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PULSATILE FLOW IN CIRCULAR TUBES OF VARYING
CROSS-SECTION WITH SUCTION/INJECTION
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Abstract

We consider here pulsatile flow in circular tubes of varying cross-section with
permeable walls. The fluid exchange across the wall is accounted for by prescribing
the normal velocity of the fluid at the wall. A perturbation analysis has been carried
out for low Reynolds number flows and for small amplitudes of oscillation. It has
been observed that the magnitude of the wall shear stress and the pressure drop
decrease as the suction velocity increases. Further, as the Reynolds number is
increased, the magnitude of wall shear stress increases in the convergent portion and
decreases in the divergent portion of a constricted tube.

1. Introduction

The study of pulsatile flow in a circular tube has attracted the researchers for a
long time due to its importance in understanding the fluid mechanical aspects of
blood flow. Since the studies of Womersley [10, 11] who considered oscillatory
flow in cylindrical tube of uniform cross-section, many research workers have
contributed to the study of this complex flow situation by considering its different
aspects. For example, in order to account for the non-uniform lumen of blood
vessels, Rao and Rathna Devanathan [7] and Schneck and Ostrach [8] studied
pulsatile flow through circular tubes of varying cross-section at low Reynolds
number. Bitoun and Bellet [1] analysed pulsatile flow with reference to stenosis
in microcirculation. In these studies the tube wall is taken to be impermeable.
However, in the case of small blood vessels, the permeability of the walls
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becomes important. Moreover, the experimental investigations have revealed
that the pulsatile nature of the blood flow persists in the small blood vessels
also [2, 9]. In view of this, we consider, here, pulsatile blood flow in circular
tubes of varying cross-section with permeable walls. It may be remarked that
the steady flow of a viscous fluid through a circular tube with a permeable wall
has been studied by Macey [3, 4] with reference to the flow in proximal renal
tubules. This study was later extended to the flow through circular tubes of
varying cross-section and permeable wall by Radhakrishnamacharya et al. [6].

The physiological situation of blood flow is highly complex. Therefore, to
study the effect of tube wall permeability on pulsatile flow, we make some
simplifying assumptions. In this analysis, we assume that blood is a Newtonian
fluid and that the blood vessel is a straight, rigid circular tube of varying cross-
section. Further, the permeability of the wall is considered by prescribing the
normal velocity of the fluid at the wall. This suction/injection velocity of the
fluid is taken to be pulsatile. The analyis is restricted to low Reynolds number
flows.

2. Formulation of the problem

The pulsatile motion of a Newtonian incompressible fluid in an axisymmetric
circular tube with permeable walls and varying cross-section is considered. The
radius of the tube varies slowly along the axial direction, i.e., if we employ
cylindrical polar co-ordinates (X, R, 9) such that R = 0 is the axis of symmetry
for the tube, then the tube radius R = A(X) is given as [5]

A(X) = A0S(eX/A0) with 5(0) = 1, (1)

where e = (AQ/L) <S 1 is tube wall slope parameter, Ao is tube radius at X — 0
and L is the characteristic length of the tube. It can be noted that s = 0 gives
the case of tube with uniform radius. The equations of motion governing the
axisymmetric flow are:

du du du i dp
\-U \-V— = \-v

dT dx dR pdx
dv dv dv l dp

R8R
-a2d2v

ol dX oK p aX |_dAz

8U_ j__9_

ax + ̂ a ^ ( )- ' (4)
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where (£/, V, 0) are velocity components in (X, R, 9) directions, T is the time
variable, P is the pressure, v is the kinematic coefficient of viscosity and p is
the constant fluid density.

To consider the permeability effect of the tube wall, we prescribe the suc-
tion/injection velocity of the fluid at the wall which is assumed to consist of a
steady part and an oscillatory part. Thus, the normal component of the fluid
velocity at the tube wall is given by:

1/2
dA
d~xl

. dA
1 + HTT at R = A(X), (5)

where Vs is the steady state suction/injection velocity and S is the ratio of the
amplitudes of the oscillatory and steady parts of the suction/injection velocity
and n is the frequency of oscillation.

