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A unit regular semigroup [1,4] is a regular monoid 5 such that H, C\A(x)=£0 for
every JteS, where //, is the group of units and A(x) = {y eS;xyx =x} is the set of
associates (or pre-inverses) of x. A uniquely unit regular semigroup is a regular monoid 5
such that \H{ DA(x)\ = 1. Here we shall consider a more general situation. Specifically,
we consider a regular semigroup 5 and a subsemigroup T with the property that
\T n A(x)\ = 1 for every x e S. We show that T is necessarily a maximal subgroup Ha for
some idempotent a. When S is orthodox, a is necessarily medial (in the sense that
x = xax for every x e (£) ) and arSar is uniquely unit orthodox. When 5 is orthodox and a
is a middle unit (in the sense that xocy = xy for all x,y eS), we obtain a structure theorem
which generalises the description given in [2] for uniquely unit orthodox semigroups in
terms of a semi-direct product of a band with an identity and a group.

Let 5 be a regular semigroup. Consider a subsemigroup T of S with the property that
\TC\A(x)\ = l for every xeS. In this case we define x* by T DA(x) = {x*}. We also
define x** = (**)* for every x eS. Then (x*)** = [(**)*]* = (***)* which we can write as
x***.

Observe that since x* eA(x) we have x*xx* e V(x)^A(x). Therefore, if x e T then
x*xx* e T f)A(x) = {x*} whence x*xx* =x* and consequently x e T C\A(x*) = {x**}, so
that JC = JC**. Writing 5* = {x*;jce5} we therefore have TcS*. Since the reverse
inclusion follows from the definition of JC*, we thus have T = S*. Observe also that
x**x*x**e V(x*) gives x**x*x** eT HA(x*) = {x**}. Hence x**x*x**=x** and so
x*eTDA(x**) = {x***}. Thus x***=x*, from which it follows that xeT = S* if and
only if x =x**.

Since x** eV(x*) we have that 5* is regular; and since y e S* PI V(x*) gives
yeS*HA(x*) = {x**} we see that 5* is inverse with (x*)~l = x**. If now e,feE(S*)
then since e and / commute we have ef. e. ef = ef = ef. f. ef whence e,f e S* C\A(ef)
and therefore e = (ef)* =f. Thus £(5*) is a singleton and so 5* is in fact a group.
Denoting by a the identity element of S* we then have the properties

(VxeS) x*a = x* = ax*, x*x** = a = x**x*.

In what follows we shall call such a subgroup 5* an associate subgroup of 5.
We begin by listing some basic properties arising from the existence of an associate

subgroup. For every x e S we define

It is clear that x° eV(x) and xx° = xx*, x°x =x*x. We first investigate the relationship
between" x° and JC*.

THEOREM 1. (VJC eS) x*° = x** =x°*.

Proof. The first equality results from the observation that

x*° = x**x*x**eS*nV(x*)<=S*nA(x*) = {x**}.
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As for the second equality, we have x° = x°x°*x° and so

x = xx°x = xx°x°*x°x = xx*x°*x*x

whence x*x°*x* e S* C\A(x) and therefore x*x°*x*=x*. It now follows that x°* eS*(~)
A(x*) = {x**}. •

COROLLARY 1. (V* e S) x°° = axa.

Proof. By the above, we have *°° = x°*x°x°* = x**x*xx*x** = axa. D

COROLLARY 2. (VJC e 5) x°°° = x°.

Proof. We have

xoo° = xoo*x°°x°°* = x * * *x°°x * * * = x *x°°x *

= x*xx* by Corollary 1

= x°. D

Defining 5° = {x°; x e S) we see from the above results that

x eS°Ox = axa

so that 5° = aSa. The subsemigroup 5° is regular; for we have

This also gives x* = ax*a = (axa)*. Moreover, since a is the identity element of 5* we
have that S* c 5°.

We now show that every associate subgroup of 5 is in fact a maximal subgroup, the
uniquely unit regular situation therefore being a special case.

THEOREM 2. 5* = Ha.

Proof. Since the maximal subgroups of S are precisely the ^-classes containing
idempotents we have S* cHa. To obtain the reverse inclusion, let x sHa. Then xx* e Ha

and x*xeHa give xx* = a = x*x whence x° = x*xx* =x*a = x* and x = axa = x°°.
Consequently, x = x°° = x*° = x** e 5*. •

COROLLARY. 5° is uniquely unit regular with group of units Ha.

