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We develop and analyse a continuum model of two-phase slurry dynamics for planetary
cores. Mixed solid–liquid slurry regions may be ubiquitous in the upper cores of small
terrestrial bodies and have also been invoked to explain anomalous seismic structure
in the F-layer at the base of Earth’s liquid iron core. These layers are expected to
influence the dynamics and evolution of planetary cores, including their capacity to
generate global magnetic fields; however, to date, models of two-phase regions in planetary
cores have largely ignored the complex fluid dynamics that arises from interactions
between phases. As an initial application of our model, and to focus on fundamental fluid
dynamical processes, we consider a non-rotating and non-magnetic slurry comprised of
a single chemical component with a temperature that is tied to the liquidus. We study
one-dimensional solutions in a configuration set up to mimic Earth’s F-layer, varying
gravitational strength R, the solid/liquid viscosity ratio λμ and the interaction parameter
K, which measures friction between the phases. We develop scalings describing behaviour
in the limit R � 1 and λμ � 1, which are in excellent agreement with our numerical
results. Application to Earth’s core, where R ∼ 1028 and λμ ∼ 1022, suggests that a pure
iron slurry F-layer would contain a mean solid fraction of at most 5 %.

Key words: multiphase flow, solidification/melting

1. Introduction

Multiphase flows involving phase changes are ubiquitous in nature. Everyday examples
include formation of clouds, rain droplets and snow in the atmosphere (Pruppacher 1986).
In the Earth’s mantle, two-phase flows occur in the form of melting of rock and subsequent
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transport of magma to the surface (e.g. McKenzie 1984; Spiegelman 1993; Bercovici,
Ricard & Schubert 2001). Two-phase flows also arise in deep planetary interiors. Planetary
differentiation driven by heating from radioactive isotope decay and planetary accretion
leads to partial melting, and ultimately to the segregation of a molten iron-rich core
from the solid silicate mantle (Rubie, Nimmo & Melosh 2015). Subsequent cooling leads
to crystallisation of the fluid core, which drives compositional convection that provides
an efficient power source for maintaining planetary magnetic fields by dynamo action
(Breuer, Rueckriemen & Spohn 2015). In Earth’s core, freezing of dense iron-rich material
proceeds from the inside out, leading to segregation of solid and liquid phases with power
provided by the continual enrichment of the liquid in light impurities (Nimmo 2015). By
contrast, small planetary bodies such as Ganymede, the moon, and asteroids could freeze
dense material from the top, with iron ‘snowing’ down from the core–mantle boundary
(Breuer et al. 2015). In this case, power for dynamo action is thought to be provided both
by the falling snow and by the gravitational energy released when the snow remelts at
greater depths (Rückriemen, Breuer & Spohn 2015; Davies & Pommier 2018).

This work is motivated by another ‘snow zone’ that is hypothesised to exist at the base of
Earth’s liquid core. The traditional picture of the geodynamo is that turbulent convection in
the outer core produces a state in which the interior is nearly homogeneous and adiabatic.
However, seismic studies indicate the existence of a region at the base of the outer core
where density is stably stratified (see Souriau & Poupinet (1991), and also the overview
in Gubbins, Masters & Nimmo (2008)). The depth of this region, called the F-layer, is
estimated to be between 150 and 400 km. The presence of such a region at the base of the
outer core has potentially far-reaching consequences since the F-layer mediates the power
input to the bulk core where the magnetic field is generated. It is therefore important to
understand the extent of the influence that the F-layer has on the motions in the turbulent
bulk of the core, and how that in turn influences the operation of the geodynamo.

Several possibilities have been proposed to explain the anomalous stratification of the
F-layer. The simplest explanation, a thermal boundary layer, is not viable because the
thermal gradient at the base of the liquid core is strongly destabilising (Gubbins et al.
2008). One possibility is that the layer results from convective translation of the inner
core, a deformationless mode of motion that can arise if the inner core is convectively
unstable. Translation results in the inner core freezing in the western hemisphere and
melting in the eastern hemisphere, which produces an iron-rich dense layer that sits above
the inner core boundary (ICB) (Alboussiere, Deguen & Melzani 2010). However, recent
upward revisions of the thermal conductivity of iron (Pozzo et al. 2014) make thermally
driven convective translation unlikely. Compositional (Gubbins, Alfe & Davies 2013) or
double-diffusive (Deguen, Alboussière & Labrosse 2018) convection in the inner core
can arise, but the conditions for these instabilities do not appear to be satisfied at the
present day. It is also unclear whether convective translation can produce the observed
global F-layer thickness. Gubbins et al. (2008) proposed a hydrostatic thermochemical
model of iron alloyed with light element at the liquidus temperature that succeeded in
producing a thick stably stratified F-layer. However, the stabilising compositional gradient
that produces the overall density stratification is imposed through the boundary conditions
and so its origin, together with the mechanism by which light material passes through the
stratified layer, is not explained by the model.

An enticing hypothesis inferred by analogy with metallurgical studies of solidifying
mixtures is that the region of the outer core close to the ICB is in a state of constitutional
supercooling, and thus matter in the F-layer could be composed of a mixture of liquid and
solid phases (Loper & Roberts 1978, 1981). Within the two-phase hypothesis, two distinct
regimes were proposed: a slurry zone with a low solid fraction (e.g. Loper & Roberts 1978)
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and a mush zone with a high solid fraction (e.g. Fearn, Loper & Roberts 1981). In a slurry
regime, solid phase exists in the form of fine grains suspended in the parent liquid phase.
In a mush regime, solidification is assumed to form a dendritic solid skeleton with liquid
flowing along pore spaces.

To explain the F-layer as a two-phase region, its properties must be consistent with
seismic observations. The most robust observation is a flattening of the P-wave velocity
profile with depth, which is usually interpreted to represent density stratification (Gubbins
et al. 2008). This behaviour has been reproduced by simple thermodynamic slurry models
(Wong, Davies & Jones 2021), but has not so far been reported for the mush regime.
There is also no clear seismic evidence of shear-wave velocities, reflections or impedance
contrasts above the ICB (Souriau 2007), which is consistent with the existence of a slurry.
A mush can in principle support shear waves and top-side reflections owing to its high solid
fraction but the seismic properties of a mushy layer above the ICB are unknown; so while
these observations do not rule out a mushy F-layer they require that it is somehow hidden
from current seismic probes, which is a solution we do not favour. The mush hypothesis
does have the advantage that it provides natural nucleation sites, whereas nucleation in a
pure slurry may require very substantial undercooling (e.g. Huguet et al. 2018). However,
the nucleation difficulty, found in theoretical calculations for a pure substance, may not
apply in the presence of impurities which may well be present in the core. Our view is
that core nucleation is very imperfectly understood, and therefore it is not appropriate
to rule out the slurry model on that basis. The solid fraction in a two-phase F-layer is
unknown, but estimates based on simple thermodynamic arguments suggest values of
the order of 1 % (Gubbins et al. 2008), while estimations based on mineral physics data
give ∼15 % (Zhang et al. 2019). These values are smaller than the rheological transition
above which the two-phase region is expected to form an interconnected solid network
(Solomatov 2007). Finally, a mushy zone at the base of Earth’s core is expected to have
a maximum thickness of a few kilometres, much thinner than the F-layer, since a thick
mush would collapse under its own weight (Deguen, Alboussière & Brito 2007). Based on
these considerations we focus on a slurry F-layer in the rest of this paper. In this scenario,
heavy solids fall under gravity, while the light liquid rises buoyantly upwards. A net inward
transport of dense solid and a net outward transport of light material can result in an overall
stable stratification.

Previous models of the slurry F-layer (and indeed ‘iron snow’ models for planetary
cores in general) have focused on the thermodynamics of the problem rather than the fluid
dynamics. Wong, Davies & Jones (2018) and Wong et al. (2021) applied the two-phase
‘diffusive mixture’ model of a slurry developed by Loper & Roberts (1978) to study
the F-layer and found solutions with density and P-wave velocity variations that are
in good agreement with those inferred from seismic observations. The model of Wong
et al. (2018) is purely thermodynamic in that it assumes that the F-layer is in hydrostatic
equilibrium and on the liquidus, where the liquid phase is at rest and the sedimentation
of solid phase is approximated by Stokes flow along the pressure gradient. The diffusive
mixture formulation models the evolution of the mean mixture, with a single momentum
equation for the barycentric flow velocity, so flow velocities of individual constituent
phases cannot be known. Here we follow an alternative ‘two-fluid’ formulation which
models each individual phase as a separate fluid continuum (Roberts & Loper 1987). In
this more general model, which can be simplified to the diffusive model, the velocities
of each phase as well as the solid sedimentation flux are determined self-consistently.
Our study therefore represents the first steps towards a fully fluid dynamical model of the
two-phase slurry F-layer.
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Throughout this work we consider a pure iron slurry, i.e. one composed of a single
chemical constituent. This is a simplification of the real core composition, which is
expected to comprise one or more light elements. However, we will show that the pure
slurry is a rich and complex fluid dynamical system that is worthy of study in its own
right. Moreover, by elucidating the behaviour of this system across a wide range of
control parameters we obtain a crucial reference point for understanding the additional
complexities due to adding lighter elements, which will be considered in future work.
Finally, the pure system is of geophysical interest because it allows us to test previous
predictions based solely on thermodynamic arguments (Gubbins et al. 2008) that any
slurry that could form in the F-layer would contain only a small fraction of solid phase.

Modelling multiphase dynamics of solid–liquid slurry poses a significant theoretical
challenge. Broadly speaking, there are two strategies for treating the solid particles:
as rigid entities or as a continuum field. A basic example of the rigid approach is
modelling of individual sinking solids and their experience of drag and their effect on
the ambient chemical gradients (e.g. Inman et al. 2020; Magnaudet & Mercier 2020).
This strategy can be extended to models involving many tracers, representing solid
crystals, in a convective flow (e.g. Suckale et al. 2012; Patočka, Calzavarini & Tosi
2020). However, computational expense limits the number of tracers that can be modelled,
while the addition, removal or change of sizes of particles during simulation as well as
the associated latent heat exchanges are challenging to represent numerically. With this
approach, numerical modelling at the scale of the F-layer is currently inaccessible.

When the solid phase is treated as a continuum, macroscopic behaviour resulting from
microscopic phase interactions is modelled by interpenetrating and interacting continuum
fields. The exact locations of the individual phases, and hence the interfaces between
phases and the microscopic properties of melting, are unknown; at the system scale, phases
are represented by the volume fraction they occupy in a control volume. This approach
therefore lacks a first-principles link to local-scale variables and processes (e.g. formation
and growth of solid crystals or topology and evolution of phase interfaces) and thus
requires that local mechanical and thermodynamic phase interactions are parametrised
through constitutive relations based on macroscopic variables. The deliberate focus on the
system scale constitutes both the key limitation but also the chief strength of continuum
models. By abandoning a rigorous representation of local-scale phase interactions, the
continuum framework allows one to construct models of system-scale behaviour of
tractable mathematical complexity. Such models have a long history (e.g. Truesdell
& Toupin 1960) and have had significant impact in geophysics, as highlighted by the
two-phase model of Drew (1971) and Drew & Segel (1971) and its subsequent application
to the problem of two-phase melt transport by McKenzie (1984) and others (e.g. Fowler
1985; Ribe 1985; Bercovici et al. 2001). In recent years, models of this kind have found
many areas of application, such as magma oceans (Boukaré & Ricard 2017), planetary
mantle evolution (Zhang, Bercovici & Jordan 2021), ice–water transport on Europa
(Kalousova et al. 2014) and magnetic induction in mushy zones (Bercovici & Mulyukova
2021).

Within the two-phase continuum theory, a number of new phenomena arise that are
not present in a single-phase flow. In a pure slurry, in addition to the effects of thermal
buoyancy, convection of the liquid can be driven by buoyancy of solid grains. Furthermore,
phase change and associated absorption/release of latent heat introduce an additional
avenue of heat transport through the system. This gives rise to the ‘heat-pipe’ effect,
whereby heat is transported by fluid parcels that solidify at their destination, releasing
latent heat.
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In this paper we study two-phase dynamics of a pure iron slurry in an effort to shed light
on the dynamics in the F-layer. We extend the formulation of Roberts & Loper (1987) and
derive and solve a set of equations that describe the motion of a reactive two-phase system.
As described above, the bulk of the outer core (above the F-layer) is vigorously convecting,
which mixes this region to almost uniform composition and an adiabatic temperature
profile. On the other hand, the F-layer is stable to convection so we expect that any motion
in the slurry will be more temperate, consisting chiefly of settling of solid phase under
gravity. We further expect that radial variations will dominate the signals obtained by
seismology because the inferred density anomalies are many orders of magnitude larger
than the thermochemical anomalies that drive core convection (Stevenson 1987). Hence,
in this paper, we restrict our attention to one-dimensional (1-D) solutions representing
motion along the vertical direction, which serve as a natural starting point from which to
build more detailed dynamical models. We are interested in gaining a broad understanding
of the nature of solutions to these two-phase equations up to solid fractions of φs ∼ 0.5,
beyond which a mushy zone is expected to form. In particular, we seek to understand
the factors that determine the distribution of solid phase within the layer, and to provide
independent constraints on the solid fraction that can exist in a pure slurry at the physical
conditions of Earth’s F-layer.

Previous applications of two-phase modelling to planetary mantle dynamics have mainly
focused on situations where the solid phase is dominant (e.g. McKenzie 1984; Bercovici
et al. 2001; Šrámek, Ricard & Bercovici 2007; Boukaré & Ricard 2017; Zhang et al. 2021).
These studies assume that the liquid volume fraction stays low and the solid phase forms an
interconnected matrix. In such a case inertia of both phases is negligible and momentum
balance for the liquid phase is reduced to Darcy’s law, whereby the liquid percolation
through the solid is determined by the overpressure and the permeability of the solid
matrix. By contrast, in the slurry limit the solid phase is expected to be sparse. In this
case it is unclear a priori which terms in the equations can be neglected. In this study
we take a general approach that does not assume Darcy flow or negligible kinetic energy.
We draw heavily from the two-phase equations for a pure slurry developed by Roberts &
Loper (1987), which, to our knowledge, have not previously been solved. We attempt to
strike a balance between simplicity and realism, noting that many properties of deep Earth
materials are poorly known owing to the immense pressures and temperatures that arise in
planetary cores.

The outline of the paper is as follows. In § 2 we describe the governing equations for the
two-phase slurry. In § 3 we formulate the mathematical problem of the two-phase slurry
in the context of the Earth’s F-layer. In §§ 4 and 5 we analyse and solve the equations for
the case of 1-D time-independent solution. Concluding discussion is presented in § 6.

2. Equations governing two-phase flow

Derivation of conservation laws in two-phase theory involves averaging of the microscopic
scale equations to obtain equations governing the macroscopic scale (see e.g. Drew
1971, 1983). The averaging formalism for deriving continuum equations of macroscopic
two-phase flow is well established, and does not need to be reproduced here. In this section
we describe the continuum equations governing the evolution of a two-phase slurry. Our
approach follows closely the work of Drew (1971, 1983) and Roberts & Loper (1987) and
also uses results from Bercovici et al. (2001) and Šrámek et al. (2007). The complete set
of equations formulated in this section may be found in Appendix C. A table of symbols
involved in the development of the governing equations in this section is provided in
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Appendix A (table 4). Readers more interested in the analysis of the mathematical problem
may pass directly to § 3.

2.1. Fundamental assumptions and notation
We consider a continuum model of a mixture composed of two phases of a single chemical
constituent. For our purposes, we suppose that the two phases are solid and liquid, labelled
by superscripts ε ∈ {s, l}. Each of the two phases is a continuum thermodynamic system.
The two thermodynamic continua are immiscible but interpenetrating (occupy the same
space), and interact with each other in the form of mass, momentum and energy exchanges.
We assume that all exchanges are pure, i.e. their sum vanishes. As such we neglect the
effects of surface tension. Surface tension can be incorporated into the two-phase model
(see e.g. Bercovici et al. 2001) at the expense of additional complexity, which we feel is
unwarranted at this stage of the model development and given that the interface properties
of iron at Earth’s core conditions (hundreds of GPa and several thousand K) are poorly
known. We also assume that the two phases do not interact chemically. In other words,
thermodynamic quantities associated with only one phase depend exclusively on the
variables of this phase. For example, the Gibbs free energy of one phase is independent of
the amount of the other phase present. This assumption also means that entropy of mixing
is neglected.

