). In Section 3, we consider a
more general problem which includes Problem 2 as a special case.

Let C and K be nonempty subsets of E and E*, respectively. Let tp : KxCxC -»

K be a function and T : C —» 2K be a multifunction. Then we consider the following

problem known as a generalised implicit variational problem:

(GIVP) Find x € C such that for each y £ C, there exists s € T(x) such that

(4) ip{s, x, y) ^ 0.

We prove the existence of its solution by using a result of Chowdhury and Tan [3]
which is a generalised form of the Fan-KKM Theorem [8]. As an application, we use
our results to prove the existence of solutions of (GVLI).

Let X, Y be subsets of a vector space E such that co(X) c Y. Then the multi-
function F : X -> 2Y is called a KKM-map if for each A 6 T(X), co(A) C U F(x).

The graph of F, denoted by G(F), is

G(F) = {(x,y) eXxY:xeX,y£ F(x)}.

We shall use the following result of Chowdhury and Tan [3] in proving our main results

in Section 3.
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THEOREM A. Let C be a nonempty convex set in a topological vector space E.

Let G : C -* 2C be a KKM-map such that

(i) G(y0) is compact for some y0 € C,
(ii) for each A e T(C) with y0 € A and each y G co(A), G(y) D co(A) is

closed in co(A), and
(iii) for each A € T(C) with yQ € A,

f| G(y))nco(A)=( f) G(y)) nco(A).
()y€co(A)

Then
y€C

The following Kneser minimax theorem [12] will be used in Section 2.

THEOREM B. Let X be a nonempty convex subset of a vector space, and let Y
be a nonempty compact convex subset of a HausdorB topological vector space. Suppose
that the functional f : X x Y —> R is such that, for each fixed x £ X, f(x, •) is lower
semicontinuous and convex, and for each fixed y 6 7, /(• ,y) is concave. Then

min sup f(x,y) = sup min f(x,y).
y€Y x£X x€X Y

2. A GAP FUNCTION FOR (GVLI)

Throughout in this paper, unless specified otherwise, E is a topological vector

space with dual E*.

Let C be a nonempty convex subset of E and if be a nonempty subset of E*.

Given two functions 6 : CxK -> E* and r): CxC —• E, the multifunction T : C -> 2K

is called:

(i) Tj-pseudomonotone with respect to 9 if for every pair of points x € K,
y E K and for all s € T(x), t e T(y), we have

(6(x,s), r){x,y)) ^ 0 implies (9(y,t), r){x,y)) ^ 0;

(ii) V-hemicontinuous with respect to 9 and r\ if for all x, y S K,

0 < A < 1 and s\ e T(Xy + (1 - X)x), there exists s € T{x) such

that (9(x, s\), ri(x,y)) converges to (9(x,s), rj(x,y)) as A tends to 0+ .

It is clear that 5(P1) C S(P2). By using Theorem B, we prove S{P2) C S(Pl).

PROPOSITION 1. Let E be a Hausdorff topological vector space with dual E*
and let C and K be nonempty convex subsets of E and E*, respectively. Let T : C —>
2K be a compact convex valued multifunction. Assume that

(a) for each x, y € C, s i-> (#(x, s), t](x,y)) is lower semicontinuous and

convex;
(b) for each x £ K and s € T(x), y H-> (9(X, S), T?(X, y)) is concave.
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Then S(P2) CS(P1).

PROOF: Let x € C be a solution of Problem 2. Then for each y e C, there exists
s € T(x) such that

(6>(z, s), 7]{x, y)) ^ 0.

Define a functional / :CxT( i ) ->R by

f{y,s) = (6{x,s), r){x,y)).

By assumption (a), for each y € C, the functional s ̂  /(y, s) is lower semicontinuous
and convex, and by assumption (b), for each s € T(x), the functional y >-* f{y,s) is
concave. Then by Theorem B, we have

min_ sup(0(x, s), ri(x,y)) - sup min_ (9(x,s), r)(x,y))

= sup inf_ (0(x, s), T?(X, ;

Since T(x) is compact, there exists a point s € T(x) such that

sup\(e(x,s), V(x,y))} O ,

and hence

(0(x, s), i?(x, y)) < 0, for all y € C,

that is, i 6 5(P1). D

PROPOSITION 2 . Let C and if be nonempty subsets of B and E*, respec-

tively. IfT:C^2K is rj-pseudomonotone with respect to 6, then S(P1) C 5(P3).