Proof. Since 5 is regular and Ha = S* c 5° we have that Ha is an ^f-class of 5°.
Moreover,

Ha DA{axa) = S* HA(axa) = {(axa)*}

and (axa)* =x* = ax*aeS°. Since ax° = x° = x°a it follows that 5° is uniquely unit
regular with group of units Ha. •

THEOREM 3. (Vx,y e S) (xy)* = (x*xy)*x* =y*(xyy*)*.

Proof. We have

xy . (x*xy)*x*. xy = x. x*xy(x*xy)*x*xy = xx*xy = xy

and so (x*xy)*x* eS* C\A(xy) whence (x*xy)*x* = (xy)*. The other identity is estab-
lished similarly. •
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Observe now that axa e E(S°) if and only if axaxa = axa. Pre-multiplying by xx*
and post-multiplying by x*x, we see that this is equivalent to xax =x, i.e. to x* = a-. Thus
axa e E(S°) implies x = xx*x = xx* . x*x e ( £ ) . It follows from these observations that
we have £(5°) c a{E)a.

THEOREM 4. The following statements are equivalent:
(1) a is medial;
(2) (Vx,yeS) (xy)*=y*x*;
(3) E(S°) = a(E)a.

Proof. (1)4>(2) : If a is medial then a = x* for every j c e ( £ ) . It follows by
Theorem 3 that

(xy)* = y*(x*xyy*)*x* =y*ax* = y*x*.

(2)=^(1): If (2) holds then we have e* e E for every e e E. Since 5* is a group it
follows that e* = a for every e e £. Consequently, if eue2tE then by (2) we have
{e\e2)* = e*e* = aa = a-, whence by induction we have x* = a for all x e ( £ ) . It follows
that x = xax for every x e ( £ ) whence a is medial.

(1)^>(3): Suppose that a is medial and that x e ( £ ) . Then x*a and so axa e E(S°)
whence a(E)a^E(S°).

(3)=>(1): If (3) holds and x e (E) then axa is idempotent so x* = a and
* = xx*x =xax, i.e. a- is medial. D

COROLLARY. / / a is medial then S" is uniquely unit orthodox. •

THEOREM 5. If S is orthodox then a is medial and E(S°) = aEa.

Proof. If 5 is orthodox then we have y°x° e V(xy) c A(xy). Then

xy = xyy°x°xy = xyy*x*xy

whence y*x* e S* (~)A(xy) and therefore y*x* = (xy)*. The result therefore follows by
Theorem 4. •

COROLLARY 1. If S is orthodox then e* = a for every e e E. D

COROLLARY 2. If S is orthodox then any two associate subgroups of S are isomorphic.

Proof. Let A, B be associate subgroups of 5 with respective identity elements a-, /3.
Since S is orthodox, a- and j8 are medial so /3 = fiaf} and a = afia. Thus jS e V(a) and so
/3 belongs to the ©-class of a. Consequently we have that B = Hti- Ha= A. D

Observe that if we define £ ° = {e°;e e E(S)} then, when 5 is orthodox, we have
£° = £(5°). This follows immediately from Theorem 5.

THEOREM 6. The following statements are equivalent:
(1) a is a middle unit;
(2) (Vx,y6S

Proof. ( 1 ) ^ ( 2 ) : If a-is a middle unit then

(xy)°° = axya = axa. ay a = x°°y°°.
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(2) => (1): If (2) holds then for all x, y e S we have

x°xyy° = x°axyay° = x°(xy)°°y°

= x°x°°y°°y°

= x°. axa. ay a. y°

= x°xayy°

whence xy = xay and so a is a middle unit. •

We recall now the following definitions. A medial idempotent a of a regular
semigroup is said to be normal [3] if the band a(E)a is commutative. A regular semigroup
5 is said to be locally inverse if for every idempotent e the subsemigroup eSe is inverse. An
inverse transversal of a regular semigroup 5 is an inverse subsemigroup T with the
property that |7Tl V(*)| = l for every xeS. If we let TC\V(x) = {x°} then we have
T = S°= {x°;x eS} and the inverse transversal 5° is said to be multiplicative if
xoxyy°eE(S°) for all x,yeS.

