A FURTHER STUDY OF HERD MORTALITY UNDER EPIDEMIC CONDITIONS.

By M. GREENWOOD, E. M. NEWBOLD, W. W. C. TOPLEY
and J. WILSON.

In previous memoirs of this series we have studied the course of mortality in our herds of mice principally in two ways. We have used as the abscissa either secular time or individual time. The former method, that of the ordinary chronology of epidemics, measures contemporaneous events, tells us what did really happen in a community within particular identifiable calendar weeks. The latter method does not give the history of a community of really existing contemporaries, for it brings together happenings which may belong to widely separated intervals of calendar time, but occurred at the same point in the lifetime of all individuals represented. This second method, that of the life table, cannot therefore throw light upon the effect of changes of environment within a community during the period which furnishes the data. We have, let us suppose, the individual records of all mice which entered a herd during a period of a year and we evaluate by the life-table method the rate of mortality experienced during the first three months of life within the community. Then the rate of mortality after, say, 30 days' exposure will be based upon all who entered before the last 30 days of the year and will bring into the same category mice who entered the community at 11 months apart. But, as we know that the secular rate of mortality waxes and wanes, this means that we throw into the same group animals really exposed to quite different "real" risks of dying. In fact what we are doing is to substitute for a variable risk a fictitious average risk. By paying this price, however, we can obtain materials for studying an aspect of exposure not obtainable in a more satisfactory shape because the individual groups of entrants upon each day are too small to permit of separate tabulation in life-table form. That has, of course, been the justification of the life-table method in human epidemiological practice. One constructs a life table from the experience of, say, 1920-2 and another from the experience of 1923-5 and makes comparison of the results, ignoring the facts that the risk of dying at each age has varied, or may have varied, within each triennium as well as from triennium to triennium. In this memoir we shall try to deduce the lessons taught by such life-table experience.

Since our last publication*, material for the construction of other life tables than those already reported upon has accumulated and we now have available for use the following:
(1) Herds in which Pasteurellosis was the principal or only infection and the immigrants numbered 1, 2, 3 and 6 daily. These (all published before) may be called P_{1}, P_{2}, P_{3} and P_{6}.

M. Greenwood, E. M. Newbold and others

Table I. Epidemic life-table constants and data.

Table I A. Epidemic life tables ${ }_{5} q_{x}$. (Probability of dying in the next 5 days-specific deaths only.)

	Height of maximum	Day of maximum	Out of 10,000 on day 0 , number alive	Ratio of maximum ${ }_{5} q_{x}$ to average value
Exp.	${ }_{5} q_{x}$	${ }_{5} q_{x}$	on day 60	of $q_{x}{ }^{*}$ for life table
B_{1}	$\cdot 215$	14	1803	$9 \cdot 35$
B_{3}	-414	24	768	15.86
B_{6}	-311	25	1763	16.37
P_{1}	-155	3	3158	$8 \cdot 58$
P_{2}	-156	5	2214	$6 \cdot 17$
P_{3}	-241	5	1422	6.85
$P_{\text {a }}$	-274	18	1766	11.23
$P_{\mathbf{P}}{ }^{\prime}$	-380	7	840	9.03
P_{6}	-221	3	2315	8.63

Data arranged in order of maxima.

B_{3}	- 414	B_{8}	25	P_{1}	3158	B_{6}	16.37
P_{3}	. 380	B_{3}	24	P_{6}	2315	B_{3}	15.86
B_{6}	- 311	$P_{3}{ }^{\text {, }}$	18	P_{2}	2214	$P_{3 N}$	11-23
$P_{3}{ }^{\text {v }}$	-274	B_{1}	14	B_{1}	1803	B_{1}	$9 \cdot 35$
$P_{\text {s }}$	-241	$P^{1}{ }^{\prime}$	7	$P_{3}{ }^{\text {v }}$	1766	$P_{3}{ }^{\text {d }}$	$9 \cdot 03$
P_{6}	- 221	P_{2} and P_{3}	5	${ }^{\text {B }}$	1763	P_{8}	8.63
B_{1}	- 215	P_{1}^{2} and P_{6}	,	$P_{\text {s }}$	1422	P_{1}	8.58
$\mathrm{P}_{\mathbf{2}}$	-156			$P_{3}{ }^{\text {I }}$	840	P_{3}	6.85
P_{1}	-155			B_{3}	768	P_{2}	$6 \cdot 17$

(2) Herds in which infection with Bact. aertrycke caused most of the deaths and the additions were 1,3 and 6 daily. These are B_{1}, B_{3} and B_{6}.
(3) In addition we have tables based upon communities recruited respectively by 3 healthy quarantined animals (the infection was due to Pasteurella) or by 3 animals from another infected cage. These are distinguished as $P_{3 N}$ and $P_{3 I}$. A general summary of the fundamental data and statistical averages is given in Table I, and some further particulars in Table I a. These tables will orientate the reader as to the scale and (to some extent) reliability of the data; he will, comparing the two largest and comparable series, viz. P_{3} and B_{3}, also conclude that epidemiologically Bact. aertrycke is less formidable than Pasteurella.