PROPOSITION 3 . Let C be a nonempty convex subset of E and K be a
nonempty subset of E* . Let 0(-, •) and n{-, •) be concave in their first and second
arguments, respectively, such that TJ(X,X) = 0 for all x € C. If T : C —> 2K is
V-hemicontinuous with respect to 6 and 77, then S(P3) C S(P2).

PROOF: Let x e 5(P3). Then

( 6 ( y , t ) , r ) ( x , y ) ) < 0 , for a l l y e C a n d t 6 T ( y ) .

By the convexity of C, for any A s (0,1), we have

{l-\)x,sx),ri{x,\y + (l-\)x))^0, for aU sA e T(Xy+ (1 - X)x).
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Since 9(-, •) and rj{-, •) are concave in their first and second arguments, respectively,
and T](x,x) = 0 for all x 6 C, we have

0^ (e(Xy+(l-X)x,sx), •n(x,Xy + (l-X)x))

> X2(9(y,sx), Vfry)) + (1 - A)A(0(x,sA), r?(x,7/)).

Dividing by A > 0, we get

0 > A(%, sx), r,{x,y)) + (1 - X)(6(x, sx), r?(x, y)).

Taking A —> 0+ and by V-hemicontinuity with respect to 6 and rj of T, there exists
s e T(z) such that

(0(2,3), »j(2,tf))<0,

and hence x e 5(P2). D

By combining Propositions 1-3, we have the following result.

THEOREM 1. Let E be a Hausdorff topological vector space with dual E* and
let C and K be nonempty convex subsets of E and E* , respectively. Let T : C -> 2K

be compact convex valued, ri-pseudomonotone with respect to 0 and V-hemicontinuous
with respect to 6 and rj. Let 8(-, •) and TJ(- , •) be concave in their first and second
arguments, respectively, such that rj(x,x) = 0 for all x € C. Let s i-> (#(x, s), r](x,y)^,
for all x,y € C, be lower semicontinuous and convex. Then S(Pl) = S(P2) = S(P3).

Let C be a nonempty subset of E. Then a functional / : C - ^ R U {-co, +00} is
called a gap function for (GVLI) if

(i) f(x) SiO, for all xeC,
(ii) f(x) = 0 if and only if x is a solution of (GVLI).

Now, we define a functional g : C —>IU{-00, +00} as follows:

(5) g(x)=sup[(8(y,t),n(x,y)):yeC and t6T(j)].

We also set
m = inf g(x) and M = {x 6 C : g(x) = m\.

THEOREM 2 . Let C be a nonempty subset of E and let r](x, x) = 0 for all x e C.
Then g as defined by (5) is a gap function for (GVLI)(3).

PROOF: (i) Since (6(x, s), i](x,x)) = 0 for all x S C and s € T(x), we have

(6) g(x) > 0, for all x e C.

(ii) Suppose that x e C is a solution of (GVLI) (3), then

),v{x,y))^0, for all teT(y),
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and hence

(7) sup[(%, t ) , t)(x,y)):yeC and t€ T(y)] < 0.

This implies that g{x) ^ 0. Combining (6) and (7) we get

(8) g(x) = 0.

Conversely, let g(x) = 0. From (5), we have

g ( x ) Z ( O ( y , t ) , r ) ( x , y ) ) , for a l l y e C a n d t e T { y )

and hence
(0(y,t), v(x,y)) < 0 , for all y € C a n d t&T(y).

Therefore, i e C i s a solution of (GVLI)(3). D

THEOREM 3 . Let C be nonempty subset of E and let r)(x, x) = 0, for all x 6 C.
If S{P3) ^ 0, then m = 0 and M = S(P3).

PROOF: Let S(P3) ^ 0. Then from (8), m = 0.
Let x e C be a solution of (GVLI)(3). Then <7(z) = 0 . But from (6), we have

g(x) ^ 0 for all x € C, and hence g(x) ^ g(x) for all x e C. Therefore, x € M.
Conversely, assume that x & M. Then ^(x) = 0 and thus x € 5(P3). Hence

M = 5(P3). D

Combining Theorems 1-3, we have the following result.

THEOREM 4 . Assume that all the hypotheses of Theorem 1 are satisfied and if
m = 0 and M ^ 0, then M = 5(P1) = S(P2) = 5(P3).

3. EXISTENCE RESULTS

We first prove the existence of solution of (GIVP) by using Theorem A.