At each point in the continuum the phases are characterised by their system-scale
velocity uε, pressure pε, temperature Tε, etc. The relative amount of each phase at any
point is measured by volume or mass fraction. These can be conceptually understood by
considering a small finite control volume around a point x in space, of total mass M and
volume V . The total mass M is the sum of masses of each phase and, similarly, total
volume V is the sum of volumes occupied by individual phases:

M = Ms + Ml, V = Vs + V l. (2.1a,b)

Mass and volume fractions can thus be defined as

ψε = Mε

M , φε = Vε
V ; (2.2a,b)

ψ s + ψ l = 1, φs + φl = 1. (2.3a,b)

Strictly speaking, at a microscopic level, any point x in space can only be occupied
by either a solid phase or a liquid phase and thus volume/mass fractions should only
take values 0 or 1. However, in the continuum approach, volume and mass fractions are
interpreted as statistical averages, that is, φs represents the fraction of a small volume
surrounding x that is occupied by solid phase. Volume and mass fractions are thus
continuous and differentiable functions of x. This is the standard approach in continuum
modelling of two-phase flows (e.g. Drew 1983; Roberts & Loper 1987; Bercovici et al.
2001).

The specific density ρε is defined by the mass of phase ε divided by the volume of
phase ε, and is the inverse of the specific volume Vε:

ρε = Mε

Vε = 1
Vε
. (2.4)

In addition to quantities relating to individual phases, it is also useful to define quantities
relating to the mixture. Throughout the paper we denote mixture quantities with an overbar.
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The specific density and specific volume of the mixture are

ρ̄ = M
V = φsρs + φlρl, V̄ = 1

ρ̄
= ψ sVs + ψ lVl. (2.5a,b)

It is useful also to note the relation between mass fraction ψε and volume fraction φs:

ψε = φερε

ρ̄
. (2.6)

The velocity of the mixture ū is the centre-of-mass (barycentric) velocity defined by

ρu = φsρsus + φlρlul. (2.7)

Equivalently, ū = ρu/ρ̄ = ψ sus + ψ lul. Following Roberts & Loper (1987) we suppose
that the internal energy density of the mixture can be obtained by adding together those of
the two phases separately:

ρE = φsρsEs + φlρlEl, (2.8)

where Eε is the internal energy per unit mass of phase ε. This ignores interfacial surface
tension. We assume that the entropy density of the mixture is similarly additive:

ρS = φsρsSs + φlρlSl, (2.9)

where Sε is the specific entropy of phase ε. This form implicitly ignores entropy of mixing
and interfacial surface tension.

We define material derivatives

Dε

Dt
≡ ∂

∂t
+ uε · ∇, D̄

D̄t
≡ ∂

∂t
+ ū · ∇, (2.10a,b)

where Dε/Dt is the material derivative following the flow velocity of phase ε and D̄/D̄t is
the material derivative following the barycentric velocity (2.7). We also introduce notation
for phase difference in any quantity A:

�A = As − Al. (2.11)

We derive all equations to maintain their Galilean and material invariance. Galilean
invariance requires that the laws of motion are independent of the inertial frame of
reference. Material invariance refers to the symmetry between the equations governing
the two phases, whereby an interchange of labels results in the same equations.

2.2. Conservation of mass
The mass continuity equation for phase ε is

∂(φερε)

∂t
+ ∇ · (φερεuε) = Γ ε, (2.12)

where Γ ε is the rate of production of phase ε. The rate of production of one phase is
equal and opposite to the rate of destruction of the other, i.e. Γ s + Γ l = 0. The total
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mass conservation law is obtained by summing continuity equations of individual phases
together:

∂ρ̄

∂t
+ ∇ · (ρu) = 0. (2.13)

Using (2.6) and (2.13) in (2.12) we obtain an evolution equation for solid mass fraction ψ s:

ρ̄
D̄ψ s

D̄t
+ ∇ · j = Γ s, j = ρ̄ψ s(1 − ψ s)�u = φsρsφlρl

ρ̄
�u, (2.14)

where j is the solid flux (Loper & Roberts 1978).
Note also that the phase mass continuity equation (2.12) can be written as

Dεφε

Dt
= Γ ε

ρε
− φεζ ε, where ζ ε = ∇ · uε + 1

ρε

Dερε

Dt
. (2.15)

Equation (2.15) states that the volume fraction φε can increase as a result of production of
the phase (Γ ε > 0), convergence of the phase due to flow (∇ · uε < 0) or a decrease in
specific density (Dερε/Dt < 0; equivalently, an increase in specific volume DεVε/Dt >
0). Solid compaction is the process by which a solid matrix progressively loses its porosity
due to the effects of pressure from loading – i.e. compaction decreases φl and increases
φs. We can generalise this terminology to say that compaction of phase ε is a process
which increases φε. Since compaction is a process that is treated as separate from melting
or freezing, the quantity ζ ε thus denotes compaction (ζ ε < 0) and dilation (ζ ε > 0) of
phase ε.

2.3. Conservation of momentum
The general form of the equation for the rate of change of momentum is

∂

∂t
(φερεuε)+ ∇ · (φερεuεuε) = F ε, (2.16)

where F ε stands for the totality of forces through which momentum is gained/redistributed
within phase ε. The momentum transfer term consists of contributions due to internal
stress (due to pressure and viscous forces within the phase), external forces (e.g. gravity)
and momentum exchange due to interaction between phases:

F ε = F εinternal + F εexternal + F εinteraction. (2.17)

The internal force arises due to divergence of the total stress tensor Πε:

F εinternal = ∇ · (φεΠε), (2.18)

where it has been assumed that the stress tensors of the individual phases are additive. The
total stress tensor for phase ε can be split into isotropic and deviatoric components:

Πε = −pεI + σ ε, (2.19)

where pε is the mechanical pressure (minus one-third trace of the stress tensor, pε =
−1

3 Tr(Πε)), I is the identity matrix and σ ε is the deviatoric stress tensor. Force densities
on each phase due to the external gravitational field g are

F εexternal = φερεg. (2.20)

The interaction force F εinteraction results from forces acting at the interface between the
phases. Given the complexity of the interface between the phases, and lack of knowledge
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of its precise location and orientation in the continuum approach, the interfacial forces are
difficult to quantify and have been subject of much debate in the two-phase literature. The
interaction force is commonly split into three components: momentum exchange due to
transfer of mass between the phases during melting and solidification; a ‘buoyant’ force
each phase experiences due to the pressure exerted on its boundary by the other phases
which surround it; and a frictional force that phases experience as they move past one
another (Drew 1983). The momentum exchange due to melting and freezing depends
on the velocity at which the solid–liquid interface propagates during the phase change.
Similarly, the buoyant force between the phases depends on the pressure distribution on
solid–liquid interfaces. Neither the ‘interface velocity’ nor the ‘interface pressure’ are
known (or even knowable) quantities in the continuum framework, where even the concept
of the interface is blurred (in the continuum framework interfaces are not discrete entities;
the interface as well as the two phases are continuous quantities that exist at all points
in the domain), and have to be parametrised in terms of phase velocities uε and phase
pressures pε. From these considerations, the interaction force can be expressed as (see e.g.
Ishii & Hibiki (2010), chapter 9)

F εinteraction = Γ εũε + p̃ε∇φε + Dε, (2.21)

where ũε is the interface velocity on the side of phase ε, p̃ε is the interface pressure on
the side of phase ε and Dε is the generalised drag force that is equal and opposite in each
phase (Ds = −Dl). In the absence of surface tension the interaction forces are equal and
opposite, F s

interaction = −F l
interaction, and interface velocity and pressure are continuous

across the phase interfaces:

ũs = ũl = ũ, p̃s = p̃l = p̃. (2.22a,b)

Utilising the phase mass conservation equation (2.12), and relations (2.17)–(2.22a,b), the
momentum equation (2.16) becomes

φερε
(
∂uε

∂t
+ uε · ∇uε

)
= −φε∇pε + ∇ · (φεσ ε)+ φερεg + Γ ε(ũ − uε)

+ (p̃ − pε)∇φε + Dε. (2.23)

Following Roberts & Loper (1987) and Bercovici et al. (2001) we postulate the following
constitutive relations for ũ and p̃:

us − ũ = γ s�u, ul − ũ = −γ l�u, γ s + γ l = 1; (2.24a–c)

ps − p̃ = ωs�p, pl − p̃ = −ωl�p, ωs + ωl = 1. (2.25a–c)

Coefficients ωε control the partitioning of the interface surface force between the two
phases and represent the fraction of the volume-averaged surface force exerted on each
phase (Bercovici & Ricard 2003). Similarly, coefficients γ ε control the partitioning of
the interface velocity ũ. On application of (2.24a,b) and (2.25a,b) in (2.23), momentum
equations for solid and liquid phases become

φsρs
(
∂us

∂t
+ us · ∇us

)
= − φs∇ps +∇ · (φsσ s)+φsρsg − γ sΓ s�u −ωs�p∇φs + Ds,

(2.26a)

φlρl
(
∂ul

∂t
+ ul · ∇ul

)
= −φl∇pl + ∇ · (φlσ l)+ φlρlg + γ lΓ l�u + ωl�p∇φl + Dl.

(2.26b)
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Taking the dot product of (2.26a) with us and the dot product of (2.26b) with ul, we obtain
the equations for the evolution of kinetic energy of the two phases:

∂Ks

∂t
+ ∇ · (Ksus) = −φsus · ∇ps + ∇ · (φsus · σ s)− φsσ s : ∇us

+ φsρsus · g + Γ sus ·
(

1
2

us − γ s�u
)

−�pωsus · ∇φs + us · Ds, (2.27a)

∂Kl

∂t
+ ∇ · (Klul) = −φlul · ∇pl + ∇ · (φlul · σ l)− φlσ l : ∇ul

+ φlρlul · g + Γ lul ·
(

1
2

ul + γ l�u
)

+�pωlul · ∇φl + ul · Dl, (2.27b)

where Kε = 1
2φ

ερε|uε|2 is the kinetic energy density of phase ε and σ ε : ∇uε =
σεij ∂uεi /∂xj.

In general, the gravity vector can be expressed in terms of the gradient of gravitational
potential g = −∇Φ. Thus, with use of the continuity equation (2.12), and assuming that
the gravitational potential is time-independent ∂tΦ = 0, we can express the gravitational
term in the kinetic energy equation as follows:

φερεuε · g = −φερεuε · ∇Φ = −∇ · (φερεuεΦ)+Φ∇ · (φερεuε)

= −
(
∂Pε
∂t

+ ∇ · (Pεuε)
)

+ Γ εΦ, (2.28)

where Pε = φερεΦ is the potential energy density of phase ε. Adding together the kinetic
energy equations of the two phases (2.27a) and (2.27b) we obtain the equation governing
the evolution of total mechanical (kinetic and potential) energy in the mixture:

∂

∂t
(Ks + Ps + Kl + P l)+ ∇ · ((Ks + Ps)us + (Kl + P l)ul − φsus · σ s − φlul · σ l)

= −φsus · ∇ps − φlul · ∇pl − φsσ s :∇us − φlσ l :∇ul + Ds ·�u

− 1
2
(Γ sγ s + Γ lγ l)|�u|2 −�puω · ∇φs, (2.29)

where uω = ωsus + ωlul. Terms on the left-hand side of (2.29) represent changes in
mechanical energy due to accumulation, advective flux and viscous deformation stresses;
terms on the right-hand side represent work against the pressure gradient, viscous heating,
frictional heating, contributions due to phase changes and an additional contribution to the
usual pressure–work term due to the existence of pressure disequilibrium (�p /= 0).

2.4. Conservation of entropy and energy
The entropy equation is

∂

∂t
(φερεSε)+ ∇ · (φερεSεuε + kε) = Σε, (2.30)

where kε represents the entropy flux due to internal processes (e.g. diffusive heat flux) and
Σε represents sources of entropy due to dissipative processes (e.g. viscous heating) and
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interaction with other phases. The second law of thermodynamics requires that the sum of
the entropies of all bodies taking part in the process is increased, which is expressed as

d
dt

∫
V
ρS dV =

∫
V
Σ s +Σ l dV ≥ 0. (2.31)

This serves as a powerful constraint in developing constitutive laws.
To obtain the evolution equation for internal energy of each phase we begin with the

statement of the first law of thermodynamics applied to the individual phases. According
to the first law, the change in the internal energy is equal to net energy added in the form of
heat δqε = TεdSε minus energy spent in the form of thermodynamic work δwε = −pεdVε:

dEε = TεdSε − pεd(1/ρε). (2.32)

We actually want a relation for the internal energy density φερεEε. We obtain this by
multiplying (2.32) by φερε and rearranging:

d(φερεEε) = Tεd(φερεSε)− pεdφε + Gεd(φερε), (2.33)

where

Gε = Eε − TεSε + pε

ρε
(2.34)

is the specific Gibbs free energy of phase ε. (Note that the specific Gibbs free energy
introduced in (2.34) is often denoted by μ (e.g. Roberts & Loper (1987), their (2.16)).
Here we use G to denote specific Gibbs free energy and reserve με for dynamic viscosity.)
Using (2.33) we obtain a material derivative of energy density ρεEε:

Dε(φερεEε)
Dt

= Tε
Dε(φερεSε)

Dt
− pε

Dεφε

Dt
+ Gε

Dε(φερε)
Dt

. (2.35)

Using (2.12), (2.30) and (2.34) in (2.35) yields (after a few vector identities) the internal
energy equation:

∂(φερεEε)
∂t

+ ∇ · [(φερεEε + φεpε)uε] = −∇ · (Tεkε)+ kε · ∇Tε + TεΣε

+ φεuε · ∇pε + GεΓ ε − pε
∂φε

∂t
. (2.36)

The equation governing the total energy of the system is obtained by summing the solid
and liquid internal energy equations (2.36) with the total kinetic energy equation (2.29),

∂(φsρsE s + φlρlE l)

∂t
+ ∇ · (F s + F l) = J , (2.37)

where Eε is the total energy of phase ε (per unit mass of phase ε), Eε = (Eε + 1
2 |uε|2

+Φ),Fε is the energy flux vector, Fε = (φερεEε + φεpε)uε − φεuε · σ ε + Tεkε and
J contains the sum of energy exchange terms arising due to the interaction between the
phases:

J = −φsσ s : ∇us − φlσ l : ∇ul + ks · ∇Ts + kl · ∇Tl + TsΣ s + TlΣ l

+ Ds ·�u +�GΓ s − 1
2
(Γ sγ s + Γ lγ l)|�u|2 −�p

(
∂φs

∂t
+ uω · ∇φs

)
. (2.38)

The material derivative appearing in the final term of (2.38) can be obtained by multiplying
equation (2.15) corresponding to the solid phase by ωs, and that corresponding to the liquid
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phase by −ωl, and adding the resulting two equations to yield(
∂φs

∂t
+ uω · ∇φs

)
= Γ s ρ̃

ρsρl − ωsφsζ s + ωlφlζ l, where ρ̃ = ωlρs + ωsρl. (2.39)

In a closed system, conservation of total energy in the system requires that

d
dt

∫
V
E s + E l dV =

∫
V
J dV = 0. (2.40)

Interaction between the phases cannot change the overall energy of the mixture (only
transfer the energy from one phase to another). This is in line with our (more stringent)
assumption that the energy exchanges are pure (their sum vanishes), which requires that

J = 0. (2.41)

2.5. Thermodynamic relations
Before establishing thermodynamic relations for the two-phase system, we must address
the subtle matter of pressure and in particular the difference between ‘thermodynamic’ and
‘mechanical’ definitions of pressure. Even for a compressible single-phase viscous fluid
there is a difference between these two definitions of pressure. The mechanical pressure
is defined by minus one third the trace of the stress tensor. The thermodynamic pressure
appears in definitions of thermodynamic potentials and accounts for changes in internal
energy with respect to volume in a compressible fluid. The difference between the two
definitions depends on the compaction viscosity and the divergence of the velocity field,
and disappears in static equilibrium (e.g. Landau & Lifshitz 1987).