For the sake of completeness P_{31} has been included in this table but an analysis of the experiment shows that the table is incomparable with the others. When the data are divided in accordance with the length of previous exposure to infection, it appears that the high general death rate is really due to the transfer of mice which have been long enough exposed to infection in another cage to be sick to die but not long enough actually to die. The average daily specific death rate of mice which had passed from 9 to 15 days in the testing cage was in the observational cage 0.0595 ; of those in the testing cage 15 to 25 days 0.0587 ; but of those who had been 26 or more days in the testing cage only 0.0234 . Omitting the experiment from further consideration in this paper, we notice that the new Pasteurella experiment $P_{3 N}$ falls rather better into line with the old series than did the original P_{3}, if we take it that the average rate of mortality should increase with the number of daily immigrants, although even so the rate is insignificantly less than in P_{2}. In the Bact. aertrycke series the rate of mortality with 3 daily additions exceeds that with 6 which itself is less than when a single daily immigrant entered. One cannot say that these results warrant a belief that there is any high positive correlation between average rate of mortality and rate of immigration, although study of the secular changes has suggested that such a correlation exists.

Whichever characteristic of a life table is taken for study, whether q_{x} or d_{x}, one finds that the course of mortality with age, that is cage age, in these herds is fundamentally unlike the course of mortality with age under normal conditions. In our 1925 paper we contrasted the herd tables with a table of human mortality and in 1928 one of us* showed that the contrast was as striking when comparison was made with a mortality table for mice brought up under less dangerous conditions. The data for normal mice were certainly scantytoo scanty perhaps to make it probable that normal mice and normal men died in different ways-but quite sufficient to prove that these epidemic phenomena are sui generis. Here we may refer to a quite just criticism which has been passed upon our work, viz. that it is straining terminology to speak of life tables when neither the ages nor the genetic histories of our animals under experiment are known, when we do not even distinguish between the sexes.

[^0]That criticism was expressed vigorously in the first paper of the series by ourselves and we have never underrated its importance. We wish we could use only animals the precise ages and histories of which were known to us, we hope in time to be able to do so. But we cannot refrain from saying that what we have learned of the normal mortality of mice, scanty as it is, does convince us that, for the immediate purposes of our studies, the heterogeneity of the material is of very little importance. It is, we believe, certain that the weight of the age factor in the rate of mortality is so trifling in comparison with that of other factors that it can fairly be disregarded. It is possible to form some idea of the age distribution of mice admitted to the cages by means of the following data. The weight distribution of mice received by us from the dealers is accurately known. That of a representative sample is shown in Table II.

Table II. Weights of mice as received from breeders.

Grm.	Frequency
$9 \cdot 5-10 \cdot 4$	1
$10 \cdot 5-11 \cdot 4$	7
$11 \cdot 5-12 \cdot 4$	79
$12 \cdot 5-13 \cdot 4$	33
$13 \cdot 5-14 \cdot 4$	310
$14 \cdot 5-15 \cdot 4$	422
$15 \cdot 5-16 \cdot 4$	642
$16 \cdot 5-17 \cdot 4$	381
$17 \cdot 5-18 \cdot 4$	250
$18 \cdot 5-19 \cdot 4$	154
$19 \cdot 5-20 \cdot 4$	48
$20 \cdot 5-21 \cdot 4$	24
$21 \cdot 5-22 \cdot 4$	
$22 \cdot 5-23 \cdot 4$	
Mean weight	$16 \cdot 081$
Standard deviation	$1 \cdot 893$ grm.
grm.	

We also know approximately (from the work of Robertson and Ray)* the means and standard deviations of weights of mice at different ages. It also appears from the work of one of us that, under favourable conditions, the mortality of mice in the first three or four months of life is very small. If therefore we suppose that the dealers select mice from their standing stock by the conditions imposed by us, viz. that we only accept mice from 14 to 22 grm . in weight, and further suppose that the distribution of weights around the mean weight of each age group is effectively given by a normal curve of error, one can compute from the data the probable age composition of the received sample. Such a calculation leads to the conclusion that of the mice received by us 63 per cent. fall within the limits of 4 and 10 weeks of age, $73 \cdot 7$ per cent. within the limits $4-12,81 \cdot 2$ per cent. within the limits $4-14$.

