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A unit regular semigroup [1,4] is a regular monoid § such that H, N A(x)# & for
every x € S, where H, is the group of units and A(x)={y € S;xyx =x} is the set of
associates (or pre-inverses) of x. A uniquely unit regular semigroup is a regular monoid S
such that |H, N A(x)| = 1. Here we shall consider a more general situation. Specifically,
we consider a regular semigroup S and a subsemigroup T with the property that
IT NA(x)| =1 for every x € S. We show that T is necessarily a maximal subgroup H, for
some idempotent «. When S is orthodox, « is necessarily medial (in the sense that
x = xax for every x € (E)) and aSa is uniquely unit orthodox. When S is orthodox and «
is a middle unit (in the sense that xay = xy for all x, y € §), we obtain a structure theorem
which generalises the description given in [2] for uniquely unit orthodox semigroups in
terms of a semi-direct product of a band with an identity and a group.

Let S be a regular semigroup. Consider a subsemigroup T of S with the property that
ITNA(x) =1 for every x € S. In this case we define x* by T NA(x)={x*}. We also
define x** = (x*)* for every x € S. Then (x*)** = [(x*)*]* = (x**)* which we can write as
x***-

Observe that since x* € A(x) we have x*xx* € V(x) ¢ A(x). Therefore, if x € T then
x*xx*e TN A(x)= {x*} whence x*xx* =x* and consequently x e T N A(x*) = {x**}, so
that x =x**. Writing $* = {x*;xe€ S} we therefore have T cS*. Since the reverse
inclusion follows from the definition of x*, we thus have T =S8* Observe also that
x**x*x** e V(x*) gives x**x*x** e TNA(x*)= {x**}. Hence x**x*x**=x** and so
x*e TNAX**) = {x***}. Thus x*** =x*, from which it follows that x e T =S* if and
only if x = x**,

Since x**e V(x*) we have that $* is regular; and since y e S*NV(x*) gives
yeS*NA(x*) = {x**} we see that S* is inverse with (x*)™' =x**. If now e, f € E(S*)
then since e and f commute we have ef.e.ef =ef =ef. f. ef whence e, f € $* N A(ef)
and therefore e =(ef)* =f. Thus E(S*) is a singleton and so S* is in fact a group.
Denoting by a the identity element of S* we then have the properties

(Vxe8) x*a=x*=ax*, x*x™™=a=x*"x*

In what follows we shall call such a subgroup S* an associate subgroup of S.
We begin by listing some basic properties arising from the existence of an associate
subgroup. For every x € § we define

x°=x*xx*

It is clear that x°e V(x) and xx°=xx*, x°x =x*x. We first investigate the relationship
betweerf x° and x*.

THEOREM 1. (Vx € §) x*°=x** =x°*,
Proof. The first equality results from the observation that
x=xMFeSFNVE*) e S*NAK*) = {x**}.
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As for the second equality, we have x°=x°x°*x° and so
X =xx°x = xx°x°*x°x = xx*x*x*x

whence x*x°*x* € $* N A(x) and therefore x*x°*x* = x*. It now follows that x** e $* N
A ={x**}. O

CoroLLARY 1. (Vx € §) x*° = axa.

Proof. By the above, we have x*° = x**x°x°* = x**x*xx*x** = axa. 0O
CoROLLARY 2. (Vx € S) x*°=x°.

Proof. We have

000 __ 003% ,,00 00k %k %k %k

x*xTx* = x P A “x*

x XCx* = x*x%x
=x*xx* by Corollary 1
=x° 0O
Defining S°= {x°;x € §} We see from the above results that
xeS°Ox=mxa
so that $° = aSa. The subsemigroup S° is regular; for we have
axa = axx*xa = axax*axa = oxa . ax*a. axaq.

This also gives x* = ax*a = (axa)*. Moreover, since « is the identity element of $* we
have that §* < §°.

We now show that every associate subgroup of S is in fact a maximal subgroup, the
uniquely unit regular situation therefore being a special case.

THEOREM 2. S*=H,,.

Proof. Since the maximal subgroups of S are precisely the #-classes containing
idempotents we have S* c H,,.. To obtain the reverse inclusion, let x € H,. Then xx* ¢ H,
and x*xeH, give xx*=a=x*x whence x°=x*xx*=x*a=x* and x = axa =x.
Consequently, x =x*=x*"=x**eS§*. O

CoRrOLLARY. S° is uniquely unit regular with group of units H,,.