So far we have introduced two mechanical pressures (ps, pl), one for each of the two
phases, and a shared interface pressure (p̃). Following Ricard (2007) (see also Rudge,
Bercovici & Spiegelman 2011), in what follows we identify the interface pressure as the
appropriate thermodynamic pressure, which we redefine as P = p̃ . Thus, from (2.25a,b),

ps = P + ωs�p, pl = P − ωl�p. (2.42a,b)

The pressure of each phase is assumed to be composed of the sum of thermodynamic
pressure P and compaction pressure �p, which is entirely mechanical in nature as it
arises due to flow. All thermodynamic potentials for both phases are defined using the
thermodynamic pressure P. All of the thermodynamic differential relations involving
pressure are to be taken as differentials of thermodynamic pressure P, i.e.

dps = dpl = dP. (2.43)

The derivation of thermodynamic relations for Gibbs free energy Gε, specific density
ρε and specific entropy Sε is standard and has been relegated to Appendix B. These
differential relations are as follows:

dGε = 1
ρε

dP − SεdTε, (2.44)

dρε = ρε(βεdP − αεdTε), (2.45)

dSε = −α
ε

ρε
dP + cεp

Tε
dTε, (2.46)

where αε is the thermal expansion coefficient, βε is the isothermal compression coefficient
and cεp is the specific heat capacity at constant pressure of phase ε.
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In light of the pressure decomposition (2.42), it is useful also to introduce the effective
Gibbs free energy Gε∗ as the Gibbs free energy defined using the thermodynamic pressure
(Ricard 2007) (compare with Gε defined in (2.34)):

Gε∗ = Eε − TεSε + P
ρε
, Gs = Gs

∗ + ωs�p
ρs , Gl = Gl

∗ − ωl�p
ρl . (2.47a–c)

Thus the Gibbs free energy of each phase can be thought of as a sum of thermodynamic
Gibbs free energy (Gε∗) and a contribution due to compaction pressure �p, which is
entirely mechanical in nature. Between (2.47a–c) and (2.44) it immediately follows that

dGs
∗ = 1

ρs dP − SsdTs − ωs�p d
(

1
ρs

)
, (2.48a)

dGl
∗ = 1

ρl dP − SldTl + ωl�p d
(

1
ρl

)
. (2.48b)

In the case of mechanical disequilibrium (�p /= 0), the chemical equilibrium is reached
when the effective Gibbs free energies of the two phases are equal.

2.6. Constitutive relations
In this section we exploit the principles of energy conservation and entropy production
(2.31) to derive constitutive relations for the closure terms in the governing equations.
We need to provide expressions for the deviatoric stress tensor σ ε, heat flux vector kε,
frictional momentum exchange Dε, mass transfer term Γ ε, pressure difference between
phases �p, entropy production Σε and coefficients γ ε, ωε.

We begin with a parametrisation of γ ε since it is the most elusive one, and in the absence
of physical estimates it has to be fixed based on theoretical reasoning. We recall that γ ε is
associated with the process of kinetic energy exchange between the phases during melting
and solidification. We take a simple view that the kinetic energy exchange due to phase
change is pure (kinetic energy of one phase is transferred wholly into the kinetic energy
of the other phase, with no energy being converted into other forms of energy), and thus
does not change the overall mechanical energy of the system. The terms involving γ ε in
the mechanical energy equation (2.29) should therefore vanish, which requires that

γ sΓ s + γ lΓ l = 0. (2.49)

The constraint γ s + γ l = 1 (equation (2.24c)) fixes

γ ε = 1
2 . (2.50)

This parametrisation eliminates the γ ε-dependent energy source term in J (2.38).
Alternative parametrisations are possible, for example setting γ ε = H(Γ ε), where H is
the Heaviside function (Roberts & Loper 1987), at the expense of increased mathematical
complexity.

Conservation of total energy (2.40) requires that J vanishes. Thus on using (2.39) for
Dωφs/Dt and (2.47a–c) for �G = �G∗ +�pρ̃/(ρsρl) in (2.38) yields

TsΣ s + TlΣ l = φsσ s : ∇us + φlσ l : ∇ul − ks · ∇Ts − kl · ∇Tl

− Ds ·�u − Γ s�G∗ +�p(−ωsφsζ s + ωlφlζ l). (2.51)

To ensure entropy production we must ensure that Σ s +Σ l ≥ 0. We decompose the
entropy production term Σε into contributions due to viscous heating (Σε

σ ), internal
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diffusive heat flux (Σε
k ) and interactions between the phases (Σε

X):

Σε = Σε
σ +Σε

k +Σε
X. (2.52)

We assume that dissipative phenomena associated with only one phase depend exclusively
on the variables of this phase. Thus, viscous dissipation of one phase depends only on
the internal stresses in that phase and, similarly, thermal dissipation of one phase depends
only on that phase’s internal heat flux:

Σε
σ = φεσ ε : ∇uε

Tε
, Σε

k = −kε · ∇Tε

Tε
. (2.53a,b)

We choose the usual Newtonian form for the deviatoric stress tensor σ ε and a simple
description for the heat flux vector kε:

σεij = με

(
∂uεi
∂xj

+
∂uεj
∂xi

− 2
3
∂uεk
∂xk

δij

)
, kε = −φ

εkε

Tε
∇Tε, (2.54a,b)

where με is the dynamic viscosity of phase ε and kε is the thermal conductivity of phase ε.
With forms (2.54a,b), it can be easily demonstrated that both the viscous heating term and
the diffusive heating term (2.53a,b) are positive definite: Σε

σ = (1/2)φεσ ε : σ ε/Tε ≥ 0,
Σε

k = φεkε|(∇Tε)/Tε|2 ≥ 0. Thus, to ensure entropy production, we only need to ensure
that Σ s

X +Σ l
X ≥ 0. It is useful to decompose the interaction term Σε

X into a sum of the
mean mixture entropy production X̄ and interphase entropy exchange χε as follows:

Σε
X = X̄ + χε, X̄ = 1

2(Σ
s
X +Σ l

X), χ s = −χ l. (2.55a–c)

Using (2.55a–c), we can write TsΣ s
X + TlΣ l

X = (Ts + Tl)X̄ +�Tχ s, and thus (2.51)
becomes

X̄ = 1
Ts + Tl (−Ds ·�u − χ s�T − Γ s�G∗ +�p(−ωsφsζ s + ωlφlζ l)). (2.56)

Terms {Ds, χ s, Γ s,�p} are still unknown and require closure. At this stage we follow the
standard procedure of irreversible thermodynamics (e.g. Roberts & Loper 1987; Ricard
2007; De Groot & Mazur 2013) whereby the closure terms {Ds, χ s, Γ s,�p} are identified
as thermodynamic fluxes which can be represented as linear functions of thermodynamic
scalar forces. In (2.56) each thermodynamic force appears multiplied by its conjugate
flux. We adopt the simplest closure approach whereby each force is linearly related to
its conjugate flux:

Ds = −ΛD�u = −Dl, (2.57)

χ s = −Λχ�T = −χ l, (2.58)

Γ s = −ΛΓ�G∗ = −Γ l, (2.59)

�p = Λ�p(−ωsφsζ s + ωlφlζ l), (2.60)

where ΛD,Λχ,ΛΓ ,Λ�p > 0 are phenomenological coefficients. Equation (2.56) can
thus be written as

X̄ = 1
Ts + Tl

( |Ds|2
ΛD

+ (χ s)2

Λχ
+ (Γ s)2

ΛΓ
+ (�p)2

Λ�p

)
. (2.61)

The term Ds, which has dimensions of momentum density over time, represents
momentum transfer due to friction between the phases. Coefficient ΛD, which has
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dimensions of density over time, is sometimes referred to as the hydraulic conductivity
(Bear 1988), and acts to reduce the velocity differences between phases. In the
tight-coupling limit ΛD → ∞ (Roberts & Loper 1987), the two phases move with the
same velocity (�u = 0). In two-phase studies of predominantly solid systems this is
represented by Darcy drag or Stokes drag (see e.g. Bercovici et al. 2001; Michaut et al.
2013). Following such an approach, however, results in equations which are not materially
invariant. Various simple symmetric forms of the interaction coefficient ΛD have been
used in the literature (see e.g. Bercovici & Michaut 2010; Degruyter et al. 2012; Michaut
et al. 2013). We assume that ΛD has the simple symmetric form

ΛD = cD
φsρsφlρl

ρ̄
, (2.62)

where cD is a constant coefficient of interphase friction (rate of frictional momentum
exchange). ScalingΛD with φsφl ensures that momentum transfers cease in the pure-phase
limit (φε → 1) (Keller & Suckale 2019). Note that with this parametrisation, the frictional
momentum exchange becomes proportional to the phase separation flux: Ds = −cDj
(recall (2.14)).

The entropy exchange term χ s is a macroscopic parametrisation of the microscale heat
transfer between solid and liquid phases. Coefficient Λχ in (2.58) represents the rate
of thermal equilibration between the phases. If thermal equilibration occurs via thermal
conduction between solid and liquid, then equilibration of Ts and Tl occurs on a time scale
tT = r̄2/κ̄ , where r̄ is the average solid grain radius and κ̄ is a mean thermal diffusivity
(Roberts & Loper 1987). Using the maximum grain size of 3 cm as estimated by Walker,
Davies & Wilson (2021), and thermal diffusivity of 10−5 m2 s−1, the thermal equilibration
time is of the order of 10 s. Thus thermal equilibration between phases is possibly nearly
instantaneous (at least on geophysically relevant time scales).

Equation (2.59) controls the kinetics of melting and freezing and by consequence defines
the equilibrium condition. According to (2.59) freezing occurs whenever the effective
Gibbs free energy of the solid is less than that of the liquid (i.e. when the solid phase
is energetically favoured over the liquid). The coefficient ΛΓ in (2.59) represents the rate
at which the system tends to phase equilibrium. For a pure slurry, the relaxation to phase
equilibrium occurs on the same time scale as the relaxation to equality of temperatures
(Roberts & Loper 1987).

Equation (2.60) states that the difference between mechanical pressures �p of two
phases is a result of compaction and dilation of the phases (ζ ε). This compaction pressure
�p appears in the momentum equations as an additional isotropic stress (see (C3c) and
(C3d)). Thus, deformation in a two-phase medium depends on two viscosities: shear
viscosity με which relates deviatoric stress and deviatoric strain rate (2.54a) (just as for
a pure-phase material) and compaction viscosity ωεΛ�p which describes resistance to
isotropic compaction (Katz et al. 2022).

Coefficient ωε, 0 ≤ ωε ≤ 1, controls the partitioning of the pressure jump between
the two phases and represents the fraction of the volume-averaged surface force exerted
on each phase (Bercovici & Ricard 2003). At a microscopic level, the solid–liquid
interfaces are not sharp discontinuities but correspond to layers (called ‘selvedge’ layers)
of disorganised atom distributions. The exact value of ωε is related to the microscopic
behaviour of the two phases (molecular bond strengths and thickness of the interfacial
selvage layers) and measures the extent to which the microscopic interface layer is
embedded in one phase more than the other (Ricard 2007). Bercovici & Ricard (2003)
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provide an expression for ωε in terms of the dynamic viscosities of the phases:

ωε = φεμε

φsμs + φlμl . (2.63)

The exact form of the relation for ωε is probably not important for many geological
applications for which μs � μl. In these cases, regardless of the relation for ωε, one can
assume ωs = 1 and ωl = 0. In this case, (2.60) reduces to �p = −Λ�pφ

sζ s, or, without
loss of generality, �p = −Cζ s, where C is the compaction viscosity of the solid phase,
which in general varies with the liquid volume fraction (C = C(φl)). It is unknown what is
the appropriate form of compaction viscosity in the context of two-phase iron mixture at
F-layer conditions. Roberts & Loper (1987) suggest that a slurry should be in mechanical
pressure equilibrium (�p = C = 0). On the other hand, it is well known that in the context
of partially molten rock, the compaction viscosity can be similar in magnitude to the
shear viscosity. For simplicity, we first perform detailed analysis for the case with uniform
shear viscosity με (with C = 0), and return to discuss the influence of porosity-dependent
compaction viscosity in § 5.6.

The full system of governing equations consists of two equations of mass continuity
(2.12), two equations of momentum (2.26a), (2.26b), two equations of entropy (2.30)
and two thermodynamic relations each for density (2.45), entropy (2.46) and Gibbs free
energy (2.44) (or effective Gibbs free energy (2.48)). This adds up to 16 equations for 16
variables: φs,P,us,ul, Ts, Tl, Ss, Sl, ρs, ρl,Gs,Gl (or Gs∗,Gl∗) (the full set of equations is
summarised in § C.1).

2.7. Fast-melting limit
A significant simplification of the governing equations can be achieved by assuming that
rates of thermal and phase equilibration are infinite: Λχ → ∞,ΛΓ → ∞ (Roberts &
Loper 1987). With Λχ → ∞, the temperature of the two phases becomes equal:

Ts = Tl = T. (2.64)

With infinitely fast melting ΛΓ → ∞, (2.59) necessitates that

�G∗ = 0. (2.65)

The equilibrium condition (2.65) must hold for all thermodynamic states; thus the total
derivative of (2.65) must be zero (i.e. dGs∗ − dGl∗ = 0). Recalling (2.48a) and (2.48b), the
equilibrium condition results in the following relation:(

1
ρs − 1

ρl

)
dP = �S dT −�p

(
ωs

(ρs)2
dρs + ωl

(ρl)2
dρl
)
. (2.66)

Constraint (2.66) means that the temperature T and pressure P are no longer independent
variables. The thermodynamic equilibrium condition (2.65) does not mean that phase
change is not allowed. Even at equilibrium Γ s can be finite, though it may no longer be
determined directly through (2.59). Instead, Γ s is determined indirectly by the constraint
(2.66) which restricts the temperature to the melting/freezing temperature. Note that in
the absence of compaction (�p = 0) the fast-melting constraint (2.66) becomes identical
to the classic Clapeyron relation. When the compaction pressure is non-zero (�p /= 0),
the pressure difference between phases affects the melting temperature if the phases are
compressible (dρs /= 0, dρl /= 0).
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When the two phases share the same temperature there is no need for two separate
entropy equations. Instead we may formulate an evolution equation for entropy density of
the mixture ρS (2.9). Note first that the mixture entropy flux ρSu = (ρS)(ρu)/ρ̄ can be
written as

ρSu = φsρsSsus + φlρlSlul −�Sj. (2.67)

Summing entropy equations of individual phases (2.30), and using (2.67), we obtain the
conservation equation for the entropy density of the mixture ρS,

∂

∂t
(ρS)+ ∇ · (ρSu)+ ∇ · (�Sj)+ ∇ · k = Σ, (2.68)

with total heat flux vector k and total entropy production term Σ :

k = ks + kl = − k̄
T

∇T, where k̄ = φsks + φlkl, (2.69)

Σ = Σ s +Σ l = 1
T

(
−k · ∇T + φsσ s : ∇us + φlσ l : ∇ul +ΛD|�u|2 + (�p)2

Λ�p

)
.