This is the probable age distribution of the mice as received. On receipt they are quarantined 3 weeks and the actual entrants to the herds will therefore be on the average 3 weeks older and will also have suffered a further selection by the application of the rules as to suspected infection detailed in

[^1]our previous paper. We have weighings of 1283 mice at the time of entrance to the herds and, as was to be expected, the mean weight is $2 \cdot 5-3 \cdot 5 \mathrm{grm}$. more than the mean at arrival from the dealers, while the coefficient of variation is slightly reduced. We seem, therefore, entitled to conclude that, on entrance to the herds, the age distribution of the mice at reception is still applicable, the ages being, of course, advanced 3 weeks. In other words, we may say that about 80 per cent. of the entrants are from 7 to 15 weeks old. This is a range of life for which normal mortality is very small. We are naturally aware that the basis of this computation is precarious; but we are only concerned with the order of magnitude of the result and do not believe that a more refined analysis would substantially modify the broad conclusion indicated.

For the purpose of studying mortality conditions in the front line trenches during a war, it might be useful to set out the exposed to risk in life-table form and to determine the series of q_{x} 's when the unit of x is day of exposure at the front. For such a purpose to ignore differences of age of men drafted to the front, to treat men aged 20,30 or 40 years as differentiated only in respect of "trench age" would be legitimate. That is the justification of our procedure. But that it is only justified by the abnormality of the conditions of life of our herds we freely admit and, as a corollary of that admission, we agree that if and when we succeed in interpreting these results we shall still be far from a knowledge of the epidemiology of this race and these infections under more natural conditions. But the characteristics of these mortality tables* are surely functions of the epidemic development so that it is of epidemiological importance to be able to explain them. Roughly the salient features are these. After a more or less rapid rise to a maximum, q_{x} decreases and tends to approximate to a constant value. All the curves show fluctuations but the evidence points to the conclusion that these fluctuations are due to random error and that, under conditions of environment such as ours, a population ultimately dies out logarithmically. In terms whether of selection or of immunisation (or both) it seems that the final state of equilibrium is of a steady average of liability. By this method of exposure we cannot secure an ultimate resistant population. The surviving "fittest" are not effectively immune and do not improve above a not very high level. There is also evidence that the environmental conditions $a t$ entrance are of more importance than those experienced subsequently. That this is so we shall now show to be probable. The subjects of Life Table B_{0} were under observation a whole year during which only Bact. aertrycke infection was present and the 6 daily entrants were exposed to varying secular risks. Some lived their lives out when mortality was high, some when it was low. To test the effects of the environment, so far at least as a general mortality rate measures environment, the following expedient was adopted. Each batch of 6 formed a unit and the average length of cage life of the batch could be

[^2]Table III. B_{1} experiment.
1 mouse period. 27. vi. 24 to 4. i. $25+6$. vi. 25 to 31. x. 26, i.e. B. a. period. Omitting the mice existing in the cage at the beginning of each period.