Proof. Since § is regular and H, =8* c §° we have that H, is an #-class of S°.
Moreover,

H, NA(axa)=S5*N A(axa) = {(axa)*} J

and (axa)* =x*=ax*a e S° Since ax°=x°=x°r it follows that S° is uniquely unit
regular with group of units H,. O

THEOREM 3. (Vx,y € S) (xy)* = (x*xy)*x* = y*(xyy*)*.
Proof. We have
xy. (x*xy)*x* . xy =x.x*xy(x*xy)*x*xy = xx*xy = xy

and so (x*xy)*x* e S* N A(xy) whence (x*xy)*x* = (xy)*. The other identity is estab-
lished similarly. O
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Observe now that axa € E(S°) if and only if axaxe = axa. Pre-multiplying by xx*
and post-multiplying by x*x, we see that this is equivalent to xax = x, i.e. to x* = . Thus
axa € E(S°) implies x = xx*x =xx*. x*x € (E). It follows from these observations that
we have E(S°)c a(E)a.

THEOREM 4. The following statements are equivalent:

(1) « is medial,

(2) (Vx,y€eS$) (xy)* =y"x*;

3) E(S°) = a{E)a.

Proof. (1)>(2): If « is medial then a=x* for every x e (E). It follows by
Theorem 3 that

(2)=(1): If (2) holds then we have e* € E for every e € £E. Since $* is a group it
follows that e* =« for every e € E. Consequently, if e,,e,€ E then by (2) we have
(e1e2)* = e3ef = aar = o, whence by induction we have x* = « for all x € (E). It follows
that x = xax for every x € (E) whence a is medial.

(1)=>(3): Suppose that « is medial and that x € (E). Then x*a and so axa € E(S°)
whence a(E)a < E(S°).

(3)=>(1): If (3) holds and xe (E) then axa is idempotent so x*=a and
x=xx*x =xax,i.e. aismedial. O

CoroLLARY. If « is medial then S° is uniquely unit orthodox. 0

THEOREM 5. If S is orthodox then « is medial and E(S°) = aEa.

Proof. If S is orthodox then we have y°x°e V(xy) = A(xy). Then
xy = xyy°x°xy = xyy*x*xy

whence y*x* € $* N A(xy) and therefore y*x* = (xy)*. The result therefore follows by
Theorem 4. O

CoroOLLARY 1. If § is orthodox then e* = « for every e e E. O
CoroLLARY 2. If S is orthodox then any two associate subgroups of S are isomorphic.

Proof. Let A, B be associate subgroups of S with respective identity elements a, B.
Since S is orthodox, « and B are medial so § = faff and @ = affa. Thus € V() and so
B belongs to the P-class of . Consequently we have that B=Hy=H,=A. O

Observe that if we define E°= {e°;e € E(S)} then, when § is orthodox, we have
E°= E(S°). This follows immediately from Theorem 5.

THEOREM 6. The following statements are equivalent:
(1) « is a middle unit;
(2) (Vx,y €S) (xy)*=x"y*.

Proof. (1)=> (2): If o is a middle unit then

00,,00

(xy)*° = axya = axa . aya =x%y
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(2)=>(1): If (2) holds then for all x,y € § we have

x°xyy® = x°axyay°® = x°(xy)>y°
= X%y
=x°. axa. aya.y°
= x°xayy°®
whence xy = xay and so « is a middle unit. 0

We recall now the following definitions. A medial idempotent o of a regular
semigroup is said to be normal [3] if the band & ( E') & is commutative. A regular semigroup
S is said to be locally inverse if for every idempotent e the subsemigroup eSe is inverse. An
inverse transversal of a regular semigroup S is an inverse subsemigroup T with the
property that |[TNV(x)]=1 for every xeS. If we let TNV (x)={x°} then we have
T=S8"={x°xeS} and the inverse transversal §° is said to be multiplicative if
x°xyy° e E(S°) for all x,y € S.

THeEoOREM 7. If S is orthodox then the following statements are equivalent:

(1) a is a normal medial idempotent;

(2) §°=aSa is inverse,

(3) (Vx,y €S) (xy)° =y

(4) S is locally inverse;

(5) S° is a multiplicative inverse transversal of S.