The no slip condition implies that the tangential velocity is zero at the wall
i.e.

dA
U + —V=0 at R = A(X). (6)

dX
The axisymmetry of the flow gives

dU
— = 0 and V = 0 at R = 0. (7)
oR

Further, the flux at the initial cross-section (i.e. X = 0) is assumed to be in
phase with the suction/injection velocity and is prescribed as

Q = Qs{l+SeinT) at X = 0, (8)

where Qs is the steady state flux at the initial cross-section.

3. Analysis

We introduce a stream function, * , given by

/?9/?' RdX' W

which on elimination of the pressure from (2) and (3) gives:

If + [dRdx{R)"dXdR \R)\ ~ u [dx* + dR Ua*
(10)
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where
3 / 1 30/\ a / 1 3vI/\

(11)
_ 3 (\ 3*\ 3 (\ 3*\

~ ~d~R \RJR) + ~dx \~R~dx)'
Further, the boundary conditions (6) and (7) in terms of * can be written as

3 * dA 3 *
-^-7^^F=° at R = A(X)oK aX oX

a / i 3 * \ _
dR \RJR) =

and

0 as R -* 0.
(12)

The equation of continuity (4) along with the conditions (5) and (8) for
axisymmetric flow gives

I 1/2
1

* = —(l+SeinT) Qs-2nVs

at/? = A(X).

Using the following non-dimensional variables

sX R
x = r =

co -
Q_

Qs' ™ " U 0 ?

and the dimensionless parameters

p =

t =nT,

2JTA0
3P

(13)

(14)

Re = Qs 2 nA0a —
v

and
2nA0

2Vs

(10) and (11) and the conditions (12) and (14) can be written in non-dimensional
form as:

a
1 d(p dco d(f) 3 /WN") 2 9 "* d co 1 dco co
r dr dx dx dr \r ) \~ £ dx2 dr2 r dr r2'

1 r32(/» 130 2 3 V 1
r \_dr2 r dr dx2J

d(p -jdS d(f>
T~+e 1~T~ = 0
or dx ox

Se'")U - v, J*
at A- = 5 ( J C ) ,

-r- I—7- =0 as r^O,
dr \r dr

(16)

(17)

(18)
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where G(x) = S(x) 1 + e2 (^) , Re is entrance flow Reynolds number, a2

is Womersley's parameter, and vs is leakage parameter.
It may be noted that vs = 0 in the boundary condition (17) means 'no leakage

through the tube wall', hence it refers to the case of pulsatile flow through
circular tube of varying cross-section with impermeable wall. Also 8 = 0 in
(17) would lead to the case of steady flow.

4. Method of solution

We assume here that the pulsatile flow consists of
(i) the steady part, and

(ii) the oscillatory part which has small amplitude of oscillation such that
the terms of the order 82 can be neglected, i.e. 5 « 1 .

In view of this, we seek the solution of (15) to (18) in the following form:

co = (com + 8e"co0l) + e (cow + 8e(t<on) + O (e2, 82) ,
(19)

4> = (</>oo + Se"4>Oi) + s (</>10 + 8e"4>u) + O (s2, 82) .