Cage age	Specific deaths. (703 mice.)			
in days	l_{x}	d_{x}	q_{x}	e_{x}
0	10,000.00	14.23	.0014225	$43 \cdot 44$
1	9985.78	28.53	. 0028571	42.51
2	9957.24	$71 \cdot 84$. 0072150	41.63
3	$9885 \cdot 40$	$72 \cdot 37$.0073206	40.92
4	9813.04	$14 \cdot 58$.0014859	$40 \cdot 22$
5	9798.45	$73 \cdot 56$	-0075075	$39 \cdot 28$
6	9724.89	59.12	. 00660790	38.58
7	9665.78	88.95	.0092025	37.81
8	9576.83	$104 \cdot 42$	-0109034	$37 \cdot 15$
9	$9472 \cdot 41$	211-17	. 0222930	36.36
10	$9261 \cdot 24$	151.58	-0163666	$36 \cdot 38$
11	9109.66	274.20	.0301003	35.98
12	$8835 \cdot 46$	338.05	. 0382609	36.08
13	8497.41	339.90	. 0400000	36-49
14	8157.51	$435 \cdot 07$	-0533333	36.99
15	$7722 \cdot 44$	468.97	-0607287	38.05
16	$7253 \cdot 47$	361.89	-0498915	$39 \cdot 48$
17	$6891 \cdot 58$	349-34	. 0506912	40.52
18	$6542 \cdot 24$	$271 \cdot 26$. 0414634	41.66
19	$6270 \cdot 98$	319.95	-0510204	42.44
20	5951.03	251.23	. 0422164	$43 \cdot 70$
21	5699.80	$194 \cdot 31$	-0340909	44.60
22	5505.49	$227 \cdot 37$.0412979	$45 \cdot 16$
23	$5278 \cdot 12$	$229 \cdot 48$	-0434783	46.08
24	$5048 \cdot 64$	$214 \cdot 48$	-0424837	47.15
25	$4834 \cdot 15$	248.33	.0513699	$48 \cdot 22$
26	$4585 \cdot 82$	$167 \cdot 37$.0364964	49.81
. 27	$4418 \cdot 46$	$151 \cdot 20$. 0342205	50.68
28	$4267 \cdot 26$	$135 \cdot 47$.0317460	51.45
29	4131.79	$153 \cdot 66$. 0371901	$52 \cdot 12$
30	3978.13	$172 \cdot 21$	-0432901	$53 \cdot 12$
31	3805.91	$138 \cdot 40$.0363636	$54 \cdot 50$
32	3667.52	$192 \cdot 11$. 0523810	55.54
33	3475.41	87.76	-0252525	57.58
34	3387.64	194.08	-0572917	58.06
35	3193.56	89.21	-0279330	60.56
36	$3104 \cdot 36$	90.77	. 0292398	61.28
37	3013.58	73.06	. 0242424	$62 \cdot 11$
38	2940.53	73.51	. 0250000	$62 \cdot 64$
39	2867.01	$165 \cdot 40$. 0576923	63.24
40	2701.61	37.01	. 0136986	66.08
41	$2664 \cdot 60$	$37 \cdot 27$. 0139860	65.99
42	2627.33	$74 \cdot 53$. 0283688	65.92
43	$2552 \cdot 80$	$38 \cdot 10$	-0149254	66.83
44	$2514 \cdot 70$	38.39	-0152672	66.83
45	2476.31	19.35	. 00078125	${ }_{66 \cdot 86}$
46	2456.96	19.35	-0078740	66.38
47	2437.61	19.50	-0080000	65.91
48	2418.11	$39 \cdot 32$	-0162602	65.43
49	2378.79	$78 \cdot 64$. 0330579	65-51
50	$2300 \cdot 16$	$79 \cdot 32$	$\cdot 0344828$	66.73
60	1802.80	-	-	$73 \cdot 81$
70	1505.01	-	-	$77 \cdot 28$
80	1357.02	-	-	$75 \cdot 11$
90 100	1250.02	$27 \cdot 17$	-0217391	71.00
100 110	1107.01	-	--	$69 \cdot 45$
110 120	$837 \cdot 46$	$33 \cdot 50$	$\cdot 0400000$	$80 \cdot 38$
120 130	$701 \cdot 87$	-	-	85.37
130 140	$586 \cdot 12$	-	-	98-26
140	$544 \cdot 26$	-	-	$88 \cdot 12$
150	498.90	-	-	85.36
160	$408 \cdot 19$	-	-	$93 \cdot 11$
170	$408 \cdot 19$	$45 \cdot 35$.1111111	83.11
180	$362 \cdot 84$	-	-	83.44
190	$317 \cdot 48$	-	-	84.14
200	$272 \cdot 13$	-	-	87.92
210	272-13	-	-	77.92
220	272.13	-	-	67.92

Table III a．B_{1} experiment．

27．vi． 24 to 4．i． $25+6$ ．vi． 25 to 31 ．x．26，i．e．B．a．period．Omitting the mice existing in the cage at the beginning of each period．