Proof. (1)=>(2): By Theorem 4, E(S°) = a«Ea which by (1) is a semilattice.
(2)>(1): By Theorem 5, « is medial; and by (2) it is normal.
(1)=>(3): If (1) holds then « is a middle unit by [3, Theorem 2.2]. It follows that for
all x,y € § we have
(xy)° = (xy)*xy(xy)*
=y*x*xyy*x* by Theorem 4
=y*. ax*xa. ayy*a.x*
=y*. ayy*a. ax*xa.x* by (1)
= yOxO.
(3)>(2): By Corollary 1 of Theorem 5 we have e*=a and hence e®°=e*ee* =
aea = e. Suppose then that (3) holds. Then for e, f € E(5°) we have
(ef)°=f°e"=fe.
It follows that ef =ef . fe. ef = efef and so S° is orthodox. Moreover, we have ef € E(S5°)
and so (ef)° = ef. Hence ef = fe for all e, f € E(5°) and so S° is inverse.
(1)>(4): For e € E and x € § we have, by Theorem 5 and its Corollary 1,
(exe)* =e*x*e* = ax*a = x*.

Hence exe = exe(exe)*exe = exe . ex*e . exe and so eSe is regular. That the idempotents in
eSe commute is shown precisely as in [3, Theorem 4.3].

(4)>(2): This is clear.

(2)=>(5): If (2) holds then by the above so does (1) whence a is middle unit; and so
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does (3). Suppose then that x € §° and that y e $°N V(x). We have y =y* and yxy =y,
xyx =x. By (2) and (3) it follows that

y=y®=aya = (axa)”' = (axa)° = ax°a = x°.
Hence $° is an inverse transversal of S. Since, for all x,y € S,
(x°xyy°)° = (x°xyy°)*x°xyy°(x°xyy°)*
= ax°xyy°«@ by Corollary 1 of Theorem §
= x°xyy°,

we have that x°xyy° € E(5°) and so $° is multiplicative.
(5)=> (2): Thisis clear. O

ExampLE. Let B be a rectangular band and let B' be obtained from B by adjoining
an identity element 1. Let S =Z X B' X Z and define on S the multiplication

(m,x,p)(n,y,q)=(m+n,xy,p+q)

where, for a fixed integer k > 1, m, is the greatest multiple of & that is less than or equal
to m. It is readily seen that S is a semigroup. Simple calculations reveal that the set of
associates of (m,x,p)e S is

A(m, x,p) ={{("~y’ q); M = =My, g = —pr} ?fx;e 1
{(n,1,q)sne =—my,qi=—pi} ifx=1,
and that the set of inverses of (m,x,p)e S is
Vim,x.p)= {{(n,y, 9inme=—mey#1qc=-p ifx#L
{(n.1,q);n = —my, g = —pi} if x=1
The set of idempotents of § is
E={(m,x,p);m,=0=p,}
and so § is orthodox. For every (m, x, p) € S define
(m,x,p)*=(=my, 1, —py).

Then S$* is an associate subgroup of S. The identity element of $* is a = (0, 1, 0).
It is readily seen that a is a middle unit. Now

(m,x,p)°=(m,x,p)*(m,x,p)(m,x,p)* = (=my, x, =p),
whence simple calculations give
[(m,x,p)(n,y,q)]° = (=my —ni, xy, =pi = qi)-
(n,y,q)(m,x,p)° = (—my = ne, yx, —pp = qi)-
Now xy # yx for distinct x, y € B so, by Theorem 7, « is not medial normal.
We now proceed to describe the structure of orthodox semigroups with an associate

subgroup of which the identity element is a middle unit. For this purpose, let B be a band
with a middle unit « and let End B be the monoid of endomorphisms on B. Define

End, B = {f € End B; f preserves a and Im f = aBa}.
Then End, B is a subsemigroup of End B.
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Consider the mapping @ : B— B given by ¢(x) = axa for every x € B. Since a is a
middle unit, we have @ € End B. Moreover, ¢ clearly preserves a and Im ¢ = aBa.
Hence @ € End, B. In fact, ¢ is the identity element of End, B; for if f € End, B then

(VxeB) fox)=f(axa)=af(x)a = ¢f(x)=f(x),

the last equality following from the fact that @|,z, =id.s, Hence fo = ¢f =f and so
End, B is a monoid.