Further, we restrict our analysis to low Reynolds number flows [5], i.e.
Re ~ O(l). Thus, using the perturbation scheme (19) for a> and 0 in equations
(15) to (18), and collecting the coefficients of e" and of equal powers of £ , we
get the following coupled equations and the corresponding boundary conditions:

(i) Zeroth order-steady part

£>2o>oo = 0, (20a)

(20b)

at r = 5(JC), (20c)^ 0 , 000 1
dr

^» l(dp)=0 as r - 0 , (20d)

where D2 = d2/8r2 + (l/r)(d/dr) - \/r2 and F(JC) = f* S(t-)d!-.
(ii) Zeroth order-oscillatory part

D2co0i = k2co0u (21a)3 ?(
dr \r dr
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^ 2 1 = o, 00, = 1 - v,F(x) at r = S(x), (21c)

0o,=O, ^ 1 = 0 , l(l-d-p)=0 as r - 0 . (21d)
dx or \r dr )

where A.2 = ia2.
(iii) First order-steady part

r.2 o f13000 3woo 30oo 3 /&>oo\"| „ - N

|_r 3r 3JC 3X dr \ r / J

?

(iv) First order-oscillatory part

=0, 0,0 = 0 at r = 5U), (22c)

= 0 as r ^ 0 . (22d)

d / 1 90n\
dr \r dr )

^ = 0 , 0 , , = O at r = S(x), (23c)
dr

0u=O, ^ii=0. f ( - ^ ) = 0 as r-0. (23d)
dx dr \r dr )

The equations (20a,b) and (21a,b) are solved along with the corresponding
boundary conditions to give the zeroth order co and 0 as follows

cow = - 8 ( 1 - v,F(x)) r/S\ (24)

0oo = (1 - v,F(x)) {2r2S2 - r*)/S\ (25)

^ (26)

0o, = (1 - v,F{x)) [ ]
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where /o(z), I\(z), I2(z) are modified Bessel functions of order 0, 1 and 2
respectively.

The expressions for the zeroth order components co and <f> (given by (24) and
(27)) are substituted in (22) and (23) which are then solved for the first order
components. Thus, the expressions for coi0, <t>w, cou and <f>n are obtained in the
following form:

- v,F(x)) (gl + 4g2) ls4r - 2SV + -r5 j , (28)

- vsF(x)) (gl + 4g2) (4S6r2 - 9S4r4 + 652r6 - r 8 ) , (29)

- vsF(x)) [TirI0(Xr) - T2r
2h{Xr)

-T3r'l2(Xr) + TAr*lx{\r) - 876r - r7/,(Xr)], (30)

Re

+T4r
5I3(kr) - T5r

4IA(kr) - X2T6r
4 - r7/,(Xr) - Tsr

2]. (31)

Here /m(z) is the modified Bessel function of order m; g\, g2 and Tt (i =
1 to 8) are functions of S(x) and are given as follows

1

gi=vsS{x), g2 = ^ O -

T2 = XS3 [(4 + X2S2) gl + 2 (8 + X2S2) g2],

1+ 1

-2I2(XS)} - ST2{XS12(XS)-2I3(XS)}

-S2T5{XSI3(XS) - 2/4(AS)} +XS4T4I4(XS) - 2A.252T6],
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-X2S2T6} - Il(XS){ll(XS)Tl - SI2(XS)T2 + S2/X(XSI2(XS)

+2I3(XS))T4 - S2h(XS)T5 -

dU dV

In the above expression substituting vs = 0 gives g\ = 0 which corresponds
to the case of impermeable tube wall, while g2 = 0 leads to the flow through
tube with constant radius (S(x) = 1).

Shear stress at wall of tube The shear stress, 7^, at the tube wall R = S(x)
is defined as

T —

where

and

are calculated at R = A(X).
This along with the boundary conditions at R = S(X) and (9) and (11) gives

the dimensionless wall shear stress, rw, in the following form:

at R =

"I" ^52

\BU dv~\
= -2M L~ - — J

Thus we get from (24), (26), (28) and (30)

r,,, = • - — — 1 + Se
12

-(5/0(A.5)r, - S2Il(XS)T2 - S3I2(XS)T3
SX2S6I2(XS)

+S*Il(XS)TA-SST6-I1(XS)T1)\ \+O(e2,S2). (32)
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Pressure drop To calculate pressure, we observe that the equations of motion
(2) and (3) and the non-dimensionalizing scheme (14) give the following form
of dimensionless pressure, p,

ep = (Poo + Se"poi) + e (p,0 + Se"pn) + O {s2, S2).