(2.70)

Using the total mass conservation equation (2.13), and the definitions of k and Σ , the
barycentric entropy equation (2.68) becomes

ρ̄T
D̄S̄
D̄t

− T∇ ·
(

L
T

j
)

= ∇ · (k̄∇T)+ Ψ, (2.71)

where L is latent heat of fusion and Ψ is deformational work:

L ≡ −T�S, (2.72)

Ψ = φsσ s : ∇us + φlσ l : ∇ul +ΛD|�u|2 + (�p)2

Λ�p
. (2.73)

Throughout, we shall assume that L is constant.
We may convert the equation for mixture entropy S̄ into an equation for the

temperature T . To do that, we first need to derive the relation for the thermodynamic
derivative of mixture entropy. Recall that, by definition (2.9) (and (2.6)), S̄ = ψ sSs + ψ lSl,
which, on differentiation, gives

dS̄ = ψ sdSs + (1 − ψ s)dSl +�Sdψ s. (2.74)

Substituting the definition of dSε (2.46) into (2.74) we obtain the differential of mixture
entropy,

dS̄ = − ᾱ
ρ̄

dP + c̄p

T
dT − L

T
dψ s, (2.75)

where ᾱ is the thermal expansion coefficient of the mixture, c̄p is the specific heat capacity
of the mixture and L is latent heat of fusion per unit mass:

ᾱ = φsαs + φlαl, (2.76)

c̄p = (φsρscs
p + φlρlcl

p)/ρ̄. (2.77)
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Using (2.75) we can write

ρ̄T
D̄S̄
D̄t

= −ᾱT
D̄P
D̄t

+ c̄pρ̄
D̄T
D̄t

− Lρ̄
D̄ψ s

D̄t
. (2.78)

On using (2.78), together with the equation for D̄ψ s/D̄t (2.14), and the definition of latent
heat (2.72), the entropy equation (2.71) becomes the temperature equation:

c̄pρ̄
D̄T
D̄t

− ᾱT
D̄P
D̄t

− LΓ s + L
T

j · ∇T = ∇ · (k̄∇T)+ Ψ. (2.79)

The full system of equations governing the evolution of the fast-melting slurry consists
of two equations of mass continuity (2.12), two equations of momentum (2.26a), (2.26b),
the equation for the temperature of the mixture (2.79), the liquidus constraint (2.66)
and two thermodynamic relations for solid and liquid densities (2.45). This adds up
to 12 equations for 12 variables: φs,P,us,ul, T, ρs, ρl, Γ s (the full set of equations of
fast-melting slurry is summarised in § C.2).

Notably, variables Ss, Sl,Gs,Gl, and thus (2.46), (2.44), are no longer relevant in the
fast-melting limit. Similarly, Γ s is no longer determined directly by (2.59). Instead we
may think that the temperature T follows the liquidus (2.66), and the freezing rate Γ s is
determined by the heat equation (2.79).

2.8. Boundary conditions
To complete the theory it is necessary to specify boundary conditions on bounding
surfaces. In general the relevant conditions at both the top and bottom of the slurry
are not known because they are not constrained by observations. There are a limited
number of conditions that can be deduced from the governing equations, which need to be
supplemented with additional assumptions and approximations based on physical intuition
or experimental insight where available.

In the most general case the position of bounding surfaces may be not fixed and may
evolve in time. For example, in Earth’s core, over time the ICB advances in the radial
direction due to inner core freezing. Thus, a boundary B may move at an unknown velocity
UB, which does not in general coincide with the flow velocity uε. By integrating the
governing equations over a pillbox volume that straddles the boundary and moves together
with it we can derive continuity conditions that must hold at the interface. Applying this
procedure to equations of mass (2.12), momentum (2.16) and total energy (2.37) leads to
the following conditions:

[[φερε(uε − UB) · n̂]] = 0, on B, (2.80)

[[φερε(uε · n̂)((uε − UB) · n̂)+ φεpε − φεn̂ · σ ε · n̂]] = 0, on B, (2.81)

[[φερε(uε · t̂)((uε − UB) · n̂)− φε t̂ · σ ε · n̂]] = 0, on B, (2.82)

[[ρE(ū − UB)+�E j + φspsus + φlplul − φsus · σ s − φlul · σ l + Tk̄]] · n̂ = 0, on B,
(2.83)

where n̂ (t̂) is a unit vector normal (tangent) to the boundary surface B and [[A]] denotes
the jump in a quantity A across the boundary B (detailed derivation of these conditions
is included in Appendix D). Conditions (2.80)–(2.83) represent continuity of mass flux,
tangential and normal components of momentum flux and total energy flux, respectively.
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Condition (2.80) is known as the kinematic condition and specifies the relationship
between normal components of velocity. Following Leal (2007) and Loper & Roberts
(1978) we additionally impose the standard dynamic condition of continuity of tangential
component of velocity,

[[uε · t̂]] = 0, on B. (2.84)

This is usually known as the no-slip condition, and it is generally accepted to apply
under almost all circumstances for Newtonian fluids either at solid surfaces or at
fluid–fluid interfaces (Leal 2007). Note that with (2.84) and (2.80), continuity of tangential
momentum flux (2.82) reduces to the condition of continuity of tangential components of
deviatoric stress, i.e. [[φε t̂ · σ ε · n̂]] = 0 on B.

In addition to the above conditions, it is often assumed that the bounding surface
is maintained at thermal equilibrium (e.g. Leal 2007), and so the temperature varies
continuously across the interface:

[[T]] = 0, on B. (2.85)

Similarly, it is often assumed that the (thermodynamic) pressure is continuous on the
interface (Loper & Roberts 1978):

[[P]] = 0, on B. (2.86)

In light of continuity of temperature (2.85) and pressure (2.86), it follows from the equation
of state (2.45) that the specific density of either phase will also be continuous:

[[ρε]] = 0, on B. (2.87)

Note that this does not mean that the total (mixture) density ρ̄ is continuous across the
interface since, in general, φs is not necessarily continuous.

Equations (2.80)–(2.87) are continuity conditions, and thus require knowledge about
variables on either side of the domain boundary. Since the values that these variables take
on the exterior of the boundaries are not determined by the interior solution, additional
assumptions about properties of the bounding regions are required to turn the continuity
conditions into boundary conditions. Specific boundary conditions are developed presently
(in § 3.1). Note also that, in general, UB is unknown and an additional equation is required
to determine it.

3. Application to the F-layer

3.1. Problem formulation
We work in Cartesian geometry, in a plane parallel layer of depth d (figure 1). Coordinates
x, y denote horizontal directions and z denotes the vertical. Gravity acts in the vertical
direction g = −gêz. The bottom boundary (z = 0) is representative of the ICB, while the
top boundary (z = d) marks the end of the F-layer. For simplicity, we assume that the
boundaries are fixed and not moving (UB = 0).

The problem of a single-phase compressible fluid bounded in the vertical direction
requires nine boundary conditions: one on the density, two on the temperature and two
conditions (for each bounded dimension) on each of the three components of the velocity
vector. In the two-phase problem, we have an additional density field and an additional
velocity vector, and thus we have to include seven additional boundary conditions, which
leads to a total of 16 boundary conditions. In practice, there are more continuity conditions
than the number of boundary conditions that can be applied; only a subset of these
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d

Solid inner core

F-layer

Transition region

Convection zone

g
z

x

φ s = 0

z = d

z = 0

φ s = 1

0 < φ s < 1

Figure 1. Schematic of the problem domain.

conditions can be used to develop practicable boundary conditions. The choice of which
continuity conditions should take priority depends on the nature of the bounding region.

We set the values of density and temperature at the bottom boundary to their reference
values (2.85), (2.87):

ρl = ρl
r, ρs = ρs

r , T = Tr on z = 0. (3.1a–c)

We assume that the inner core is static and impermeable. Conditions of continuity of mass
flow (2.80) and tangential velocity (2.84) then reduce to

us = ul = 0 on z = 0, (3.2)

while the condition of continuity of energy flux (2.83) reduces to the statement of
continuity of heat flux:

k̄
∂T
∂z

= −q on z = 0, (3.3)

where q is the secular cooling (per unit area) of the inner core and k̄ is conductivity of the
slurry (recall (2.69)).

Unlike the rigid surface on the bottom, the top boundary represents the interface
between the F-layer slurry and the rest of the outer core. In the F-layer, the temperature is
constrained to the liquidus and the solid volume fraction is non-zero everywhere (including
at the top boundary). On the other hand, the convection zone is entirely liquid and the
temperature does not follow the liquidus. To reconcile these two regions, we envisage
a thin transition region between the F-layer and convection zone proper (see figure 1),
where the temperature profile departs from the liquidus and the solid fraction diminishes
to zero. Thus we assume that φε is continuous across z = d. In that case, the conditions of
continuity of tangential and normal stress (2.81), (2.82) reduce to

[[σεxz]] = 0, [[σεyz]] = 0, [[σεzz]] = 0 on z = d. (3.4a–c)

Since we do not solve for the velocities beyond z = d we cannot directly use the above
conditions. Instead, we make the simplifying assumption that top boundary is a stress-free
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surface where all components of the deviatoric stress tensor are zero:

σεxz = 0, σ εyz = 0, σ εzz = 0 on z = d. (3.5a–c)

Equations (3.1a–c)–(3.3) and (3.5a–c) form a complete set of 16 boundary conditions
necessary for the solution of the two-phase slurry problem.

3.2. Dimensionless equations
We begin by non-dimensionalising the governing equations (2.12), (2.26a), (2.26b), (2.79),
(2.66), (2.45) (or equivalently, (C3a)–(C3e)). For units of density (liquid and solid)
and temperature we choose their values at the bottom of the layer (z = 0): ρl

r, ρ
s
r and

Tr, respectively. (The subscript ‘r’ is used throughout to denote representative/reference
values of quantities.) We scale length with the depth of the layer d, time with the
gravitational free-fall time scale

√
d/g, velocity with

√
gd, pressure with ρl

rgd and the
mass production term Γ s with ρl

r
√

g/d:

x = dx̂, t = (d/g)1/2 t̂, uε = (gd)1/2ûε, P = (ρl
rgd)P̂,

ρl = ρl
rρ̂

l, ρs = ρs
r ρ̂

s, T = TrT̂, Γ s = ρl
r(g/d)

1/2Γ̂ s.

}
(3.6)

(Note that volume fractions φε are dimensionless and bounded between 0 and 1, and thus
do not require any scaling.) We assume that material coefficients of individual phases
αs, αl, βs, β l, cs

p, cl
p, ks, kl, μs, μl are constant. We also set ωs = 1, ωl = 0 and γ s = γ l =

1/2. Applying outlined scalings (3.6) to the governing equations, and omitting hats for ease
of notation, we obtain the following set of dimensionless equations:

λρ

(
∂(φsρs)

∂t
+ ∇ · (φsρsus)

)
= Γ s, (3.7a)

∂(φlρl)

∂t
+ ∇ · (φlρlul) = −Γ s, (3.7b)

λρφ
sρs

(
∂us

∂t
+ us · ∇us

)
= −φs∇P − λρφsρsêz − Kj − 1

2
Γ s�u

+λμ
√

Pr
R

∇ · (φs(σ s + C(φl)ζ sI)), (3.7c)

φlρl
(
∂ul

∂t
+ ul · ∇ul

)
= −φl∇P − φlρlêz + Kj − 1

2
Γ s�u +

√
Pr
R

∇ · (φlσ l), (3.7d)

c̄pρ̄

(
∂T
∂t

+ ū · ∇T
)

− α∗DᾱT
(
∂P
∂t

+ ū · ∇P
)

− Γ s

St
+ λρ

St
j · ∇T

T
= 1√

RPr
∇ · (k̄∇T)

+DKj ·�u + D

√
Pr
R

(
1
2
λμφ

sσ s : σ s + 1
2
φlσ l : σ l + λμφsC(φl)(ζ s)2

)
, (3.7e)

(
1
ρl − 1

λρρs

)
dP = 1

St D
1
T

dT − λμ
λρ

√
Pr
R

C(φl)ζ s

(ρs)2
dρs, (3.7f )
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dρs = ρs(λββ
∗dP − λαα∗dT), (3.7g)

dρl = ρl(β∗dP − α∗dT), (3.7h)

where

φl = 1 − φs, �u = us − ul, j = φsρsφlρl

ρ̄
�u,

ρ̄ = λρφsρs + φlρl, c̄p = (λcpλρφ
sρs + φlρl)/ρ̄, ᾱ = λαφs + φl,

k̄ = λkφ
s + φl, ū = (λρφ

sρsus + φlρlul)/ρ̄,

σ εij = ∂uεi
∂xj

+
∂uεj
∂xi

− 2
3
∂uεk
∂xk

δij, ζ s = 1
ρs

(
∂ρs

∂t
+ ∇ · (ρsus)

)
.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(3.8)

The dimensionless numbers are

R = cl
p(ρ

l
r)

2gd3

klμl , Pr = cl
pμ

l

kl , D = gd
cl

pTr
, St = cl

pTr

L
, K = cDρ

s
r

ρl
r(g/d)1/2

,

θ = qd
kl

rTr
, α∗ = αlTr, β∗ = β lρl

rgd,

λα = αs

αl , λβ = βs

β l , λcp = cs
p

cl
p
, λρ = ρs

r

ρl
r
, λk = ks

kl , λμ = μs

μl .

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭
(3.9)

Parameter R quantifies the strength of the gravitational force as measured against viscous
and thermal diffusive forces (it is similar to the Rayleigh number associated with
buoyancy-driven flow although this analogy is not complete since R as defined here is
missing a factor describing the density difference across the layer); the Prandtl number
Pr is the ratio of viscosity to thermal diffusivity; the dissipation number D measures
the influence of compressibility/stratification; the Stefan number St measures the ratio
between sensible and latent heat; K describes the effects of interphase drag/friction;
parameter θ arises from the heat-flux boundary condition (3.2), which in dimensionless
form becomes dT/dz = −θ/k̄, where θ = qd/kl

rTr is the dimensionless heat flux (or
temperature gradient) at the bottom boundary; α∗ and β∗ are non-dimensionalised
coefficients of thermal expansion and isothermal compression respectively; parameters
{λα, λβ, λcp, λρ, λk, λμ} measure ratios of physical properties between solid and liquid
phases. We note that studies of two-phase flows in the Earth’s mantle often employ an
alternative non-dimensionalisation based on compaction length (given by the square root
of the ratio of viscous force and interphase drag) and Darcy velocity (ratio of relative
buoyancy and interphase drag) (see e.g. McKenzie 1984).

Table 1 provides estimates of dimensional parameters relevant for Earth’s core, while
estimates of the dimensionless parameters are included in table 2. A detailed discussion of
geophysically relevant ranges for many of the parameters is given in Wong et al. (2021).
In order to reduce the parameter space that needs to be explored we keep the following
parameters fixed to values that are relevant to Earth’s F-layer:

α∗ = 0.05, β∗ = 0.005, D = 0.1, Pr = 0.1, St = 4,
θ = 0.09, λρ = 1.25, λα = λβ = λcp = λk = 1.

}
(3.10)

These parameters are reasonably well known and we expect that uncertainties on their
values would have only a minor effect on the solutions presented below. It is worth
noting that setting λα = λcp = λk = 1 simplifies the temperature equation (3.7e) and
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Dimensional parameters

Symbol Definition Estimate Units Source

d depth of the F-layer 1.5 × 105 m a

g gravitational acceleration 4.4 m s−2 b

Tr ICB temperature 5500 K c

ρl
r reference density of liquid iron 12.52 × 103 kg m−3 d

ρs
r reference density of solid iron 12.76 × 103 kg m−3 d

αl thermal expansion coefficient (liquid) (1.02–1.95)× 10−5 K−1 d

αs thermal expansion coefficient (solid) 0.96 × 10−5 K−1 e

β l isothermal compressibility (liquid) 7.55 × 10−13 Pa−1 f

βs isothermal compressibility (solid) 7.97 × 10−13 Pa−1 g

cl
p specific heat capacity (liquid) 715 J kg−1 K−1 d

cs
p specific heat capacity (solid) 750 J kg−1 K−1 h

kl thermal conductivity (liquid) 50–107 W m−1 K−1 i

ks thermal conductivity (solid) 286–330 W m−1 K−1 j

μl dynamic viscosity (liquid) 10−2 Pa s k

μs dynamic viscosity (solid) 1011–1022 Pa s h

L latent heat of fusion 0.75 × 106 J kg−1 d

Qi ICB heat flux (0.8–2)× 1012 W m

q = Qi/(4πr2
i ) ICB heat flux per unit area 0.04–0.1 W m−2

ri inner core radius 1.22 × 106 m b

cD interphase friction coefficient 8–1600 s−1

a Souriau & Poupinet (1991) e Vočadlo et al. (1999) i Davies et al. (2015)
b Dziewonski & Anderson (1981) f Gubbins et al. (2008) j Pozzo et al. (2014)
c Nimmo (2015) g Alfè, personal communication k Pozzo et al. (2013)
d Gubbins et al. (2004) h Lasbleis & Deguen (2015) m Wong et al. (2018)

Table 1. Estimates of physical parameters characteristic of pure iron at ICB conditions.

the heat flux boundary condition (dT/dz = −θ/k̄) because the mixture thermodynamic
coefficients become constant: ᾱ = c̄pρ̄ = k̄ = 1. By contrast, the magnitudes of R and
λμ are numerically intractable and so we can only search for limiting behaviour as these
parameters are increased towards geophysical values.