THEOREM 8. Let B be a band with a middle unit « and let G be a group. Let
{:G—End, B, described by g~ C,, be a 1-preserving morphism. On the set

[B; G); = {(x. g, a) € Ba X G x aB; £y(a) = &1(x))
define the multiplication

(x’ 8, a)(y’ h’ b) = (ng(y)? gh, Ch"(a)b)'

Then [B; G). is an orthodox semigroup with an associate subgroup of which the identity
element (o, 1, @) is a middle unit. Moreover, we have E([B; G]z) =B and H, ) oy= G.

Furthermore, every such semigroup is obtained in this way. More precisely, let S be an
orthodox semigroup with an associate subgroup of which the identity element « is a middle
unit. For every yeS let y* be given by H,NA(y)={y*}, and for every x e H, let
¥, E(S)— E(S) be given by ¥,.(e) =xex*. Then ¢, € End, E(S), the mapping ¢ :H,—
End, E(S) described by x — 8, is a 1-preserving morphism and

S =[E(S); H,]5.

Proof. Observe first that the multiplication on [B; G], is well defined, for we have

xE(y)e Ba. aBa c Ba and {,,-1(a)b € aBa . aB < aB, with

EenlEn1(a)b] = (@) e[ E4(B)] = Ea(x) G [E1(¥)] = Cafxe(y)]:
A purely routine calculation shows that it is also associative. That the semigroup [B; G],
is regular follows from the fact that
L a)(x, 8, a) = (xE(@), 887", Lo(a)a)(x, 8, a)
=(xa, 1, {(a)a)(x, g, a)
= (xa/Cl(x)v 8, Cg"[Cg(a)a]a)
= (xaxa, g, § (a)aa)
=(x,g, xaaa)
=(x,g,a).
It is readily seen that the set of idempotents of [B; G|, is
E([B; G))={(x,1,a); ax = aa},
and that the idempotent (a, 1, «) is a middle unit of [B; G].. If now (x,1,4) and
(y,1, b) are idempotents then
(5, 1,a)(y, 1,6) = (1&:(y), 1, £.()b)
= (xaya, 1, aaab)
= (xy, 1, ab),

1

(x,8,a)(a,g”
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with axy =aay = aba. Hence we see that [B; G]. is orthodox. Moreover, we have
E([B; G].) = B. To see this, consider the mapping f : E([B; G].)— B given by

f(x,1,a)=xa.
Now f is surjective since for every ee B we have (ea,1, ae)e E([B;G],) with
f(ea,1, we) =ea. ae =e. To see that f is also injective, suppose that (x,1,a) and
(y,1,b) are idempotents with f(x,1,a)=f(y,1,b). Then xa=yb with ax =aa and

ay = ba. It follows that x = xax = xaa = yba = yay = y and similarly a = b. Finally, fis a
morphism; for

flGx, 1,a)(y, 1, B)] = f(xy, 1, ab) = xyab
and
xyab = xayaab = xbaxb -
=xb =xaxbab = xaayb
=xayb =f(x,1,a)f(y, 1, b).

It is also readily seen that
(y,h,b)eA(x,g,a) L (y) e A(x),h =g, §,-(b) € A(a).
Since « is a middle unit of B, it follows that (&, g~', ) € A(x, g, a). Defining

(x,8,a)" =(a,g"
we see that [B; G]f is an associate subgroup, with identity element («, 1, @), that is
isomorphic to G. It follows from Theorem 2 that G = H, | ).

' Conversely, suppose that S is an orthodox semigroup with an associate subgroup G
the identity element a of which is a middle unit of S. Then by Theorem 2 we have
G = H,. Let x* be given by H, N A(x) = {x*} for every x € §. Observe first that for every
x € H, we have xex* € E(S) for every e € E(S). In fact, xex™ . xex™ = xeaex™ = xex™. For
x € H, the mapping 9, : E(S)— E(S) given by #,(e) =xex* is then a morphism; for

B, (ef ) = xefx™ = xeafx* = xex™ . xfx* = 9,(e)9,.(f).

' a),

Moreover, 9, preserves a. Since « is the identity of H, it is clear that Im ¢, c «E(S)a.
Since for every e € «E(S)« it is clear that &,(x*ex) =e, it follows that Im &, = ¢ E(S)«
for every x € H,, and therefore ¢, € End, E(S). The mapping & : H, — End, E(S) given
by x — ¥, is then a morphism; for

3.[9,(e)] = xyey*x* = xye(xy)* = B, (e).