$\underset{x}{\text { Age }}$	Expecta－ tion of life limited to 120 days	Probability of dying in the next 5 days	$\underset{x}{\text { Age }}$	Expecta－ tion of life limited to 120 days	Probability of dying in the next 5 days
0	$37 \cdot 45$	$\cdot 0202 \pm .0036$	61	56.22	$\cdot 0877 \pm .0212$
1	36．58	$\cdot 0261 \pm .0041$	62	$56 \cdot 11$	$\cdot 0763 \pm .0201$
2	35.75	$\cdot 0293 \pm .0043$	63	57.52	$\cdot 0534 \pm .0174$
3	$35 \cdot 06$	$\cdot 0312 \pm .0045$	64	57.50	$\cdot 0818 \pm .0215$
4	34．39	$\cdot 0347 \pm .0048$	65	58.31	$\cdot 0849 \pm .0222$
5	33.50	$\cdot 0548 \pm .0059$	66	57.53	$\cdot 0849 \pm .0222$
6	32.82	$\cdot 0633 \pm .0064$	67	56.75	$\cdot 0849 \pm .0223$
7	32.08	$-0859 \pm .0074$	68	56.77	－0864 $\pm .0227$
8	31.01	$\cdot 1127 \pm .0084$	69	58.51	$\cdot 0455 \pm .0173$
9	$30 \cdot 42$	$\cdot 1388 \pm .0093$	70	59.53	$\cdot 0315 \pm .0147$
10	$30 \cdot 16$	$\cdot 1662 \pm .0102$	71	58.74	$\cdot 0479 \pm \cdot 0180$
11	29.72	$\cdot 2038 \pm .0111$	72	57.94	$\cdot 0813 \pm .0230$
12	29.69	$\cdot 2200 \pm \cdot 0117$	73	58.03	$\cdot 0840 \pm \cdot 0236$
13	29.92	$\cdot 2301 \pm .0121$	74	57.22	$\cdot 0840 \pm \cdot 0238$
14	$30 \cdot 22$	$\cdot 2313 \pm .0124$	75	$57 \cdot 33$	$\cdot 0690 \pm \cdot 0223$
15	31.49	$\cdot 2294 \pm .0128$	76	57.50	$\cdot 0530 \pm .0200$
16	32．57	－2142 $\pm .0129$	77	58.78	$\cdot 0185 \pm \cdot 0124$
17	$33 \cdot 32$	－2011	78	59.08	． 0000
18	34－16	$\cdot 1932 \pm \cdot 0132$	79	58.28	$\cdot 0196 \pm \cdot 0130$
19	$34 \cdot 71$	$\cdot 1949 \pm .0135$	80	57.48	$\cdot 0196 \pm .0130$
20	$35 \cdot 64$	$\cdot 1877 \pm \cdot 0135$	81	56.68	$\cdot 0392 \pm .0183$
21	$36 \cdot 28$	－1954 \pm－0143	82	55.88	$\cdot 0392 \pm .0183$
22	$36 \cdot 65$	$\cdot 1974 \pm-0146$	83	55.08	$\cdot 0588 \pm .0222$
23	37.30	－1915 土－0148	84	$55 \cdot 37$	．0604 $\pm .0227$
24	38.08	$\cdot 1916 \pm .0153$	85	$54 \cdot 58$	$\cdot 0604 \pm .0227$
25	38.86	$\cdot 1771 \pm .0151$	86	54.89	$\cdot 0621 \pm .0233$
26	40.06	$\cdot 1701 \pm .0153$	87	$54 \cdot 10$	$\cdot 0621 \pm .0233$
27	$40 \cdot 69$	$\cdot 1700 \pm \cdot 0156$	88	$54 \cdot 43$	$\cdot 0426 \pm .0199$
28	$41 \cdot 23$	－1856 ${ }^{-0165}$	89	54.82	$\cdot 0217 \pm .0145$
29	41.70	－1801 土．0167	90	54.04	． $0217 \pm .0145$
30	42.42	$\cdot 1972 \pm .0177$	91	54.45	$\cdot 0233 \pm .0152$
31	43.44	$\cdot 1843 \pm \cdot 0176$	92	53.67	$\cdot 0471 \pm .0215$
32	$44 \cdot 19$	$\cdot 1783 \pm \cdot 0178$	93	$52 \cdot 90$	$\cdot 0947 \pm \cdot 0298$
33	45.74	$\cdot 1539 \pm \cdot 0173$	94	52.12	$\cdot 0947 \pm .0298$
34	46.04	$\cdot 1537 \pm .0176$	95	$51 \cdot 34$	$\cdot 0947 \pm .0301$
35	47.96	$\cdot 1540 \pm \cdot 0182$	96	51.77	$\cdot 0732 \pm .0274$
36	$48 \cdot 46$	$\cdot 1417 \pm \cdot 0180$	97	$52 \cdot 30$	$\cdot 1000 \pm .0320$
37	49.05	$-1282 \pm .0176$	98	$54 \cdot 26$	$\cdot 0789 \pm .0295$
38	$49 \cdot 41$	$\cdot 1319 \pm .0180$	99	53.51	$\cdot 1060 \pm .0337$
39	49.83	$\cdot 1229 \pm \cdot 0177$	100	52.75	$\cdot 1331 \pm .0372$
40	52.01	． $0834 \pm .0154$	101	52.00	$\cdot 1873 \pm .0427$
41	51.88	$\cdot 0779 \pm .0151$	102	$54 \cdot 13$	$\cdot 1707 \pm .0423$
42	51.76	$\cdot 0722$ 土 $\cdot 0147$	103	54.90	$\cdot 1471$ 土－0410
43	$52 \cdot 42$	$\cdot 0528 \pm \cdot 0130$	104	55.78	$\cdot 1538 \pm .0424$
44	$52 \cdot 37$	$\cdot 0540 \pm .0133$	105	56.74	－1273土．0397
45	52．34	$\cdot 0711 \pm .0153$	106	59.74	$\cdot 1064 \pm .0380$
46	51.91	$\cdot 0961 \pm .0176$	107	61.04	$\cdot 1141 \pm .0413$
47	51.49	$\cdot 1138 \pm .0192$	108	60.30	$\cdot 1141 \pm .0413$
48	51.06	$\cdot 1400 \pm \cdot 0211$	109	61.88	$\cdot 1200 \pm .0438$
49	51.08	$\cdot 1344 \pm .0209$	110	61.15	$\cdot 1200$ 土 $\cdot 0438$
50	51.98	$\cdot 1137 \pm \cdot 0199$	111	62.97	$\cdot 1270$ 土 $\cdot 0458$
51	52.99	$\cdot 0820 \pm \cdot 0176$	112	64.97	$\cdot 0890 \pm .0401$
52	53.63	． $0854 \pm .0182$	113	64.27	$\cdot 0890 \pm .0401$
53	$54 \cdot 87$	－0704 \pm－0171	114	$66 \cdot 47$	．0476 $\pm .0306$
54	54.58	$\cdot 0925 \pm .0194$	115	65.78	$\cdot 0476 \pm .0313$
55	$54 \cdot 30$	$\cdot 1157 \pm .0218$	116	68.37	－0000
56	53.48	－1157 土－0219	117	$67 \cdot 69$	$\cdot 0526 \pm .0345$
57	$54 \cdot 36$	$\cdot 0988 \pm .0209$	118	67.01	$\cdot 1053 \pm \cdot 0475$
58	54.72	$\cdot 1139 \pm \cdot 0226$	119	66.34	$\cdot 1053 \pm .0475$
59	55.80	$\cdot 0954 \pm .0215$	120	65.66	$\cdot 1053 \pm \cdot 0475$
60	57．02	$\cdot 0877 \pm \cdot 0212$			