The value of K is hard to estimate for the F-layer slurry; it depends on the momentum
exchange coefficient cD introduced through the parametrisation of the drag term ΛD =
cDφ

sρsφlρl/ρ̄ (2.57). In magmatic settings the parametrisation of ΛD is based on the
permeability of the solid matrix,Λm

D = μl/(kφφln−2
), where n = 2 is usually taken and kφ

is a permeability constant (units m2) whose values can range from 10−7 (Spencer, Katz &
Hewitt 2020) to 5 × 10−10 (Šrámek et al. 2007). To match the magnitude of the drag term,
ΛD ∼ Λm

D, we may approximate cD = μl/(kφρl
r). Using kφ = 5 × 10−10–10−7 gives cD =

8–1600 s−1, and the dimensionless interaction parameter in the range K = 103–3 × 105.
However, such low values of kφ characterise scenarios where the liquid volume fraction is
small and the solid phase forms an interlocking matrix, and are therefore not appropriate
for the slurry F-layer where the solid volume fraction must be very small (of the order
of 1 %; Gubbins et al. 2008). We expect the effective permeability of the slurry to
be somewhat larger, implying smaller K. In the absence of experimental information
at planetary core conditions, we explore the range K = 102–104, which corresponds to
cD = 0.5–50 s−1.
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Dimensionless parameters

Symbol Definition Estimate This study

α∗ thermal expansion coefficient 0.05 0.05
β∗ isothermal compression coefficient 0.003 0.005
D compressibility parameter 0.2 0.1
Pr Prandtl number 0.1 0.1
St Stefan number 4 4
θ temperature gradient at z = 0 0.003–0.06 0.09
λρ density ratio 1.02 1.25
λα thermal expansion ratio 0.49–0.94 1
λβ isothermal compression ratio 1.05 1
λcp specific heat capacity ratio 1.05 1
λk thermal conductivity ratio 2.67–6.6 1
R dimensionless measure of gravity 1027–1029 103–109

K interphase friction parameter 103–3 × 105 102–104

λμ dynamic viscosity ratio 1013–1024 103–109

Table 2. Estimates of dimensionless numbers at core conditions (based on table 1), and values used in this
study.

4. One-dimensional time-independent solution

4.1. Governing equations and boundary conditions
We seek a time-independent solution that depends on the z coordinate only, with
unidirectional motion along the vertical direction (no horizontal motion), i.e. uε =
(0, 0, uεz (z)). In this 1-D state the horizontal components of velocity of each phase drop
out, along with equations of horizontal momenta, and the system of (3.7a)–(3.7 f ) reduces
from 12 to 8 equations:

λρ
d
dz
(φsρsus

z) = Γ s, (4.1a)

d
dz
(φlρlul

z) = −Γ s, (4.1b)

λρφ
sρsus

z
dus

z

dz
= −φs dP

dz
− λρφsρs − Kjz − 1

2
Γ s�uz

+λμ
√

Pr
R

d
dz

(
4
3
φs dus

z

dz
+ φsC(φl)ζ s

)
, (4.1c)

φlρlul
z
dul

z

dz
= −φl dP

dz
− φlρl + Kjz − 1

2
Γ s�uz + 4

3

√
Pr
R

d
dz

(
φl dul

z

dz

)
, (4.1d)

c̄pρ̄ūz
dT
dz

− α∗DᾱTūz
dP
dz

− Γ s

St
+ λρ

St
jz
T

dT
dz

= 1√
R Pr

d
dz

(
k̄

dT
dz

)
+ D Kjz�uz

+D

√
Pr
R

⎛
⎝4

3
λμφ

s
(

dus
z

dz

)2

+ 4
3
φl

(
dul

z

dz

)2

+ λμφsC(φl)(ζ s)2

⎞
⎠ , (4.1e)

976 A5-24

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

83
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.834


A two-phase pure slurry model for planetary cores(
1
ρl − 1

λρρs

)
dP
dz

= 1
St D

1
T

dT
dz

− λμ
λρ

√
Pr
R

C(φl)ζ s

(ρs)2
dρs

dz
, (4.1f )

dρs

dz
= ρs

(
λββ

∗ dP
dz

− λαα∗ dT
dz

)
, (4.1g)

dρl

dz
= ρl

(
β∗ dP

dz
− α∗ dT

dz

)
. (4.1h)

The eight variables are: φs,P, us
z, ul

z, T, ρs, ρl, Γ s. Auxiliary relations included in (3.8)
give φl = 1 − φs, ζ s = dus

z/dz + (us
z/ρ

s)dρs/dz, jz = φsρsφlρl�uz/ρ̄, etc. Note also that
four boundary conditions on the horizontal components of phase velocities (3.3) and
four boundary conditions on tangential stresses (3.5a–c) are automatically satisfied in the
1-D state, and thus the number of boundary conditions reduces from 16 to 8. Boundary
conditions (3.1a–c), (3.2), (3.3), (3.5a–c), in dimensionless form, read

ρs = 1, ρl = 1, T = 1,
dT
dz

= −θ, us
z = ul

z = 0 on z = 0;
dus

z

dz
= dul

z

dz
= 0 on z = 1.

⎫⎪⎬
⎪⎭ (4.2)

4.2. Characteristics of the 1-D time-independent state
The 1-D time-independent solution of the two-phase system cannot be static (us

z =
ul

z = 0); if that were the case the governing equations reduce to an overprescribed
(contradictory) system. With us

z = ul
z = 0, solid and liquid momentum equations (4.1c),

(4.1d) give

0 = −φs dP
dz

− λρφsρs; 0 = −φl dP
dz

− φlρl. (4.3a,b)

Unless either φs = 0 or φl = 0 (which is unlike the slurry state where solid fraction
varies 0 < φs < 1) these two equations cannot be satisfied if the two phases have different
densities (λρρs /= ρl). Thus, in general the basic state flow velocities have to be non-zero.

In the 1-D state, conservation of mass and conservation of energy place strong
constraints on the dynamics (e.g. Ribe 1985). The total mass conservation equation,
obtained by summing (4.1a) and (4.1b), can be readily integrated, subject to the
impenetrable boundary condition (us

z = ul
z = 0 at z = 0) to give

ρuz ≡ λρφsρsus
z + φlρlul

z = 0, (4.4)

and thus the mean vertical velocity of the mixture ūz = 0. Since φε, ρε are positive
definite, the velocities of solid and liquid phases have to be of opposite sign. Physically,
we expect solutions where dense (solid) phase falls (us

z < 0) and light (liquid) phase rises
(ul

z > 0). Further, integrating the solid mass conservation equation (4.1a) subject to us
z = 0

on z = 0 gives ∫ 1

0
Γ s dz = λρ(φsρsus

z)|z=1. (4.5)
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This relation states that the total melting (freezing) within the layer must balance with the
solid mass flux entering (leaving) the layer. Note that the solid flux on the top boundary is
not imposed through the boundary conditions (4.2); instead, it is determined as part of the
solution. Since we expect the solid phase to always be falling, us

z < 0, the integral of Γ s

is negative and thus on average heat is being absorbed by melting. Conservation of mass
(4.4) also tells us that the solid mass flux in is balanced by the liquid mass flux out.

The total heat balance in the 1-D system, which follows from integrating the temperature
equation (4.1e), may be written as

QC = QL + QP + QF + QV + Qζ . (4.6)

The term on the left-hand side represents the net conductive heat flux across the slurry
layer, i.e. difference between heat flux out at the top qC

z=1 and heat flux in at the bottom
qC

z=0:

QC =
∫ 1

0
− d

dz

(
k̄

dT
dz

)
dz = −

(
k̄

dT
dz

)∣∣∣∣
z=1

+ k̄θ = qC
z=1 − qC

z=0. (4.7)

Terms on the right-hand side represent contributions due to latent heat release/absorption
QL, the heat-pipe effect QP, interphase friction QF, viscous heating QV and heating due to
compaction Qζ :

QL =
√

R Pr
St

∫ 1

0
Γ s dz,

QP = −λρ
√

R Pr
St

∫ 1

0

jz
T

dT
dz

dz,

QF = DK
√

R Pr
∫ 1

0
jz�uz dz,

QV = 4
3

DPr
∫ 1

0
λμφ

s
(

dus
z

dz

)2

+ φl

(
dul

z

dz

)2

dz,

Qζ = λμDPr
∫ 1

0
φsC(φl)(ζ s)2 dz.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(4.8)

(Recall that the condition (4.4) leads to elimination of terms involving ūz from the
temperature equation (4.1e); thus the advective terms do not contribute to the heat
balance.) We can deduce the sign of each contribution to the heat flux. The total melting
rate balances the solid flux from above (4.5), and so QL < 0; heat is absorbed through
melting. Since us < 0 and ul > 0, the flux jz is always negative jz < 0. The temperature
gradient is also expected to be negative dT/dz < 0 as temperature decreases monotonically
with height. Thus, the product jz(dT/dz) > 0, and since other quantities in the integrand
are positive definite, it follows that the total contribution on account of the heat-pipe
effect is negative QP < 0. Clearly, integrands corresponding to frictional, viscous and
compaction heating are positive definite and thus provide positive contributions to the
net heat flux QF > 0,QV > 0 and Qζ > 0.

In a case where the mechanical heating terms (QP,QF,QV ,Qζ ) are negligible, the main
energy balance is between conductive heat flux and latent heat QC = QL; then, the total
solid melting rate (integral of Γ s) depends only on the difference between heat flux in and
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out of the system (recall (4.7)). Note that the boundary conditions (4.2) only specify the
heat flux at the bottom boundary; the heat flux out at the top boundary is freely determined
by the solution. Thus, we do not know a priori what the difference is between heat flux in
and out of the system, and consequently the total solid melting rate.

The pressure gradient is linked to the temperature gradient through the liquidus relation.
From the imposed temperature and temperature gradient at the bottom boundary, the
pressure gradient at z = 0 is

dP
dz

∣∣∣∣
z=0

= −θ
(1 − λ−1

ρ )StD
. (4.9)

We can compare this with the magnitude of the hydrostatic pressure gradient dPH/dz =
−ρ̄. Neglecting density variations of individual phases (i.e. dρs = dρl = 0), the mixture
density is 1 ≤ ρ̄ ≤ λρ (in dimensionless units). Therefore, the minimal pressure gradient
required to support the weight of the matter is −1, and a crude bound on the pressure
gradient imposed at z = 0 is dP/dz|z=0 < −1. This, together with (4.9), provides a
constraint for the required heat flux at z = 0:

θ > (1 − λ−1
ρ )StD. (4.10)

Clearly the parameters λρ, St and D can significantly affect the nature of the basic state and
play an important role in regulating the lower bound for the heat flux required to support
the slurry layer. In the context of the slurry F-layer where St = 4,D = 0.2 and λρ = 1.02,
this bound requires θ > 0.016, which is certainly compatible with geophysical estimates
of θ (table 1).

Finally, note that we can use (4.4) to express φs in terms of velocities and densities:

φs = ρlul
z

ρlul
z − λρρsus

z
on 0 < z ≤ 1, (4.11)

which provides a way to interpret volume fraction in terms of balance of momenta of the
two phases. The above expression, however, could not be used to determine φs on the
impenetrable boundary (z = 0) where both solid and liquid velocities are zero. Instead,
the expression for φs on the bottom boundary results from evaluation of the total mass
balance (sum of (4.1a) and (4.1b)) at z = 0, which yields φs = ρl(dul

z/dz)/(ρl(dul
z/dz)−

λρρ
s(dus

z/dz)).

4.3. Dominant balance and limiting behaviour
The two-phase model (3.7) is quite general in that it can be applied to a variety of scenarios
involving fully compressible, inertial, two-phase flows. In particular, we have made no
assumptions about the balance of forces and the nature of the flow. Here we derive a
reduced 1-D model that will be helpful when interpreting results obtained by solving the
more general 1-D equations. We initially consider the case without compaction viscosity
C = 0, and come back to consider its effect at the end of the section.

We use two approximations that are commonly employed in studies of two-phase
solid–liquid systems. One of them is the Boussinesq approximation which ignores density
differences except where they appear in terms multiplied by the acceleration due to
gravity g. According to the Preliminary Reference Earth Model (PREM) (Dziewonski
& Anderson 1981), variations in core density are of the order of 0.1 % within hundreds
of kilometres of the ICB. Thus, the Boussinesq approximation may be applied, whereby
(in dimensionless units) ρs = ρl = 1 everywhere except in the buoyancy term (see § C.3).
We also assume that both phases behave as very viscous fluids whose acceleration and
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F. Wilczyński, C.J. Davies and C.A. Jones

inertia are negligible (see § C.4); thus terms Dεuε/Dt and Γ ε�u are negligible, and the
equations of solid and liquid momenta ((4.1c) and (4.1d)) simplify to

0 = −φs dP
dz

− λρφsρs − Kjz + 4
3
λμ

√
Pr
R

d
dz

(
φs dus

z

dz

)
, (4.12)

0 = −φl dP
dz

− φlρl + Kjz + 4
3

√
Pr
R

d
dz

(
φl dul

z

dz

)
. (4.13)

On eliminating the pressure gradient term between (4.12) and (4.13), we obtain an
expression for the solid flux:

Kjz
φsφl = −(λρρs − ρl)+ 4

3

√
Pr
R

{
λμ

φs
d
dz

(
φs dus

z

dz

)
− 1
φl

d
dz

(
φl dul

z

dz

)}
. (4.14)

The first term on the right-hand side of (4.14) represents the relative buoyancy between the
two phases, whereas the second term represents the resistive effects of viscous stresses.
We expect the dimensionless solid flux jz = φsρsφlρl�uz/ρ̄ to be maximised in the
absence of viscous effects. This gives us an upper bound order of magnitude estimate
for the relative velocity: max |�uz| ∼ (λρ − 1)/K (using ρs = ρl = ρ̄ = 1). Moreover,
since us

z < 0 and ul
z > 0, |�uz| = (|us

z| + |ul
z|), and thus the magnitude of the velocity of

each phase is also of the order max |us
z| ∼ max |ul

z| ∼ (λρ − 1)/K. In dimensional units,
we have max |�uz| ≈ (λρ − 1)g/(λρcD). Using values from table 1 yields an estimate of
maximal relative velocities of the order of 5 × 10−5–10−2 m s−1, which is much faster
than the rate at which the inner core grows (a few millimetres per year, or 10−11m s−1)
and comparable to the estimated outer core flow speeds of O(10−4) m s−1.

Since the viscosity of the solid phase is much greater than the viscosity of the
liquid phase (λμ � 1) we may neglect the viscous stress of the liquid phase in
(4.14). Furthermore, the mass conservation constraint (4.4) allows us to write us

z =
−φlρlul

z/(λρφ
sρs), and �uz = −ρ̄ul

z/(λρφ
sρs) = ρ̄us

z/(φ
lρl). We can thus recast (4.14)

as expressions for the phase velocities ul
z and us

z:

ul
z = λρφ

s

Kρl (λρρ
s − ρl)− 4

3
λμ

K

√
Pr
R
λρ

ρl
d
dz

(
φs dus

z

dz

)
, (4.15)

us
z = − φl

Kρs (λρρ
s − ρl)+ 4

3
λμ

K

√
Pr
R

1
ρs
φl

φs
d
dz

(
φs dus

z

dz

)
. (4.16)

It is useful to note that the term under the z-derivative in (4.15) may be rewritten with use
of (4.4) as

φs dus
z

dz
= φl

λρ

(
(λρus

z − ul
z)

1
φl

dφl

dz
− dul

dz

)
. (4.17)

This is useful because it reveals that the viscous stress term is proportional to φl (rather
than to φs as could be interpreted at first glance from the left-hand side of (4.17)).