Furthermore, 9 is 1-preserving since ,(e)=aea = ¢(e) where ¢ is the identity of
End, E(S). We can therefore construct the semigroup [E(S); H,]s-
Since for every x € S we have xx* =xx*a € E(S)« and x*x = ax*x € aE(S) with

Tree(x*x) = x**x*xx* = axx*a = 4, (xx*),
we can define a mapping vy :S— [E(S); H,]s by
Px) = (x*, x**, x*x).

We show as follows that v is an isomorphism.
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That v is injective follows from the fact that if y(x)=1y(y) then xx*=yy*,
x**=y** and x*x = y*y give
X=X = py Ry eyt =y

To see that v is surjective, let (e, x,f) € [E(S); H,]s. Then xfx* = 8.(f) = 3,(e) = aea.
Consider the element s = exf. Using Theorem 4 and Corollary 1 of Theorem 5, we have

st = e T = axar = x.
It follows that s* =x* and so

ss*=exfx* =exea mea =e.
Since a is a middle unit, we also have

s*s =x"exf = x*aweaxf = x*xfx*xf = afaf = af =f.

Consequently, p(s) = (ss*,s**,5*s) = (e, x, f) and so ¥ is surjective.
Finally, v is a morphism since
Y)Y (y) = (X", X" )Yy, yrTL yTy)
= (G (yy*), My, By (x X))
—_ (xx*x**yy*x*’ (xy)**’y*x*xy**y*y)
= (xyy*x*, (xy)**, y*x*xy)
= (xy(xy)*, (xy)™*, (xy)*xy)
= plxy).
Hence we have that S =[E(S); H,]s. O

That the structure theorem in [2] for uniquely unit orthodox semigroups is a
particular case of Theorem 8 can be seen as follows. Suppose that § is uniquely unit
orthodox. Then, taking & = | in Theorem 8, the mappings ¢, become automorphisms on
E(S). For, xex™ = xfx* gives e = lel = x*xex™x = x*xfx*x = 1f1 = f so that ¥, is injective;
and ¢,(x*ex) = xx*exx* = lel = e so that &, is surjective. Therefore, in the construction
of the first part of Theorem 8 we can take § to be a group morphism from G to Aut B. In
this case the elements of [B; G]; are the triples (x, g, a) with a = {,-(x). Since the third
component of the triple is therefore completely determined by the first two components
we can effectively ignore third components. Then it is clear that [B; G}. reduces to the
semi-direct product described in [2].

Theorem 8 can of course be illustrated using the example that precedes it. Here we
have & =(0,1,0) and the “building bricks” in the construction are the bands E(S)a
consisting of the elements of the form (0, x, p), @E(S) consisting of the elements of the
form (m,x,0), and the subgroup H, consisting of the elements of the form (my, 1, p;).
Simple calculations give (m,x,p)(m,x,p)*=(0,x,p—pi), (m,x,p)*(m,x,p)=
(m—m;,x,0), and (m,x,p)** =(my, 1, p;). The isomorphism §=[E(S); H,)y is then
given via the coordinatisation

(m,x,p)~((0,x,p = pi), (M, 1, ), (m —my., x, 0)).

DeriniTion. If S is an orthodox semigroup with an associate subgroup of which the
identity element is a middle unit then we shall say that S is compact if x°=x* for every
x€S.
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THEOREM 9. Let S be an orthodox semigroup with an associate subgroup of which the
identity element is a middle unit. Then the following statements are equivalent:

(1) S is compact;

(2) E(S) is a rectangular band.

Proof. (1)=>(2): If (1) holds then aSa =5°=S* and is a subgroup of S whence
aE(S)a = {a}. Thus afa = a for every f € E(S). If now e, f, g € E(S) then, since « is a
middle unit,

efg = eafag = eag = eg.

Thus every f € E(S) is a middle unit of E(S), so E(S) is a rectangular band.
(2)=>(1): If E(S) is a rectangular band then «E(S)ax = {«}. It follows that, for
every x € S,

x%x°=axax® = axx°=axx* = axx*a = a.
Hence, by Theorem 1,

x0= ax°=x*x**x°=x*x°*x°
=x*xx"=x*a=x*,
whence S is compact. [

, In the compact situation, Theorem 8 simplifies considerably. To see this, observe that
for every x € H, we have #,(e) = xex* = xaeax* = xax™ = xx* = . The structure maps ¢,
therefore “‘evaporate” and S is isomorphic to the cartesian product semigroup E(S)a X

H, X «E(S).
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