THEOREM 7. If S is orthodox then the following statements are equivalent:
(1) a is a normal medial idempotent;
(2) 5° = aSa is inverse;
(3) (Vx,yeS)(xy)° = y°x°;
(4) 5 is locally inverse;
(5) 5° is a multiplicative inverse transversal of S.

Proof (1) => (2): By Theorem 4, £(5°) = aEa which by (1) is a semilattice.
(2)^>(1): By Theorem 5, a is medial; and by (2) it is normal.
(1) => (3): If (1) holds then a- is a middle unit by [3, Theorem 2.2]. It follows that for

all x,y e S we have

= y*x *xyy *x * by Theorem 4

= y* . ax*xa. ayy*a. x*

= y* . ayy*a. ax*xa. x* by (1)

-y*yy*x*xx*

= y°x°.

): By Corollary 1 of Theorem 5 we have e* - a and hence e° = e*ee* =
aea = e. Suppose then that (3) holds. Then for e,f e E(S°) we have

(ef)°=f°e°=fe.

It follows that ef = ef. fe. ef = efef and so 5° is orthodox. Moreover, we have ef e E(S°)
and so (ef)° = ef. Hence ef =fe for all e,f e E(S°) and so 5° is inverse.

(1) ̂  (4): For e e E and x e S we have, by Theorem 5 and its Corollary 1,

(exe)* = e*x*e* = ax*a = x*.

Hence exe = exe(exe)*exe = exe. ex*e. exe and so eSe is regular. That the idempotents in
eSe commute is shown precisely as in [3, Theorem 4.3].

(4)=>(2)f This is clear.
(2) =̂  (5): If (2) holds then by the above so does (1) whence a- is middle unit; and so
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does (3). Suppose then that xeS° and that y eS°C\ V(x). We have y = y°° and yxy =y,
xyx = x. By (2) and (3) it follows that

y = y°° = ay a = (axa)~l = (axa)° = ax°a = x°.

H e n c e 5 ° is a n i n v e r s e t r a n s v e r s a l o f 5 . S i n c e , f o r a l l x , y e 5 ,

(x°xyy°)° = (x°xyy°)*x°xyy°(x°xyy°)*

= ax°xyy°a by Corollary 1 of Theorem 5

= x"xyy°,

we have that x°xyy° e E(S°) and so 5° is multiplicative.
(5)=>(2): This is clear. •

EXAMPLE. Let B be a rectangular band and let B1 be obtained from B by adjoining
an identity element 1. Let 5 = Z x f l ' x Z and define on S the multiplication

(m,x,p)(n,y,q) = {mk + n,xy,p + qk)

where, for a fixed integer k > 1, mk is the greatest multiple of k that is less than or equal
to m. It is readily seen that 5 is a semigroup. Simple calculations reveal that the set of
associates of (m, x, p) e 5 is

Aim x p\ =
\{{n,l,q);nk = -mk,qk = -pk} if x =

and that the set of inverses of (m, x, p) e S is

Vim x p\ =
{(n,l,q);nk = -mk,qk = -pk} i f x = l .

The set of idempotents of 5 is

E'={(m,x,p);mk=0=pk)

and so 5 is orthodox. For every (m,x,p)eS define

(m,x,p)* = (-mk, l,-pk).

Then 5* is an associate subgroup of 5. The identity element of S* is a = (0,1,0).
It is readily seen that a- is a middle unit. Now

(m,x,p)° = (m,x,p)*(m,x,p)(m,x,p)* = (-mk,x, -pk),

whence simple calculations give

[(m,x,p)(n,y,q)]°=(-mk-nk,xy,-pk-qk),

(n,y,q)°(m,x,p)° = (-mk-nk,yx,-pk-qk).

Now xy i=yx for distinct x,y e B so, by Theorem 7, a is not medial normal.
We now proceed to describe the structure of orthodox semigroups with an associate

subgroup of which the identity element is a middle unit. For this purpose, let B be a band
with a middle unit a and let End B be the monoid of endomorphisms on B. Define

End,,. B = {/ € End B;f preserves a and Im/ = aBa}.

Then Endff B is a subsemigroup of End B.
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Consider the mapping q>\B-* B given by (p(x) = axa for every x e B. Since a is a
middle unit, we have cp e End B. Moreover, cp clearly preserves a- and Im cp = aBa.
Hence cp e End,,, B. In fact, cp is the identity element of Endff B; for if / e End,, B then

(V* e B) f<p(x) =f(axa) = af(x)a = <pf(x) =f(x),

the last equality following from the fact that q>\aBa
 = i&«Ba- Hence fcp = cpf =f and so

End,, B is a monoid.