We can now estimate how us, ul and φs (φl) behave when parameters R, λμ and K are
very large. To do so, we assume that the two terms which set the velocities of the two
phases (relative buoyancy and viscous resistance) in both (4.15) and (4.16) have to remain
in balance as parameters R, λμ and K are increased to large, but finite, values. We also

976 A5-28

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

83
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.834


A two-phase pure slurry model for planetary cores

R → 0 R → ∞ λμ → ∞ K → ∞
us

z ∼ R1/2 us
z ∼ −(λρ − 1)/K us

z ∼ λ−1
μ us

z ∼ K−1

ul
z ∼ (λρ − 1)/K ul

z ∼ R−1/2 ul
z ∼ (λρ − 1)/K ul

z ∼ K−1

φs → 1 φs ∼ R−1/2 φs → 1
φl ∼ R1/2 φl → 1 φl ∼ λ−1

μ

jz ∼ R1/2 jz ∼ R−1/2 jz ∼ λ−1
μ jz ∼ K−1

Table 3. Summary of scalings.

assume that the z-derivatives are of order unity throughout the bulk of the domain, which
is consistent with the scaling estimates we infer.

When R � 1, the coefficient of the second term in (4.15) becomes very small. For the
two terms in (4.15) to remain in balance would require the buoyancy term to similarly
decrease, and thus φs ∼ R−1/2. It follows then that ul should also scale with R−1/2.
Since by mass conservation (4.4) us

z ∼ (1 − φs)ul
z/φ

s, we expect us
z to tend to become

R-independent for R � 1. This is also consistent with the expression (4.16) (together
with (4.17)), where the R dependence cancels out from the viscous term if φs ∼ R−1/2.
If ul ∼ R−1/2, then the liquid-phase velocity decreases towards zero for as R → ∞ and
thus all of the solid flux jz has to be carried by the solid-phase velocity (recall (4.14)) and
thus we expect that us

z approximately tends to the ‘terminal velocity’: −(λρ − 1)/K. Since
jz ∼ φsφl�uz, we expect the magnitude of the solid flux itself to decrease for large R; in
the limit R → ∞, φs ∼ R−1/2 (φl → 1) and �uz tends to a constant, and thus we expect
that jz ∼ R−1/2.

When λμ � 1, the coefficient of the second term in (4.16) becomes very large. The
two terms in (4.16) can stay in balance if φl ∼ λ−1

μ (recall again (4.17), whereby the first

term in (4.16) goes like φl, while the second goes like λμφl2). It follows then that us
z ∼

λ−1
μ . Moreover, since ul

z ∼ φsus
z/φ

l, it is expected that ul
z becomes independent of λμ for

λμ � 1. As us
z tends to zero for large λμ, we expect ul

z to tend towards the ‘terminal
velocity’ ∼ (λρ − 1)/K. In the limit λμ → ∞, the solid flux decreases jz ∼ φsφl�uz ∼
λ−1
μ .
Using the same approximations and reasoning as above it is clear that the behaviour

at small R (large R−1/2) is analogous to the behaviour at large λμ, and so we have us
z ∼

φl ∼ jz ∼ R1/2 and ul
z ∼ (λρ − 1)/K for small R. Note, however, that the converse is not

true: the small λμ limit is not the same as large R limit. Once λμ becomes small, or of
order unity, the neglect of the viscous term corresponding to the liquid phase in (4.14) is
unjustified.

Finally, between the expressions (4.14)–(4.16) it is clear that the velocities of both phases
(as well as the solid flux) should scale with K−1 for large K, and we expect us

z ∼ ul
z ∼ jz ∼

K−1 as K → ∞. The scaling behaviours of us, ul and φs (φl) with respect to parameters
R, λμ and K are summarised in table 3.

We can also estimate the dominant balance in the heat equation. Since the phase
velocities are at most of the order of (λρ − 1)/K (small), we expect terms involving
velocities in the the heat equation (4.1e) to be negligible. Thus, the leading-order balance
in the heat equation (4.1e) is between latent heat and the conductive heat flux:

− Γ s

St
≈ 1√

R Pr

d
dz

(
k̄

dT
dz

)
. (4.18)
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Figure 2. Profiles of freezing rate Γ s (a), solid volume fraction φs (b), solid-phase velocity us
z (c) and

liquid-phase velocity ul
z (d) for increasing values of R; other parameters are fixed at K = 103, λμ = 105. Recall

that negative values of Γ s indicate melting.

Finally, we discuss the effect of compaction. When density variations are small we have
approximately ζ s = dus

z/dz. Since us
z < 0, with us

z = 0 on the bottom boundary, we expect
that dus

z/dz < 0 at least near the base of the domain. At the top boundary we have dus
z/dz =

0, so it is likely that dus
z/dz < 0 throughout the layer, and so ζ s < 0, i.e. the solid phase is

compacting and �p > 0. All compaction terms appear multiplied by C(φl). Thus, effects
of compaction are maximised in parts of the domain that are predominantly solid. Since we
are mainly interested in slurry-type solutions where φs is small in the bulk of the domain
we expect the effects of compaction to be greatest near the lower boundary.

Compaction terms appear in the solid momentum equation, the liquidus relation and the
heat equation. We can estimate the importance of compaction terms relative to other terms
in these equations. The compaction term in the temperature equation is similar in nature to
the viscous heating term, and similarly is of the order of ((λρ − 1)/K)2 (small squared).
Of course, the C(φl) factor can exaggerate the magnitude of compaction heating in the
portion of the domain with φl 
 1. Nevertheless, this term is ultimately of the same order
of magnitude as the other heating terms (frictional, viscous, heat-pipe) that are negligible
to leading order. In the liquidus relation (4.1 f ) compaction terms enter paired with the
density gradient. Not only is ζ s ∼ (λρ − 1)/K small, but it is also multiplied by the small
density gradient. Thus the effect of compaction is negligible in comparison with the other
terms in that equation. We therefore expect that the primary influence of compaction terms
is in the solid momentum equation.

5. Results

In this section we present the solutions to the full system of (4.1), and describe the effects
of varying R, λμ and K in turn. For now, we set C = 0 and return to investigate the effects
of compaction in § 5.6.

5.1. Variation of R
Figure 2 shows profiles of the freezing rate Γ s, the solid volume fraction φs and
vertical velocities of solid and liquid phases us

z, ul
z, for increasing values of R (at fixed

λμ = 105 and K = 103). (Our discussion is focused on the variables plotted in figure 2;
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z〉|/(λρ – 1) K〈ul

z〉/(λρ – 1) 〈φs〉(b) (c)

Figure 3. Variation of the average solid-phase velocity K|〈us
z〉|/(λρ − 1) (a), the average liquid-phase velocity

K〈ul
z〉/(λρ − 1) (b) and the average solid volume fraction 〈φs〉 (c) with respect to R. In (a,b) the phase velocities

have been scaled by the estimated terminal velocity (λρ − 1)/K.

for completeness plots of density, temperature and pressure gradient are included in
Appendix E, figure 13.) Increasing R enhances the downward gravitational force and
causes the velocity of falling solid phase us

z to increase in magnitude (become more
negative) and that of rising liquid phase ul

z to decrease. A natural consequence of larger
(more negative) us

z and smaller ul
z is a reduction of solid volume fraction φs throughout

the layer (recall (4.11)). Solid material falls through the layer and converges (φs → 1)
near the bottom boundary. As R increases, the gradients of φs and us

z near the boundary
become larger and this convergence of solid mass becomes magnified. As a result of mass
conservation (4.4) we observe a surge in the liquid velocity ul

z near the bottom boundary,
where φl 
 1, and ul

z ∼ φsus
z/φ

l must be very large (locally) in order to balance the
mass flux. By mass conservation (4.1a) the convergence of solid mass is balanced by
melting; thus increasing R results in more melting near the bottom, on account of increased
convergence of solid mass.

It is useful to define an average of any scalar quantity A as

〈A〉 =
∫ 1

0
A dz. (5.1)

Figure 3 shows the variation of average solid velocity, average liquid velocity and average
solid volume fraction versus R. Average solid velocity increases with R, exhibiting the
expected R1/2 behaviour at low R. The liquid velocity decreases with R and, at large
R, follows the scaling R−1/2 (figure 3b), which is consistent with the dominant balance
prediction of § 4.3. As R is increased, average solid volume fraction decreases in line with
dominant balance scalings. For large R we observe that 〈φs〉 ∼ R−1/2 (as figure 3c), and
for small R we observe that 〈φl〉 = 1 − 〈φs〉 ∼ R1/2 (see Appendix E, figure 14a). Since
〈ul

z〉 ∼ 〈φs〉 ∼ R−1/2 for large R, we expect 〈us
z〉 to become independent of R for R � 1

(§ 4.3) and there is evidence of this behaviour in figure 3(a). The scaling of us
z ∼ R1/2

together with φl ∼ R1/2 implies that 〈ul
z〉 becomes independent of R at low R and again this
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Figure 4. Profiles of freezing rate Γ s (a), solid volume fraction φs (b), solid-phase velocity us
z (c) and

liquid-phase velocity ul
z (d) for increasing values of the viscosity ratio λμ; other parameters are fixed at

K = 103,R = 108.
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Figure 5. Variation of the average solid-phase velocity K|〈us
z〉|/(λρ − 1) (a), the average liquid-phase velocity

K〈ul
z〉/(λρ − 1) (b) and the average liquid volume fraction 〈φl〉 (c) with respect to the viscosity ratio λμ. In

(a,b) the phase velocities have been scaled by the estimated terminal velocity (λρ − 1)/K.

is seen in figure 3(b). For completeness we include the plot of the variation of the average
solid flux in Appendix E (figure 14b), which verifies the predicted limiting behaviours:
〈 jz〉 ∼ R1/2 as R → 0 and 〈 jz〉 ∼ R−1/2 as R → ∞. Overall we find that the reduced
model developed in § 4.3 captures the gross behaviour of these solutions.

5.2. Variation of λμ
Figure 4 shows solutions for increasing value of the viscosity ratio λμ. As λμ is increased
the sharp vertical variation of us

z and φs near the bottom boundary becomes completely
smoothed out. The concurrent decrease in gradients of us

z and φs means reduced
convergence of the solid phase and thus reduced melting (recall (4.1a)). Liquid-phase
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Figure 6. Profiles of freezing rate Γ s (a), solid volume fraction φs (b), solid-phase velocity us
z (c) and

liquid-phase velocity ul
z (d) for increasing values of the interphase friction parameter K; other parameters

are fixed at R = 108, λμ = 2 × 105.

velocity increases throughout the bulk of the layer. The sharp variation of ul
z near z = 0

remains unaffected.
Variation of average quantities is presented in figure 5. As λμ is increased, viscous forces

act to reduce 〈us
z〉 (figure 5a) and the average liquid content 〈φl〉 = 1 − 〈φs〉 decreases. For

large λμ the change in 〈us
z〉 and 〈φl〉 is proportional to λ−1

μ , as found in § 4.3. The average
liquid-phase velocity 〈ul

z〉 increases with λμ, but becomes independent of λμ in the limit
λμ � 1. This is expected since ul

z ∼ φsus
z/φ

l, with us
z ∼ φl ∼ λ−1

μ for λμ � 1, the λμ
dependence cancels out. The overall behaviour is consistent with our expectation from the
reduced model (recall table 3).

5.3. Variation of K
The interphase friction force acts to reduce the relative velocity between the two phases.
In fact, the limit K → ∞ is usually described as the tight-coupling limit, where the
two phases move with the same velocity (�u = 0). We expect the same trend to apply
here. Since us

z < 0 and ul
z > 0 always, reduction in the relative velocity can only be

accomplished by an increase in us
z (slower falling of the solid phase) and a decrease in

ul
z (slower rise of the liquid phase).
Figure 6 shows solution profiles for increasing values of K. As K is increased the flow

velocities of both solid and liquid phases are reduced, and their vertical gradients near the
bottom boundary become smoothed out due to stifled flow. The resulting flow velocities
at large K, with us

z nearly uniform and ul
z gradually increasing with height, produce a

peculiar distribution of solid volume fraction, whereby solid content in the interior of
the layer is smaller than the solid content on either boundary. Figure 7 shows that as K is
increased, average velocities of both phases decrease. For sufficiently large K, the decrease
in velocities follows scaling us

z ∼ ul
z ∼ K−1. Average solid fraction also increases with K,

but becomes independent of K in the limit K → ∞ (this, again, is consistent with the mass
conservation constraint; see (4.11)).

5.4. Regime diagram
In the above sections we encountered two distinct types of limiting behaviour: a stagnant
solid regime characterised by large solid volume fraction and small solid-phase velocity;
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Figure 7. Variation of the average solid-phase velocity |〈us
z〉| (a), the average liquid-phase velocity |〈ul

z〉|
(b) and the average solid volume fraction 〈φs〉 (c) with respect to the interphase friction parameter K.

and a stagnant liquid regime characterised by large liquid volume fraction and small
liquid-phase velocity. The stagnant solid limit is accessed as R → 0, or λμ → ∞, whereas
the stagnant liquid limit is reached as R → ∞. These limits are visualised in figure 8,
which shows regime diagrams of the average solid volume fraction and average phase
velocities (normalised by (λρ − 1)/K) in the R–λμ space for three values of the interaction
parameter K = (102, 103, 104).

For all three variables (〈φs〉, 〈us〉, 〈ul〉), the largest change in the slopes of the contour
plots as K increases occurs in region where K is not much smaller that either R or λμ. From
the plot, it appears that the largest change in the morphology of contour lines occurs in the
regions where R � K2 and λμ � K2. On the other hand, when both R and λμ are much
larger than K, changing K has a more moderate effect on the characteristics of the solution.
Indeed, we observe that regions where R � K2 and λμ � K2 are remarkably self-similar to
one another in that the contours share similar morphology and inclination, and only appear
shifted across R–λμ parameter space. This self-similarity may be better visualised by
zooming in on the regions R > K2, λμ > K2, which we provide in Appendix E (figure 15).

Contours of 〈φs〉 in figure 8(a–c) run diagonally across the R–λμ parameter space for
large R and λμ (see also figure 15). The transition between the ‘stagnant solid’ (low-R)
and ‘stagnant liquid’ (large-R) behaviour takes place roughly when R ≈ λμ (see for
example 9a). This information, together with the inferred behaviour of 〈φs〉 at both limits,
allows extrapolation to parameter values relevant to planetary cores.

Figure 9(b) shows an extrapolation of the average solid volume fraction to planetary
values of R and λμ. The viscosity contrast λμ is the parameter with the largest range of
uncertainty, with estimates ranging from 1013 to 1024 (recall tables 1 and 2). Any slurry
that could form in the F-layer would contain a very small fraction of solid. Gubbins
et al. (2008) estimated a solid fraction of ∼1 %, which is consistent with our results.
The low 〈φs〉 puts a constraint on the allowable combinations of λμ and R. Assuming
〈φs〉 � 0.01 in the F-layer requires the viscosity contrast λμ to be significantly smaller than
the gravitational strength R. Taking R = 1027 would require λμ � 1022, which is consistent
with mineralogical determinations.
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Figure 8. From top to bottom: contours of the average solid volume fraction 〈φs〉 (a–c); (normalised)
average velocity of the solid phase K|〈us
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Empty regions in the contour plots correspond to parameter values for which we do not have solutions.

5.5. Heat flux
Figure 10 shows contributions of each term in the heat balance (4.6) as a function of
R, λμ and K. Clearly, the contribution due to latent heat dominates at all parameter values
considered. Thus, to leading order, the heat balance (4.6) is

qC
z=1 = qC

z=0 + QL, (5.2)

which is consistent with our prediction (4.18).
To interpret the results we first recall from (4.8) and (4.5) that the latent heat QL ∼

R1/2[φsus
z]z=1. As discussed above, the solid velocity increases with R as us

z ∼ R1/2 at
low R and tends to an R-independent limit as R → ∞ while the average solid volume
fraction varies as φs ∼ R−1/2 as R → ∞. Thus, the dependence of QL on R cancels out

976 A5-35

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

83
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.834
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for sufficiently large R. As a result, QL increases with R but becomes independent of R as
R → ∞ (figure 10a). As more latent heat is absorbed for melting, less heat flows out at
the top of the layer. The temperature gradient becomes less steep (less negative), and the
temperature difference between top and bottom decreases (see figure 13 in Appendix E).
Magnitudes of heating due to heat pipe QP and friction QF increase with R; both terms
are proportional to R1/2 (recall (4.8)), while for low R the solid flux increases jz ∼ R1/2.
At large R, jz ∼ R−1/2 and thus the heating terms QP and QF become independent of R.
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The viscous heating term QV increases initially with R due to increased gradients of the
phase velocity near the bottom boundary (recall figure 2c,d). However, since φs ∼ R−1/2

as R → ∞, the viscous heating due to the solid phase decreases for large R, and thus the
overall viscous heating QV decreases with R.