Thus the equations governing pressure components can be written as:

(33)

(34)

3 Poo

dx
3poi
dx

3pio
dx

Bpn
dx

l3(r
rdr(r

1 3
~ rdr{r

1 3
r dr

~ rdr(r>

Re T

r L

, A2 30oi
W 0 l ) r 3r '

^ ^ri30oo320oo
r \_r or orox

A2 30ii
W l l ) r 3r
1 J 30oo 32<£oi 30oi 32<S
r \ dr drdx dr 3n

3poo 3poi 3pi0

30oo 1

dx J '

&oo| 30oi , 3^oo
o } ^ 0 0 „ 1 <WU1 o

dx ) dx dx

dp" o.

\ ^ T a a T T ^ l ^ ( 3 6 )
r |_r [ 3r 3r3;c 3r 3r3x J ox dx J

with
3Poo 9pm 3pio 3pn
3r 3/- 3/- 3r ' K '

The equation (37) shows the /?oo. Poi. Pio. Pi i are independent of r, hence (33)
to (36) are integrated to give the pressure drop Ap(x) = p(0) — p(x) up to the
first order as follows:

e" f
Jo S2I2

I0(XS)dx

/

x

+O(£
2,«52) , (38)

where

T9 = 2I0(kS)gi H
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5. Results and discussion

In the above analysis, the expressions of the flow variables <f>, co, xw and Ap
depend upon the following non-dimensional parameters

(i) vs leakage parameter
(ii) Re: entrance Reynolds number

(iii) A. = V/a2, where a2 is Womersley's parameter, apart from the perturb-
ation parameters s and S.

Due to the presence of complex parameter k these quantities appear in the
complex form. This is because of the periodic boundary conditions (5) and (8)
which in the non-dimensional form can be written as:

4> = (1 + Se") I 1 - vs f G($)dfj at r = S(x).

It is the real part of this condition, i.e.,

\ at r = S{x),- v s I

which is of interest. Hence, for our discussion we consider only the real part of
the expression of wall shear stress and the pressure drop. Thus the expressions
(32) and (38) are split into real and imaginary parts and the real parts are
numerically evaluated to see the effect of vs, Re and a on wall shear stress (rw)
and pressure drop (Ap). The results are obtained by taking e = 0.1 and 8 = 0.1
for the following tube geometries:

(a) Locally constricted tube i.e.

S{x) = [2 - exp{-(x - 0.5)}2] / [2 - <T025] ,

(b) Sinusoidal tube

S(x) = l+0.2sin(27rx).

(i) Wall shear stress
The magnitude of dimensionless wall shear stress (IT^ |) is plotted in Figures 1

to 3 for locally constricted tube geometry and in Figures 4 to 6 for sinusoidal
tube. In the Figures 1,2,4 and 5, jr^l is plotted versus x (axial distance) at t = |

https://doi.org/10.1017/S0334270000009358 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000009358