Table IV. B_{3} experiment.

1. xi. 27 to 24. xi. 28.

Cage age in days	All deaths (1369 mice).			
	l_{x}	d_{x}	q_{x}	e_{x}
0	10000.00	42.74	.0042735	$33 \cdot 00$
1	$9957 \cdot 27$	-	-	$32 \cdot 14$
2	$9957 \cdot 27$	17.01	. 0017079	31-14
3	9940-26	33.93	. 0034130	30-19
4	9906.33	25.60	. 0025840	$29 \cdot 29$
5	$9880 \cdot 73$	51.06	-0051680	$28 \cdot 36$
6	9829.67	$25 \cdot 49$	-0025929	27.51
7	9804.18	110•16	-0112360	26.58
8	9694.02	59.16	-0061029	25.88
9	9634.86	$110 \cdot 65$	-0114841	25.03
10	$9524 \cdot 21$	$144 \cdot 43$.0151650	$24 \cdot 32$
11	9379.78	160.99	. 0171635	$23 \cdot 68$
12	9218.79	236.60	. 0256645	23.09
13	$8982 \cdot 19$	227.50	. 0253283	22.68
14	8754.69	243.65	-0278311	$22 \cdot 26$
15	8511.04	335.08	-0393701	21.88
16	$8175 \cdot 96$	258.63	-0316326	21.76
17	$7917 \cdot 33$	$275 \cdot 02$	-0347369	21.45
18	$7642 \cdot 31$	377.09	-0493421	21.21
19	$7265 \cdot 22$	$304 \cdot 13$. 0418605	21.28
20	6961.09	$456 \cdot 19$. 0655340	$21 \cdot 19$
21	6504.91	361.85	-0556274	21.64
22	$6143 \cdot 05$	$452 \cdot 56$.0736698	21-89
23	$5690 \cdot 50$	520-37	. 0914454	22.59
24	$5170 \cdot 13$	586.56	-1134522	$23 \cdot 81$
25	$4583 \cdot 57$	$633 \cdot 37$. 1381818	25.79
26	$3950 \cdot 20$	380.94	. 0964361	28.85
27	$3569 \cdot 36$	336.72	.0943396	$30 \cdot 88$
28	$3232 \cdot 54$	313.92	.0971129	33.04
29	$2918 \cdot 61$	266.89	. 0914454	35.54
30	2651.72	$232 \cdot 46$. 0876623	38.07
31	2419.26	$240 \cdot 21$. 0992908	$40 \cdot 68$
32	2179.05	$144 \cdot 70$.0664063	44.10
33	$2034 \cdot 35$	$153 \cdot 86$	$\cdot 0756303$	46.21
34	$1880 \cdot 49$	188.91	- 1004566	48.95
35	1691-58	127.51	-0753769	$53 \cdot 36$
36	1564.08	$118 \cdot 36$. 0756757	56.66
37	$1445 \cdot 72$	67.64	. 0467836	$60 \cdot 26$
38	1378.08	84.54	. 0613497	62.20
39	1293-54	68.08	-0526316	65.23
40	$1225 \cdot 45$	85.70	-0699301	67.83
41	1139.76	17.01	-0149254	71.89
42	1122.75	85.06	. 0757576	71.97
43	1037.69	68.05	-0655738	76.83
44	969.65	$33 \cdot 15$	-0341880	81.18
45	936.49	49.73	-0530973	83.04
46	886.77	41.05	-0462963	$86 \cdot 67$
47	845.72	41.05	$\cdot 0485437$	89.85
48	$804 \cdot 66$	$24 \cdot 63$	-0306122	93.41
49	780.03	$8 \cdot 21$. 0105263	$95 \cdot 34$
50	771.82	16.42	. 0212766	95.35
60	607.71	26.04	. 0428571	110.02
70	491.85	-	-	124.86
80	$436 \cdot 60$	-	-	$130 \cdot 16$
90	41349	-	-	127.28
100	389.85	-	-	124.64
110	349.24	$8 \cdot 12$.0232558	$128 \cdot 84$
120	31675	-	-	131.72
130	284.69	--	-	135.97
140	253.06	-	-	$142 \cdot 18$
150	237.72	-	-	140.97
160	223.93	-	-	$139 \cdot 40$
170	$203 \cdot 76$	-	-	142.65
180 190	$190 \cdot 18$	-	-	142.70
190	177-29	-	-	
200	$160 \cdot 66$	-	-	