THEOREM 8. Let B be a band with a middle unit a and let G be a group. Let
£: G—»End,, B, described by g*-*£g, be a l-preserving morphism. On the set

[B; C]e = {(x,g, a)eBaxGx aB; £ » = £,(*)}

define the multiplication

(x,g, a)(y,h,b) = {xtK(y),gh, ^->(a)b).

Then [B; G]c is an orthodox semigroup with an associate subgroup of which the identity
element (a, 1, a) is a middle unit. Moreover, we have E([B; G]^) ~ B and H(a liO.) = G.

Furthermore, every such semigroup is obtained in this way. More precisely, let S be an
orthodox semigroup with an associate subgroup of which the identity element a is a middle
unit. For every yeS let y* be given by Haf\A{y) = {y*}, and for every x e Hn let
tix:E(S)^>E(S) be given by §x(e)=xex*. Then §x eEnda E(S), the mapping &:Ha-*

dn. E(S) described by x*-^>$x is a l-preserving morphism and

Proof. Observe first that the multiplication on [B;G]C is well defined, for we have
y) e Ba. aBa c Ba and t,h-\{a)b e aBa. aB c aB, with

A purely routine calculation shows that it is also associative. That the semigroup [B; G\
is regular follows from the fact that

= (x(x£t(x), g, t,g-\t,B(a)a\a)
= (xaxa,g,£l(a)aa)
= (x,g,aaaa)
= (x,g,a).

It is readily seen that the set of idempotents of [B; G]f is

E([B;G\) = {(x,l,a);ax = aa},

and that the idempotent (a, I, a) is a middle unit of [B;G]^. If now (x,l,a) and
(y,l,b) are idempotents then

{x,\,a){y,\,b) = (xUy),hUa)b)
= (xaya, 1, aaab)
= (xy,l,ab),
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with axy = aay = aba. Hence we see that [BjG]^ is orthodox. Moreover, we have
E([B;G\)=-B. To see this, consider the mapping/: E([B; G\)^>B given by

f(x, l,a)=xa.

N o w / is sur jec t ive s ince for every eeB we have (ear, 1, ae) e E([B; G]$) wi th
f(ea,l,ae) = ea.ae = e. T o see tha t / is also in ject ive , s u p p o s e t ha t (x,l,a) and
(y,\,b) are idempotents with f(x,l,a)=f(y,l,b). Then xa=yb with ax = aa and
ay = ba. It follows that x = xax = xaa = yba = _yay = y and similarly a = b. Finally, / is a
morphism; for

f[(x,\,a)(y,l,b)]=f(xy,l,ab) = xyab
and

xyab =xayaab =xbaxb

= xb = xaxbab = xaayb

= xayb=f(x,l,a)f(y,l,b).

It is also readily seen that

(y,h,b)eA(x,g,a)^^(y)eA(x),h=g-l,^(b)eA(a).

Since a- is a middle unit of B, it follows that (a,g~\ a) eA(x,g,a). Defining

we see that [S;G]£ is an associate subgroup, with identity element (a, I, a), that is
isomorphic to G. It follows from Theorem 2 that G — H(ala).

- Conversely, suppose that 5 is an orthodox semigroup with an associate subgroup G
the identity element a of which is a middle unit of S. Then by Theorem 2 we have
G = Ha. Let x* be given by Ha (~\A(x) = {x*} for every x e S. Observe first that for every
x e Ha we have xex* e E(S) for every e e E(S). In fact, xex* . xex* = xeaex* =xex*. For
x 6 Ha the mapping &x: E(S)—*E(S) given by ftx(e) = xex* is then a morphism; for

#,(e/) = xefx* = xeafx* = xex* . xfx* = ^ (e )^( / ) .

Moreover, #,. preserves cr. Since <* is the identity of Ha it is clear that Im &x c a-£(5)a/.
Since for every e e aE(S)a it is clear that ftx(x*ex) = e, it follows that Im #, = aE(S)a
for every x eHn, and therefore #,. e End,,, £(S). The mapping &:H«-+Enda E(S) given
by Jt >-» fyf is then a morphism; for

0,[0,(O] = xyey*x* =xye(xy)* = 0xy(e).