The effect of increasing λμ has an opposite effect to that of increasing R. As λμ is
increased the solid-phase velocity is decreased, tending to us

z ∼ λ−1 as λμ → ∞. Thus,
the latent heat QL decreases as λμ increases (figure 10b). Smaller QL implies less heat
lost to melting, which results in a steeper (more negative) temperature gradient and larger
temperature difference across the layer. Similarly, QP and QF decrease with λμ owing to
the decrease in the solid flux ( jz ∼ λ−1

μ ). Viscous heating QV also decreases for very large
λμ, as increased viscous forces smooth out all sharp velocity gradients, thus reducing the
amount of viscous heating.

As K is increased, magnitudes of velocities of both phases as well as the solid flux are
decreased (us

z ∼ ul
z ∼ jz ∼ K−1 as K → ∞). Thus, all contributions to the heat balance

decrease as K is increased (figure 10c).

5.6. Effects of compaction viscosity
Thus far we considered solutions with constant (shear) viscosity. As described in § 2.6,
a compaction viscosity C also arises in two-phase systems due to the resistance of solid
to compaction. Here, we briefly examine the effect of C on the solutions and the limiting
behaviour at large λμ. Little is known about the functional form of C for the iron in the
F-layer. At high solid fraction a common functional form is C ∼ 1/φl (e.g. Bercovici et al.
2001). However, for two-phase materials that deform via diffusion creep, the form C ∼
− logφl may be more appropriate (e.g. Rudge 2018; Katz et al. 2022). Thus, we opt for a
simple logarithmic form:

C(φl) = −C0 logφl, (5.3)

where C0 is a dimensionless parameter measuring the relative magnitude of compaction
viscosity to shear viscosity. Compaction viscosity C(φl) is zero in the absence of solid
phase (φl = 1), and has a logarithmic singularity at vanishing porosity (φl → 0).

Compaction viscosity C(φl) enters the system in three places: in the solid momentum
equation, in the form of an additional stress term; in the liquidus relation, where it affects
the melting temperature; and in the temperature equation in the form of an additional
heating term. As explained in § 4.3, we expect the latter two effects to be negligible. In the
solid momentum equations (4.1c), compaction viscosity combines with the shear viscosity
to make the effective viscosity of the solid λμ(4/3 − C0 logφl). Thus, increasing C0
increases the solid viscosity, which reduces us

z (making it less negative) and increases φs

and ul
z. Indeed, this can be observed in figure 11, which shows profiles of the freezing rate

Γ s, the solid volume fraction φs and vertical velocities of solid and liquid phases us
z, ul

z, for
increasing values of C0. As C0 is increased, solid phase becomes more compact (porosity
φl decreases), and liquid phase is expelled at faster velocities. Solid-phase velocities
decrease, leading to decreased solid flux and concurrent reduction in melting required
to balance that mass flux.

Figure 12 shows the variation of average solid velocity, average liquid velocity and
average solid volume fraction versus λμ for different values of C0. For greater C0,
effective viscosity is greater and so the large-λμ regime is entered at lower λμ. The
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scaling behaviour us
z ∼ φl ∼ λ−1

μ as λμ → ∞ seems to persist in the presence of
porosity-dependent viscosity.

6. Discussion and conclusions

In this paper we have developed and analysed a model of two-phase slurry dynamics,
motivated by recent studies of the F-layer at the base of Earth’s outer core. The governing
equations we solve are an extension of the two-phase equations derived by Roberts
& Loper (1987) to include pressure disequilibrium between the two phases (Bercovici
et al. 2001; Ricard 2007). The equations contain a more general formulation of the fluid
dynamics compared with those employed in previous studies of solid–liquid layers in
planetary cores (e.g. Rückriemen et al. 2015; Davies & Pommier 2018; Wong et al. 2018;
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Bercovici & Mulyukova 2021) and can be applied to a wide range of two-phase systems
including ‘iron snow’ and ‘flotation’ layers in the cores of small terrestrial bodies.

We have studied 1-D time-independent solutions of the two-phase equations in order
to establish systematic behaviour in the parameter regime R � 1, λμ � 1 relevant to
planetary cores. A key benefit of the 1-D system is that the numerous control parameters
can be varied over many orders of magnitude. Considering, separately, the variation in the
nature of the solutions as R → ∞, or λμ → ∞, reveals two distinct regimes of limiting
behaviour. In the limit of R → ∞ the solutions are characterised by small values of solid
fraction and liquid-phase velocity φs ∼ ul

z ∼ R−1/2, while the solid-phase velocity tends
to the Darcy velocity us

z ∼ −(λρ − 1)/K. On the other hand, in the limit of λμ → ∞, the
solutions are characterised by small values of liquid fraction and solid-phase velocity φl ∼
us

z ∼ λ−1
μ , while the liquid-phase velocity tends to the Darcy velocity ul

z ∼ (λρ − 1)/K.
The transition between the two regimes of limiting behaviour in R–λμ space occurs
roughly when R and λμ are comparable in magnitude. The developed scalings are in
excellent agreement with our numerical solutions of the full slurry equations.

In the parameter regime of planetary cores where R > λμ � 1 the average solid fraction
in the layer is small. Near the bottom boundary all solutions exhibit a thin region with
φs → 1; however, in the parameter regime of interest (R > λμ � 1), the relative thickness
of this region to the depth of the entire layer is of the order of 1 % (see for example the case
in figure 2b with R = 108). Extrapolation of our results to F-layer conditions (figure 9b)
indicates that a pure iron slurry F-layer would contain a mean solid fraction of at most 5 %.
This result is consistent with Gubbins et al. (2008), who used a purely thermodynamical
line of reasoning. Such low solid fractions are incompatible with seismically inferred
densities, supporting the view that the F-layer in Earth’s core is not a pure iron slurry.

There are several physical effects that may arise in Earth’s F-layer that are not captured
within our current model. Earth’s liquid core contains around 10 wt% lighter elements
such as O, Si and S and previous models suggest that compositional variations are likely
important for explaining the stable stratification of the F-layer (Gubbins et al. 2008;
Wong et al. 2021). Generalising our pure iron model to multiple chemical constituents is
relatively straightforward (Keller & Suckale 2019), but comes at the expense of adding
more input parameters to the 14 already present and also introducing new physical
effects. In a multicomponent slurry, additional buoyancy forces will arise from differences
in specific densities and concentrations of individual constituents, which can facilitate
compositional convection. Furthermore, when density depends on two properties (here,
heat and light element concentration) that diffuse at different rates, double diffusive
processes can occur. Nevertheless, we have shown that the pure slurry displays a wide
range of dynamical behaviour, including solutions with low solid fraction across much
of the layer that will serve as an important reference point for future studies of the
multicomponent system.

Our model does not include the effects of rotation or magnetic field, both of which
are known to be important for the dynamo process in planetary cores. However, in the
stratified F-layer, their dynamical significance is much less clear. Incorporating rotation
into the governing equations is conceptually trivial, it merely involving inclusion of the
Coriolis effect in the momentum equations of each phase. Incorporating magnetic fields
into the two-phase equations in not a trivial task, but it is possible (Bercovici & Mulyukova
2020). However, in both cases the analysis will inevitably become more complicated as it
calls for fully three-dimensional treatment, which is beyond the scope of the present study.

When developing the governing equations we introduced a number of simplifications
with the aim of reducing mathematical complexity while still retaining the key physical
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processes. The fast melting approximation considerably simplifies the thermodynamics; it
assumes that both phases share the same temperature and constrains the system to remain
in phase equilibrium, where the temperature follows the liquidus. Thermal equilibrium is
expected to be very rapid, O(1) s, which is much faster than the time scales associated
with the flow velocities we have obtained and so equality of solid and liquid temperatures
appears to be a reasonable assumption. The effect of departures from phase equilibrium
is much harder to assess. Walker et al. (2021) modelled the non-equilibrium effects
of nucleation and crystal grow of falling particles in the F-layer and their preliminary
results indicate that the layer would not reach phase equilibrium. However, the physics of
crystal nucleation and growth in planetary cores is complex and is only now starting to
be investigated in detail (Huguet et al. 2018; Davies, Pozzo & Alfè 2019; Wilson et al.
2021, 2023) so it is presently unclear whether the departures from phase equilibrium
would have a significant effect on the fluid dynamics. Departures from phase equilibrium
could be incorporated into the governing equations using macroscopic parametrisations
of the microscopic nucleation and growth processes (Loper 1992), but at the expense of
significantly complicating the theory. At present we believe the fast-melting limit is a
reasonable compromise.

A significant challenge in modelling two-phase liquid–solid flows lies in capturing the
rheological behaviour of the solid phase. Real liquid–solid mixtures are known to exhibit
complex rheological behaviour which is a function of the solid volume fraction and can be
either Newtonian or non-Newtonian in nature (Guazzelli & Pouliquen 2018). In this paper
we adopted a simple Newtonian rheology with uniform shear viscosity for both phases.
This was partly to understand the fundamental properties of the system and partly because
there is little information available about the rheology of solid iron at core conditions.
Clearly more work is desirable to constrain the functional form of phase viscosities in a
slurry. Nevertheless, in the slurry limit (small φs), modifications to the viscosity are of
the order φs (e.g. Guazzelli & Pouliquen 2018) and thus are not expected to cause drastic
changes in the nature of solutions.

In deriving the two-phase equations it was necessary to postulate functional forms
relating velocities and pressures of the two phases to the interfacial velocity and
pressure. The associated coefficients γ and ω were prescribed based on simple physical
considerations, whereas in reality they should be determined from experimental and/or
computational studies of the microscale behaviour of the two-phase system. Clearly more
work is desirable in order to better constrain these quantities, which can then be applied
in a straightforward manner to the theory we have derived. However, since the associated
terms are neglected in the reduced model we have developed, which represents the gross
behaviour of our numerical solutions very well, we believe that the specific functional
forms of these coefficients do not critically impact our results.

The 1-D basic state is the first step in mathematical analysis of fluid dynamical systems,
it being the underlying equilibrium (stable or not) on top of which three-dimensional
perturbations evolve. In single-phase fluid flow problems, the underlying basic state tends
to be trivial, with fluid at rest in hydrostatic balance. On the other hand, in a two-phase
pure slurry, even the 1-D steady state is interesting because the two phases move relative
to one another. This 1-D state is part of any time-evolving three-dimensional solution, and
it is thus integral to understand its nature. We believe that the detailed analysis performed
in this study constitutes a successful first step towards these longer-term goals and paves
the way for analytical considerations of the more complete model of the slurry.

Acknowledgements. We thank J. Rudge and two anonymous referees for their constructive comments that
greatly improved the quality of this paper. We thank Dario Alfé for advice on core material properties.
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Appendix A. Glossary

Table 4 contains a glossary of symbols used in the derivation of the two-phase model
equations.

Appendix B. Thermodynamic relations

In this appendix we develop the thermodynamic differential relations for the specific Gibbs
free energy, volume (density) and entropy of each phase.

Recall the first law of thermodynamics for a phase (2.32)

dEε = TεdSε − pεd(ρε)−1, (B1)

and the definition of Gibbs free energy (2.34)

Gε = Eε − TεSε + pε

ρε
. (B2)

Differentiating (B2), and using (B1), we can derive a differential relation for the change in
Gibbs free energy dGε:

dGε = Vεdpε − SεdTε. (B3)

Recall that pressure of each phase pε consists of common interface pressure P which
is to be interpreted as the thermodynamic pressure (Ricard 2007), and a mechanical
contribution due to compaction pressure �p:

pl = P − ωl�p, ps = P + ωs�p. (B4a,b)

All of the thermodynamic differential relations involving pressure are to be taken as
differentials of thermodynamic pressure P, i.e. dps = dpl = dP. Thus, (B3) is equivalent
to

dGε = VεdP − SεdTε. (B5)

Note that the general form of (B5) is

dGε =
(
∂Gε

∂P

)
Tε

dP +
(
∂Gε

∂Tε

)
P

dTε, (B6)

and thus, between (B6) and (B5), follow the definitions of specific volume and entropy as
derivatives of the Gibbs free energy:(

∂Gε

∂P

)
Tε

≡ Vε,
(
∂Gε

∂Tε

)
P

≡ −Sε. (B7a,b)

Finally, in light of the pressure decomposition (B4a,b), it is useful to introduce the effective
Gibbs free energy Gε∗ as the Gibbs free energy defined based on the thermodynamic
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Symbol Description First appearance/definition

B domain boundary surface (2.80)
cεp specific heat capacity of phase ε (2.46), (B18)
c̄p specific heat capacity of the mixture (2.77)
Dε interphase drag force (2.21)
Eε internal energy of phase ε (2.8)
Ē internal energy of the mixture (2.8)
g gravitational acceleration vector (2.20)
Gε specific Gibbs free energy of phase ε (2.34)
I identity matrix (2.19)
j phase separation flux vector (2.14)
kε heat flux vector (2.30), (2.54a,b)
kε thermal conductivity of phase ε (2.54a,b)
k̄ thermal conductivity of the mixture (2.69)
L latent heat (2.72)
pε mechanical pressure of phase ε (2.19)
p̃ε interface pressure on the side of phase ε (2.21)
p̃,P interface pressure, thermodynamic pressure (2.22a,b)
�p ps − pl, compaction pressure (2.60)
Sε specific entropy of phase ε (2.9)
S̄ specific entropy of the mixture (2.9)
Tε temperature of phase ε (2.32)
T temperature (2.64)
uε flow velocity of phase ε (2.12)
uω velocity controlling surface work (2.29)
ũε interface velocity on the side of phase ε (2.21)
ũ interface velocity (2.22a,b)
UB boundary velocity (2.80)
Vε specific volume of phase ε (2.4)
V̄ specific volume of the mixture (2.5a,b)
αε volumetric thermal expansion coefficient of phase ε (2.45), (B13a,b)
ᾱ volumetric thermal expansion coefficient of the mixture (2.76)
βε volumetric isothermal compression coefficient of phase ε (2.45), (B13a,b)
γ ε 1/2, interface velocity partitioning coefficient (2.24a,b), (2.50)
Γ ε mass production rate of phase ε (2.12)
ζ ε compaction of phase ε (2.15)
ΛD interphase drag coefficient (2.57)
Λχ interphase thermal equilibration coefficient (2.58)
ΛΓ phase relaxation parameter (2.59)
Λ�p compaction pressure parameter (2.60)
με dynamic viscosity of phase ε (2.54a,b)
Πε total stress tensor (2.19)
ρε specific density of phase ε (2.4)
ρ̄ specific density of the mixture (2.5a,b)
ρ̃ interface density (2.39)
σ ε deviatoric stress tensor (2.19), (2.54a,b)
Σε entropy production in phase ε (2.30)
φε volume fraction of phase ε (2.2a,b)
Φ gravitational potential (2.28)
ψε mass fraction of phase ε (2.2a,b)
Ψ deformational work (2.73)
ωε pressure jump partitioning coefficient (2.25a,b)

Table 4. Glossary of symbols used in the derivation of governing equations in § 2.
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pressure, i.e.