Herd Mortality
Table IVA．B_{3} experiment．
1．xi． 27 to 24．xi． 28.
All onaths．

$\underset{x}{\text { Age }}$	Expecta－ tion of life limited to 120 days	Probability of dying in the next 5 days	$\underset{x}{\text { Age }}$	Expecta－ tion of life limited to 120 days	Probability of dying in the nex 5 days
0	28.83	$.0119 \pm .0021$	61	67.59	$.0849 \pm .0225$
1	27.98	$\cdot 0128 \pm .0022$	62	67.90	$\cdot 0859 \pm .0228$
2	27.01	$\cdot 0154 \pm .0024$	63	67.23	$\cdot 1140 \pm \cdot 0258$
3	26.09	．0248土．0031	64	67.54	$\cdot 1153 \pm \cdot 0259$
4	$25 \cdot 21$	$\cdot 0274 \pm .0032$	65	69.92	$\cdot 0900 \pm .0238$
5	24－30	． $0361 \pm .0037$	66	$70 \cdot 32$	$\cdot 0760 \pm \cdot 0222$
6	$23 \cdot 45$	$\cdot 0458 \pm .0041$	67	$70 \cdot 76$	$\cdot 0769 \pm .0223$
7	22.54	－0597土－0047	68	72.33	$\cdot 0476 \pm .0181$
8	21.83	． $0734 \pm .0052$	69	72.85	$\cdot 0799 \pm .0232$
9	20.98	$\cdot 0914 \pm .0058$	70	$73 \cdot 39$	$.0965 \pm .0255$
10	20－26	－1064 \pm－0062	71	72.75	$\cdot 0965 \pm \cdot 0255$
11	19.58	－1283土－0068	72	73.32	$\cdot 0975 \pm \cdot 0256$
12	18.95	－1412土－0071	73	72.69	$\cdot 0975 \pm \cdot 0256$
13	$18 \cdot 47$	$\cdot 1492 \pm \cdot 0074$	74	75.80	$\cdot 0508 \pm \cdot 0193$
14	17.97	$\cdot 1701 \pm \cdot 0078$	75	77.83	$\cdot 0175 \pm .0117$
15	17．50	－1821 ${ }^{\text {－}} 0082$	76	$77 \cdot 21$	$\cdot 0175 \pm .0117$
16	$17 \cdot 23$	－2044土－0087	77	77.96	$\cdot 0182 \pm .0119$
17	16.81	－2241 \pm－0091	78	77.35	$\cdot 0357 \pm .0166$
18	16.44	$\cdot 2554 \pm \cdot 0097$	79	76.74	$\cdot 0357 \pm \cdot 0166$
19	16.29	－2884 $\pm .0104$	80	$76 \cdot 12$	$\cdot 0529 \pm .0200$
20	16.02	$\cdot 3415 \pm .0111$	81	$75 \cdot 48$	$\cdot 0529 \pm .0204$
21	$16 \cdot 15$	$-3927 \pm .0118$	82	76.26	$\cdot 0354 \pm .0167$
22	16．12	$\cdot 4190 \pm \cdot 0123$	83	77.01	$\cdot 0179 \pm .0121$
23	16.40	$\cdot 4319 \pm .0128$	84	76.39	$\cdot 0179 \pm \cdot 0120$
24	17.05	－4355 $\pm .0135$	85	$77 \cdot 16$	． 0000
25	18．22	$\cdot 4215 \pm .0142$	86	76.55	． 0000
26	$20 \cdot 13$	$-3876 \pm .0150$	87	75.94	． 0000
27	21.29	$\cdot 3895 \pm \cdot 0160$	88	75.31	$\cdot 0179 \pm .0120$
28	22.53	$\cdot 3707 \pm \cdot 0167$	89	$74 \cdot 68$	$\cdot 0179 \pm .0120$
29	23.98	$\cdot 3557 \pm .0175$	90	74.04	$\cdot 0179 \pm .0120$
30	25.43	$-3621 \pm .0185$	91	73.41	$\cdot 0371 \pm .0172$