Furthermore, # is 1-preserving since #„(£) = aea = q>(e) where (p is the identity of
End,,, £(5). We can therefore construct the semigroup [E(S); Ha]&.

Since for every x e S we have xx* = xx*a e E(S)a and x*x = ax*x e aE(S) with

&x..(x*x) = x**x*xx* = axx*a = ^(JCJE*),

we can define a mapping ip :5-» [£(5); //^Jo by

We show as follows that i/> is an isomorphism.
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That xp is injective follows from the fact that if xp(x) = rp(y) then xx*=yy*,
x** = y** and x*x =y*y give

X = XX*X**X*X = yy*y**y*y = y.

To see that ip is surjective, let (e,x,f) e [£(5); //„]„. Then xfx* = §,{f) = #„.(<?) = aea.
Consider the element 5 = exf. Using Theorem 4 and Corollary 1 of Theorem 5, we have

s** = e**x**f** = axa = x.

It follows that s* =x* and so

55* = exfx* = eaea — ea = e.

Since a" is a middle unit, we also have

s*s = x *exf = x*aeaxf = x*xfx*xf = afaf = af =/.

Consequently, i/>(s) = (55*,s**, s*s) = (e,x,f) and so 1/; is surjective.
Finally, xp is a morphism since

* * ^ * ^ * , (xy)**, y*x*xy**y*y)
*, (xy)**,y*x*xy)

= (xy(xy)*, (xy)**, (xy)*xy)

Hence we have that 5 = [E(S); Hn]#. D

That the structure theorem in [2] for uniquely unit orthodox semigroups is a
particular case of Theorem 8 can be seen as follows. Suppose that 5 is uniquely unit
orthodox. Then, taking a = 1 in Theorem 8, the mappings #, become automorphisms on
£(5). For, xex* =xfx* gives e = \e\ =x*xex*x =x*xfx*x = If I = / so that #,. is injective;
and •&x(x*ex) = xx*exx* = lei = e so that •&„ is surjective. Therefore, in the construction
of the first part of Theorem 8 we can take f to be a group morphism from G to Aut B. In
this case the elements of [B; G\ are the triples (x,g, a) with a = £,.-'(*). Since the third
component of the triple is therefore completely determined by the first two components
we can effectively ignore third components. Then it is clear that [B,G]i reduces to the
semi-direct product described in [2].

Theorem 8 can of course be illustrated using the example that precedes it. Here we
have a = (0,1,0) and the "building bricks" in the construction are the bands E(S)a
consisting of the elements of the form (Q,x,p), aE(S) consisting of the elements of the
form (m,x,0), and the subgroup Ha consisting of the elements of the form (mk, \,pk).
Simple calculations give (w,x,p)(m,x,p)* = (0,x,p -pk), (m,x,p)*(m,x,p) =
(m ~mk,x,0), and (m,x,p)** = (tnk, \,pk). The isomorphism S~[E{S);H«\n is then
given via the coordinatisation

(m,x,p) ~ ((0,x,p -pk), (mk, 1,pk), (m - mk,x, 0)).

DEFINITION. If S is an orthodox semigroup with an associate subgroup of which the
identity element is a middle unit then we shall say that 5 is compact if x°-x* for every
xeS.
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THEOREM 9. Let S be an orthodox semigroup with an associate subgroup of which the
identity element is a middle unit. Then the following statements are equivalent:

(1) S is compact;
(2) £(5) is a rectangular band.

Proof. (1)=^>(2): If (1) holds then aSa = 5° = S* and is a subgroup of 5 whence
aE(S)a = {ex}. Thus afa = a for every / e E{S). If now e,f,g e E{S) then, since a- is a
middle unit,

efg = eafag = eag = eg.

Thus every/ e E(S) is a middle unit of E(S), so E(S) is a rectangular band.
(2)^>(1): If E(S) is a rectangular band then aE(S)a = {a}. It follows that, for

every x e S,

Hence, by Theorem 1,

whence S is compact. •

In the compact situation, Theorem 8 simplifies considerably. To see this, observe that
for every x e Hn we have #.v(e) = xex* = xaeax* = xax* = xx* = a. The structure maps #v

therefore "evaporate" and S is isomorphic to the cartesian product semigroup £(5)0- x
,HnxaE(S).
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