THEOREM 5. Let C be a nonempty convex subset of E and K be a nonempty
subset of E*. Let (p : KxCxC —>R be a function and T : C —> 2K be a multifunction.
Assume that

1° for each A € T(C) and each x 6 co(A), miny>(s,x, y) ^ 0 for all s €
y€A

T(x);
2° for each A € ^(C) and each y e co(A),

G(j/)nco(A) = { i 6 co(A) : there exists s € T{x) such that <p(s,x,y) ^ 0}

is closed in co(A);
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3° for each A € T(C) and each x*, y € co(A) and for every net { x Q } Q 6 r in

C converging to x*, if there exists a net {sQ} in K with sa 6 T(xQ) for

all a e F , for which

<p(sa, xa, y) ^ 0, for all a e T,

then there exists s* € T(x*) such that (p(s*,x*,y) ^ 0;
4° there exists a nonempty closed and compact subset D of C and z £ D

such that

<p(s', x', z) > 0, for all x' € C\D and s' € T{x').

Then there exists x € D such that for each y € C, there exists s 6 T(x) such that
ip(s,x,y) ^ 0 .

PROOF: We define the multifunction G : C —> 2C by

G(y) = {x £ C : there exists s 6 T(x) such that (p(s, x, y) ^ 0}, for each y € C.

We show first that G is a KKM-map.
Suppose that G is not a KKM-map. Then for some finite subset {j/i,... ,yn} of

n n n
C and Xi ^ 0 for all i = 1,.. . ,n with £) Aj = 1, we ^a v e ^o = H \yi & U G{yi).

i=l i=l i=l

Then, for all s0 € T(x0),

<p(so,xo,yi) > 0, for all i = l, . . . , n

and so
min y(*o,a:o,!/i) > 0,

which contradicts the assumption 1°. Hence G is a KKM-map. Moreover, we have,

(i) G(z) c D by assumption 4°, so that G(z) c D = D and hence G(z) is
compact in C;

(ii) for each >1 6 -^(C) with z € A and each «/ € co(A),

G{y) nco(A) = { i £ co(A) : there exists s € T(x) such that tp(s,x,y) ^ 0}

is closed in co(A) by assumption 2°.

(iii) for each Ae T{C) with z € A, if x* € ( p) G(2/)) nco(A) then x* €
y6co(A)

G(y)) and x* 6 co(A), and there is a net {xQ} in f| G(j/)
) y6co(A)yeco(A) y6co(A)

such that x a converges to x*. For each y 6 co(A), there exists a net
{sa} in K with sQ 6 T(xQ) for which

0, for all a 6 T.
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From assumption 3°, there exists s* S T(x*) such that ip(s*,x*,y) ^ 0. It follows that

x* e ( P | G(y)j nco(A) and hence
y€co(A)

) nco(A)=( f| G(y))nco(A).
y€co(A) 3/6co(A)

By Theorem A, we have f| G(y) ^ 0. Therefore, noting that f] G(y) C G(z) C
yec yec

D, there exists x € D such that for each y 6 C, there exists s € T(x) such that

THEOREM 6 . Let C be a nonempty convex subset of E and K be a nonempty
compact subset of E*. Let <p: KxCxC-^R be a function and T : C —> 2K be a
multifunction such that its graph is closed. Assume that

1° for each A € F{C) and each x € co(A), mm<p(s,x,y) ^ 0 for all s €

T(x);
2° for each A € F{C) and each y 6 co(A), <p(-, •, y) is lower semicontinuous

on K x co(A) ;
3° for each A 6 ^"(C) and each x*, y € co(A) and for every net {a;Q}a6r in

C converging to x*, if there exists a net {sa} in K with sa e T(xa) for
all a eT, for which

<p(sa, xa, y)^0 for all a € T,

then there exists x* € T{x*) such that tp(s*,x*,y) ^ 0;
4° there exists a nonempty closed and compact subset D of C and z 6 D

such that

tp{s',x',z)> 0, for all y € C\D and s' € T(x').

Then there exists x € D such that for each y € C, there exists s € T(x) such that
(p(s,x,y) ^ 0.

PROOF: If we prove that for each A € T{C) with z e A and each y 6 co(A),

G(y) (~l co(A) = {x € co(A) : there exists s G T(x) such that y(s, x, y) ^ 0}

is closed in co(A) then from Theorem 5, we get the result.