376 Peeyush Chandra andJ. S. V. R. Krishna Prasad [11]

and t = 2£, while in Figures 3 and 6, its variation is shown with respect to the
time parameter (t) at different cross-sections (x = 0.3, 0.5 and 0.7). It is clear
from these figures that the values of | r j increase in the converging portion of
the tube and decrease in the diverging regions. Further, the suction of the fluid at
the well reduces the flux in the tube which results in the reduction of wall shear
stress. This behaviour is reflected in the figures also, e.g., the values of | r j in
the case of suction (vs = 0.2, Figure 1) are less than the corresponding values of
\rw\ in the case of injection (vs = —0.2, Figure 2). The effect of the frequency
parameter (a) on | r j depends upon the time parameter (t). The increase in a
decreases \rw\ at all the cross-sections for t = | and t = ^f. However, this
behaviour is observed only in approximately the first half of the time cycle,
i.e. for t < n and the reverse trend is seen for t > n (Figures 3 and 6). It is
noted that this variation of \rw\ with respect to a remains similar in the case of
suction as well as injection. The effect of Re (Reynolds number) is to enhance
wall shear stress in the converging portions and to reduce it in the diverging
portions at t — | and t — ^f. This effect if further elaborated in Figures 3 and
6. However, it is noted in the case of suction of fluid in the constricted tube that
the variation of \xw\ with respect to Re at x = 0.3 depends upon t. While \xw\
increases with Re for t < n, it shows decreasing trend for t > n at x — 0.3.
No such behaviour is observed in the case of injection. It is also noted that the
effect of a and Re on \rw\ is not very significant in the constricted region of the
tube (Figure 3, at x = 0.5). In the case of sinusoidal tube (Figures 4 and 5)
the effect of Re is more significant and the increase/decrease of |TU,| with Re in
converging/diverging portions is very sharp.

(ii) Pressure drop
The pressure drop Ap is plotted versus x in Figure 7 for the constricted tube

and in Figure 8 for the sinusoidal tube at t = | and t = ^f. In the case of
the constricted tube Ap at any cross-section is more in case of injection than
suction. Also, in this case, pressure drops more for higher values of Re and this
behaviour is seen at all the cross-sections of the tube (Figure 7). However, in
the case of the sinusoidal tube (Figure 8), the effect of Re on Ap is to decrease
it at the initial cross-section and then to increase it for injection. In the case of
suction, Ap again decreases for the cross-sections x > 0.85 as Re increases.
This shifting behaviour of Ap with respect to Re along the tube is mainly due to
the converging and diverging sections of the sinusoidal tube. Moreover, pressure
drop decreases with the frequency parameter a. This behaviour is similar in
both the tube geometries.
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«• = o , Re = n
" = A ;; R« = 11
<* = 0 , Re = 5 |
* - 4 , Re = 5 j

v , = 0 . 2

0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 10

FIGURE 1. IT^I for locally constricted tube with suction at the wall.

4.0 J I I I I L
0 0.2 0.A 0.6 0.8 0 0.2 0.4 0.6 0.8 1.0

FIGURE 2. | r j for locally constricted tube with injection at the wall.
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8 -

6 I

x = 0.5

J I I
TT/2 TT 31T/2 2n TT/2 TT 3TT/2

FIGURE 3. | r j for locally constricted tube.

n/2 TT 3n/2

17
«• = 0 , Re =1
d = 4 , Re =1
or = 0 , Ra = 5

- V - i , Re = 5
0.2

0 0.2 0.6 0.6 0.8 0 0.2 0.U 0.6 0.8 1.0

FIGURE 4. |rm| for sinusoidal tube with suction at the wall.
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0 , R« = 1
t Re = 1 i n

0 , R« =5 f s '
, Re = 5

J I I L
0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8

FIGURE 5. | r j for sinusoidal tube with injection at the wall.

FIGURE 6. I r J for sinusoidal tube.
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10.0

8.0

or = 0 , Res 1 "I y^ Q- = 0 , Re = 1 ")
<v = 4 , R e = l f v s = 0 . 2 / " / M - o , Re =5 U s =-0.2

0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 1-0

FIGURE 7. Ap vs x for locally constricted tube.

FIGURE 8. t\p vs x for sinusoidal tube.
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6. Conclusion

Here we have studied the effect of suction/injection on pulsatile flow through
circular tubes of varying cross-section. It is observed that the effect of suction
on the wall of the tube is to decrease shear stress at the wall as well as the
pressure drop. The wall shear stress shows periodic behaviour with time and
it decreases as the frequency parameter increases. Further, an increase in the
Reynolds number results in an increase of the wall shear stress in the converging
portion and in its decrease in the diverging portions of the tube.
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