Gε∗ = Eε − TεSε + P
ρε
. (B8)

The Gibbs free energies (B2) can be thought of as a sum of thermodynamic Gibbs free
energy and a contribution due to compaction pressure�p (which is entirely mechanical in
nature):

Gs = Gs
∗ + ωs�p

ρs Gl = Gl
∗ − ωl�p

ρl . (B9a,b)

From (B9a,b) and (B5), it follows that

dGs
∗ = VsdP − SsdTs − ωs�p dVs, (B10)

dGl
∗ = VldP − SldTl + ωl�p dVl. (B11)

Thermodynamic derivatives of specific volume for each phase are

dVε =
(
∂Vε

∂P

)
T

dP +
(
∂Vε

∂Tε

)
P

dTε. (B12)

We define isothermal compression βε and thermal expansion αε coefficients:

βε = − 1
Vε

(
∂Vε

∂P

)
Tε
, αε = 1

Vε

(
∂Vε

∂Tε

)
P
. (B13a,b)

Differentials (B12) become

dVε = Vε(−βεdP + αεdTε). (B14)

Density differentials can be obtained from volume differentials using Vε = 1/ρε:

dρε = ρε(βεdP − αεdTε). (B15)

The general form of the thermodynamic derivative of entropy Sε = Sε(P, Tε) is

dSε =
(
∂Sε

∂P

)
Tε

dP +
(
∂Sε

∂Tε

)
P

dTε. (B16)

Using definitions (B7a,b), (B13a,b) and Maxwell’s relation, we can write the first
derivative in (B16) as(

∂Sε

∂P

)
Tε

= −
(
∂

∂P

(
∂Gε

∂Tε

)
P

)
Tε

= −
(
∂

∂Tε

(
∂Gε

∂P

)
Tε

)
P

= −
(
∂Vε

∂Tε

)
P

= −α
ε

ρε
.

(B17)

The second derivative is related to specific heat capacity cεp:

cεp ≡ Tε
(
∂Sε

∂Tε

)
P
. (B18)

Thus, the differential of specific entropy (B16) becomes

dSε = −α
ε

ρε
dP + cεp

Tε
dTε. (B19)
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Appendix C. Distinguished limits of two-phase equations

C.1. General equations for non-equilibrium slurry
The full system of equations governing the evolution of a two-phase non-equilibrium
slurry consists of equations of mass continuity (2.12), equations of momentum
conservation (2.26a), (2.26b), equations of entropy conservation (2.30), together with
thermodynamic relations for density (B15), entropy (B19) and Gibbs free energy (2.44):

∂(φsρs)

∂t
+ ∇ · (φsρsus) = Γ s, (C1a)

∂(φlρl)

∂t
+ ∇ · (φlρlul) = −Γ s, (C1b)

φsρs
(
∂us

∂t
+ us · ∇us

)
= −φs∇P + ∇ · (φs(σ s −ωs�pI))+φsρsg−1

2
Γ s�u−ΛD�u,

(C1c)

φlρl
(
∂ul

∂t
+ ul · ∇ul

)
= −φl∇P + ∇ · (φl(σ l +ωl�pI))+φlρlg − 1

2
Γ s�u +ΛD�u,

(C1d)

∂

∂t
(φsρsSs)+ ∇ · (φsρsSsus) = 1

Ts ∇ · (φsks∇Ts)+ φs

Ts σ
s : ∇us + X̄ −Λχ�T, (C1e)

∂

∂t
(φlρlSl)+ ∇ · (φlρlSlul) = 1

Tl ∇ · (φlkl∇Tl)+ φl

Tl σ
l : ∇ul + X̄ +Λχ�T, (C1f )

dρs = ρs(βsdP − αsdTs), dρl = ρl(β ldP − αldTl), (C1g)

dSs = −α
s

ρs dP + cs
p

Ts dTs, dSl = −α
l

ρl dP + cl
p

Tl dTl, (C1h)

dGs = 1
ρs dP − SsdTs, dGl = 1

ρl dP − SldTl. (C1i)

System (C1) comprises 16 equations for 16 variables: φs,P,us,ul, Ts, Tl, ρs, ρl, Ss, Sl,

Gs,Gl. Auxiliary variables are

ρ̄ = φsρs + φlρl, σ εij = με

(
∂uεi
∂xj

+
∂uεj
∂
, xi − 2

3
∂uεk
∂xk

δij

)
,

�p = Λ�p(−ωsφsζ s + ωlφlζ l), ζ ε =
(

∇ · uε + 1
ρε

Dερε

Dt

)
,

Γ s = −ΛΓ�G∗, X̄ = 1
Ts + Tl

(
ΛD|�u|2 +Λχ(�T)2 + (Γ s)2

ΛΓ
+ (�p)2

Λ�p

)
.

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭
(C2)

C.2. Governing equations of fast-melting slurry
Under the fast-melting approximation (recall § 2.7), the system of governing equations
consists of equations of mass conservation for solid and liquid phases ((C1a), (C1b)),
equations of momentum conservation for each of the two phases ((C1c), (C1d)), the
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equation for the temperature of the mixture (2.79), the liquidus constraint (2.66) and
equations of state for the solid and liquid densities (2.45):

∂(φsρs)

∂t
+ ∇ · (φsρsus) = Γ s, (C3a)

∂(φlρl)

∂t
+ ∇ · (φlρlul) = −Γ s, (C3b)

φsρs
(
∂us

∂t
+ us · ∇us

)
= −φs∇P + ∇ · (φsσ s −φsωs�pI)+φsρsg−1

2
Γ s�u−ΛD�u,

(C3c)

φlρl
(
∂ul

∂t
+ ul · ∇ul

)
= −φl∇P + ∇ · (φlσ l +φlωl�pI)+φlρlg + 1

2
Γ l�u +ΛD�u,

(C3d)

c̄pρ̄
D̄T
D̄t

− ᾱT
D̄P
D̄t

− LΓ s + L
T

j · ∇T = ∇ · (k̄∇T)+ Ψ, (C3e)

(
1
ρl − 1

ρs

)
dP = L

T
dT +�p

(
ωs

ρs
dρs

ρs + ωl

ρl
dρl

ρl

)
, (C3f )

dρs = ρs(βsdP − αsdT), (C3g)

dρl = ρl(β ldP − αldT). (C3h)

System (C3) comprises 12 equations for 12 variables: φs,P,us,ul, T, Γ s, ρs, ρl. Auxiliary
variables are

ᾱ = φsαs + φlαl, k̄ = φsks + φlkl, c̄p = (φsρscs
p + φlρlcl

p)/ρ̄,

j = φsρsφlρl

ρ̄
�u, Ψ = φsσ s : ∇us + φlσ l : ∇ul +ΛD|�u|2 + (�p)2

Λ�p
.

⎫⎬
⎭ (C4)

C.3. Boussinessq approximation
According to PREM (Dziewonski & Anderson 1981) variations in core density are of
the order of 0.1 % within hundreds of kilometres of the ICB. Thus, we may employ the
Boussinesq approximation whereby all variations in density are assumed to be negligible
except in the buoyancy force. The density can be separated as

ρε = ρεr + ρε1,

∣∣∣∣ρε1ρεr
∣∣∣∣ 
 1, (C5a,b)

where ρεr is constant reference density and ρε1 is the temporal and spatial variation.
Equations (C3) under the Boussinesq approximation reduce to

∂φs

∂t
+ ∇ · (φsus) = Γ s

ρs
r
, (C6a)

∂φl

∂t
+ ∇ · (φlul) = −Γ

s

ρl
r
, (C6b)
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φsρs
r

(
∂us

∂t
+ us · ∇us

)
= −φs∇P + ∇ · (φsσ s − φsωs�pI)+ φs(ρs

r + ρs
1)g

−1
2
Γ s�u −ΛD�u, (C6c)

φlρl
r

(
∂ul

∂t
+ ul · ∇ul

)
= −φl∇P + ∇ · (φlσ l + φlωl�pI)+ φl(ρl

r + ρl
1)g

+1
2
Γ l�u +ΛD�u, (C6d)

c̄pρ̄
D̄T
D̄t

− ᾱT
D̄P
D̄t

− LΓ s + L
T

j · ∇T = ∇ · (k̄∇T)+ Ψ, (C6e)

(
1
ρl

r
− 1
ρs

r

)
dP = L

T
dT +�p

(
ωs

ρs
r

dρs
1

ρs
r

+ ωl

ρl
r

dρl
1

ρl
r

)
, (C6f )

dρs
1 = ρs

r(β
sdP − αsdT), (C6g)

dρl
1 = ρl

r(β
ldP − αldT), (C6h)

where now
ρ̄ = φsρs

r + φlρl
r, c̄p = (φsρs

rcs
p + φlρl

rcl
p)/ρ̄,

j = φsφlρs
rρ

l
r

ρ̄
�u, �p = Λ�p(−ωsφs∇ · us + ωlφl∇ · ul).

⎫⎬
⎭ (C7)

Unlike in the case of a single-phase flow where pressure variations are negligible and
thus do not enter the temperature equation or the density, here the pressure variations
are tied directly to the temperature variations through the liquidus and thus cannot be
neglected.

In the absence of phase change (Γ s = 0), the temperature and pressure are not
constrained to the liquidus ((C6 f ) no longer holds). In that case, variations in pressure
may be neglected from the temperature equation and the equations of state.

C.4. Inertia-less equations
It is very common is studies of two-phase solid–liquid systems to assume that both phases
behave as very viscous fluids that undergo creeping flow and their acceleration and inertia
are negligible (e.g. McKenzie 1984; Bercovici et al. 2001; Šrámek et al. 2007). Under
such approximation terms Dεuε/Dt and Γ ε�u in momentum equations (C3c), (C3d) are
negligible. The inertia-less momentum equations are

0 = −φs∇P + ∇ · (φsσ s − φsωs�pI)+ φsρsg −ΛD�u, (C8)

0 = −φl∇P + ∇ · (φlσ l + φlωl�pI)+ φlρlg +ΛD�u. (C9)

A further approximation can be made, whereby the viscous stress of the liquid phase
is neglected on the grounds that liquid viscosity is significantly smaller that of the solid
μs � μl. In that case, the momentum equation of the liquid phase (C9) reduces to the
generalised Darcy law:

ul − us = φl

ΛD
(−∇P + ρlg). (C10)
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Appendix D. Derivation of continuity conditions across a moving interface

Continuity conditions are obtained by integrating the equations governing conservation of
mass (2.12), momentum (2.16) and total energy (2.37), over a pillbox volume that straddles
the interface and moves together with it.

The total rate of change of any quantity in a moving volume is given by the Leibniz rule
for differentiation. Consider an arbitrary region in space bounded by a boundary moving
with a velocity U . Total change in the quantity f is the sum of local temporal change at
any point within the volume and changes that happen over the bounding surface:

d
dt

∫
V

f dV =
∫

V

∂f
∂t

dV +
∫

S
f U · n̂ dS. (D1)

Integrating the phase mass conservation equation (2.12) over the pillbox and converting
the volume integral of the divergence term into a surface integral using the Gauss law, we
obtain ∫

V

∂(φερε)

∂t
dV +

∫
S
φερεuε · n̂ dS =

∫
V
Γ εdV. (D2)

Using the Leibniz rule (D1) in (D2) yields
d
dt

∫
V
φερε dV +

∫
S
φερε(uε − U) · n̂ dS =

∫
V
Γ εdV. (D3)

In the limit of vanishing pillbox height the volume integrals vanish, and the surface integral
term reduces to a balance between fluxes on either side of the interface, i.e.

[[φερε(uε − U) · n̂]] = 0. (D4)

Here [[A]] denotes the jump in a quantity A across the boundary.
Similarly, integrating the ith component of phase momentum conservation equation

(2.16) over the pillbox and converting the volume integral of the divergence term into a
surface integral using the Gauss law, we obtain

d
dt

∫
V
(φερεuεi )dV +

∫
S
φερεuεi (u

ε
j − Uj)nj − φεΠε

ij njdS =
∫

V
φερεgi + Fεinteraction,i dV,

(D5)

where indices i and j follow the standard Einstein notation. In the limit of vanishing pillbox
height (D5) yields

[[φερεuεi (u
ε
j − Uj)nj − φεΠε

ij nj]] = 0. (D6)

Continuity condition (D6) may be split into normal and tangential components,
respectively:

[[φερε(uε · n̂)((uε − U) · n̂)+ φεpε − φεn̂ · σ ε · n̂]] = 0, (D7)

[[φερε(uε · t̂)((uε − U) · n̂)− φε t̂ · σ ε · n̂]] = 0. (D8)

Finally, note that the equation governing total energy may be written as (2.37)

∂(ρ̄Ē)
∂t

+ ∇ · (ρ̄Ē ū +�E j +φspsus +φlplul −φsus · σ s −φlul · σ l + Tsks + Tlkl) = 0.
(D9)

Applying the same procedure as above to (D9) yields

[[ρ̄Ē(ū − U)+�E j + φspsus + φlplul − φsus · σ s − φlul · σ l + Tsks + Tlkl]] · n̂ = 0.
(D10)
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Appendix E. Appendix figures
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Figure 13. Profiles of density ρε (since λα = λβ = 1 the dimensionless densities of the two phases are equal,
ρs = ρl) (a), temperature T (b), temperature gradient dT/dz (c) and pressure gradient dP/dz (d) for increasing
values of R; other parameters are fixed at K = 103, λμ = 105.
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Figure 14. Variation of the average liquid volume fraction 〈φl〉 (a) and the average solid flux 〈 jz〉 (b) with
respect to R.
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Figure 15. Same as figure 8(a–c): contours of the average solid volume fraction 〈φs〉 but zoomed in on the
range R ≥ K2, λμ ≥ K2 to illustrate the self-similarity between the behaviour of the solutions in the limit of
large R and λμ relevant to planetary cores. Values of K increase from left to right: (a) K = 102; (b) K = 103;
(c) K = 104. Empty regions in the contour plots correspond to parameter values for which we do not have
solutions.
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VOČADLO, L., BRODHOLT, J., ALFÈ, D., PRICE, G.D. & GILLAN, M.J. 1999 The structure of iron under
the conditions of the Earth’s inner core. Geophys. Res. Lett. 26 (9), 1231–1234.

WALKER, A., DAVIES, C. & WILSON, A. 2021 A model of the F-layer as a non-equilibrium slurry built of
growing and sinking iron crystals. In AGU Fall Meeting Abstracts, vol. 2021, pp. DI33A–05.

WILSON, A.J., ALFÈ, D., WALKER, A.M. & DAVIES, C.J. 2023 Can homogeneous nucleation resolve the
inner core nucleation paradox? Earth Planet. Sci. Lett. 614, 118176.

WILSON, A.J., WALKER, A.M., ALFÈ, D. & DAVIES, C.J. 2021 Probing the nucleation of iron in Earth’s
core using molecular dynamics simulations of supercooled liquids. Phys. Rev. B 103 (21), 214113.

WONG, J., DAVIES, C.J. & JONES, C.A. 2018 A boussinesq slurry model of the f-layer at the base of Earth’s
outer core. Geophys. J. Intl 214 (3), 2236–2249.

WONG, J., DAVIES, C.J. & JONES, C.A. 2021 A regime diagram for the slurry f-layer at the base of Earth’s
outer core. Earth Planet. Sci. Lett. 560, 116791.

ZHANG, Z., BERCOVICI, D. & JORDAN, J.S. 2021 A two-phase model for the evolution of planetary embryos
with implications for the formation of Mars. J. Geophys. Res.: Planets 126 (4), e2020JE006754.

ZHANG, Y., NELSON, P., DYGERT, N. & LIN, J.-F. 2019 Fe alloy slurry and a compacting cumulate pile
across Earth’s inner-core boundary. J. Geophys. Res.: Solid Earth 124 (11), 10954–10967.

976 A5-51

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

83
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.834

	1 Introduction
	2 Equations governing two-phase flow
	2.1 Fundamental assumptions and notation
	2.2 Conservation of mass
	2.3 Conservation of momentum
	2.4 Conservation of entropy and energy
	2.5 Thermodynamic relations
	2.6 Constitutive relations
	2.7 Fast-melting limit
	2.8 Boundary conditions

	3 Application to the F-layer
	3.1 Problem formulation
	3.2 Dimensionless equations

	4 One-dimensional time-independent solution
	4.1 Governing equations and boundary conditions
	4.2 Characteristics of the 1-D time-independent state
	4.3 Dominant balance and limiting behaviour

	5 Results
	5.1 Variation of R
	5.2 Variation of 
	5.3 Variation of K
	5.4 Regime diagram
	5.5 Heat flux
	5.6 Effects of compaction viscosity

	6 Discussion and conclusions
	Appendix A. Glossary
	Appendix B. Thermodynamic relations
	Appendix C. Distinguished limits of two-phase equations
	C.1 General equations for non-equilibrium slurry
	C.2 Governing equations of fast-melting slurry
	C.3 Boussinessq approximation
	C.4 Inertia-less equations

	Appendix D. Derivation of continuity conditions across a moving interface
	Appendix E. Appendix figures
	References