Indeed, let {xp}p£\ be a net in G(j/)nco(A) such that x@ converges to x. Then
x e co(A), because co(A) is compact (see [3, p.922]). Since xp e G(y) nco(A), there
exist sp € T(xp) such that <p(sp,xp,y) ^ 0. Since T(C) is contained in a compact set
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K, we may assume that sp converges to some s € K. Then from the closed graph of

T. we have s € T(x). Since <p(-, -,y), for each y 6 co(A), is lower semicontinuous, we

get
0 ^ liminf <p(sp,x0,y) ^ (p(s,x,y)

P

and hence x € G(y) n co(A), as desired. D

As applications of Theorem 5 and Theorem 6, we have the following results:

COROLLARY 1. Let C be a nonempty convex subset of E and K be a nonempty
subset ofE*. Let 6 : C xK ->• E* and rj: C x C -> E be functions and T : C -> 2K

be a multifunction. Assume that

1° for each A € T(C) and each x e co(A), min(0(a;, s), r)(x,y)) ^ 0 for all

seT(x);
2° for each A € T{C) and each y e co(A), the set

{x € co(A) : there exists s € T(x) such that (8(x, s), 7?(z, y)) ^ 0}

is closed in co(A) ;
3° for each A £ ^(C) and each x*, y € co(A) and for every net {ia}Qgr in

C converging to x*, if there exists a net {sQ} in K with sa € T(xa) for
all a € F, for which

(0{xa, So), T)(xa,y)) ^ 0, for all a € I\

then there exists s* € T(x*) such that (6(x*, s*), T)(X*, y)) ^ 0;
4° there exists a nonempty closed and compact subset D of C and z € D

such that

(6(x', s'), n(x', z)) > 0, for all y € C\D and s' € T(x').

Then there exists x € D such that for each y 6 C, there exists s e T(x) such that

PROOF: By taking (p(s,x,y) = (9(x,s), r](x,y)) in Theorem 5, we get the re-
sult. D

COROLLARY 2 . Let C be a nonempty convex subset of E and K be a nonempty
compact subset of E*. Let 8 : C x K -* E* and r) : C x C —> E be functions and
T : C —> 2K be a multifunction such that its graph is closed. Assume that

1° for each A 6 T(C) and each x G co(A), min(0(x,s), r](x,y)) ^ 0 for all
y€A

seT(x);
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2° for each A € T(C) and each y G co(A), (6(x, s), n{x,y)) is lower semi-
continuous in (s, x) G K x co(A) ;

3° for each A 6 F(C) and each x*, y G co(A) and for every net {xQ}a6r in
C converging to x*, if there exists a net {sa} in K with sa G T(xa) for
all a € F, for which

(9(xQ, sQ), n(xa, y)) ^ 0, for all a 6 T,

then there exists s* 6 T(x*) such that (6{x*,s*), n{x* ,y)) ^ 0;
4° there exists a nonempty closed and compact subset D of C and z G D

such that

(6(x', s'), T){x', z)) > 0, for all y € C\D and s' G T(x').

Then there exists x £ D such that for each y € C, there exists s € T{x) such that

(9(x,s), r]{x,y))^Q.

PROOF: By taking tp(s,x,y) = (6{x,s), n(x,y)) in Theorem 6, we get the re-

sult. D

COROLLARY 3 . Let C be a nonempty convex subset of E and K be a nonempty

compact subset of E*. Let 6 : C x K —> E* and r\ : C x C -¥ E be functions and

T : C —> 2K be a multifunction such that its graph is closed. Assume that

1° (6{x, s), r)(x,x)) = 0 for all x G C and s G T(x);

2° y i-4 (6(x, s), n(x, y)) is quasiconcave for each fixed x G C and s G T(x);
3° for each A G F{C) and each y G co(A), (9(x, s), n(x,y)) is lower semi-

continuous in (s, x) G K x co(A) ;

4° for each A G T{C) and each x*,y G co(A) and for every net {xa}a€r in
C converging to x*, if there exists a net {sa} in K with sa G T(xa) for
all a G F, for which

(6(xa, sQ), r){xa, y)) ^ 0, for all a&T,

then there exists s* G T(x*) such that (0(a:*,s*), n(x*,y)) ^ 0;
5° there exists a nonempty closed and compact subset D of C and z G D

such that

(0(x\ s'), r)(x', z)) > 0, for all y G C\D and s' G T(x').

Then there exists x G D such that for each y € C, there exists s G T{x) such that

(6(x,s), r,(x,y))^0.

PROOF: In view of assumptions 1° and 2°, it is easy to prove that the mul-
tifunction G in the proof of Theorem 5 is a KKM-map. By taking 6(s, x, y) =
(6{x, s), T](X, y)) in Corollary 2, we get the result. D
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