31	26.93	$\cdot 3535 \pm \cdot 0192$	92	72.78	$\cdot 0371 \pm .0170$
32	28.94	$\cdot 3365 \pm \cdot 0199$	93	$73 \cdot 46$	$\cdot 0196 \pm .0129$
33	30.09	$\cdot 3226 \pm .0204$	94	72.84	－0196 $\pm .0130$
34	31.63	$\cdot 3121 \pm .0211$	95	72.21	$\cdot 0400 \pm .0185$
35	$34 \cdot 24$	$\cdot 2756 \pm .0214$	96	73.02	． $0208 \pm .0136$
36	$36 \cdot 13$	$\cdot 2713 \pm \cdot 0220$	97	72.40	$\cdot 0616 \pm .0229$
37	$38 \cdot 20$	－2234土 $\cdot 0215$	98	71.78	$\cdot 0820 \pm \cdot 0264$
38	39.22	$\cdot 2470 \pm \cdot 0228$	99	71.16	$\cdot 1228 \pm \cdot 0320$
39	40.92	$\cdot 2504 \pm .0237$	100	72.05	$\cdot 1042 \pm \cdot 0301$
40	$42 \cdot 36$	－2358 士 02339	101	71.44	－1042 $\pm \cdot 0297$
41	$44 \cdot 70$	$-2220 \pm .0242$	102	73.93	$\cdot 0652 \pm .0246$
42	44.57	$\cdot 2467 \pm .0253$	103	74.97	$\cdot 0444 \pm .0207$
43	$47 \cdot 39$	$\cdot 2246 \pm .0255$	104	77.87	．0000
44	$49 \cdot 91$	－1956 土－0247	105	77.29	． 0000
45	50.89	－1758土 $\cdot 0241$	106	76.69	$.0233 \pm .0155$
46	52.95	$-1481 \pm .0231$	107	76.09	$\cdot 0233 \pm .0155$
47	54.75	－1553 土－0241	108	75.50	$\cdot 0233 \pm .0155$
48	56.78	$-1429 \pm .0238$	109	74.90	$\cdot 0698 \pm .0262$
49	57.81	－1262 土－0230	110	74－30	$\cdot 0698 \pm \cdot 0262$
50	57.69	$\cdot 1379 \pm .0240$	111	$75 \cdot 47$	$.0714 \pm .0268$
51	58.20	－1518 土－0252	112	$74 \cdot 89$	$\cdot 0714 \pm .0268$
52	$60 \cdot 80$	$\cdot 1031 \pm .0220$	113	74.28	$\cdot 0714 \pm .0268$
53	62－23	$\cdot 0710 \pm .0188$	114	$77 \cdot 36$	$\cdot 0250 \pm .0166$
54	62.25	$\cdot 0957 \pm .0217$	115	76.76	$\cdot 0250 \pm \cdot 0166$
55	$63 \cdot 04$	$\cdot 0867 \pm .0211$	116	78.13	． 0000
56	64.75	$\cdot 0922 \pm .0220$	117	77.53	． 0000
57	$64 \cdot 04$	$\cdot 1051 \pm .0233$	118	$76 \cdot 94$	． 0000
58	63.34	－1051 $\pm .0233$	119	76.35	$\cdot 0513 \pm \cdot 0238$
59	$65 \cdot 12$	$\cdot 0833 \pm .0221$	120	75．76	$\cdot 0513 \pm .0238$
60	$65 \cdot 36$	$\cdot 1107 \pm \cdot 0253$			

Table IV в. B_{3} experiment.

1. xi. 27 to 24. xi. 28.

Cage age Spectifio deaths.				
in days	l_{x}	d_{x}	q_{x}	e_{x}
0	$10000 \cdot 00$	34-19	. 0034188	$38 \cdot 30$
1	9965.81	-	-	$37 \cdot 43$
2	9965.81	8.51	.0008540	36.43
3	$9957 \cdot 30$	$25 \cdot 49$. 0025597	$36 \cdot 46$
4	9931.81	$8 \cdot 55$. 0008613	34.55
5	$9923 \cdot 26$	17.09	-0017227	33.58
6	$9906 \cdot 16$	25.69	.0025929	32.63
7	$9880 \cdot 48$	111.02	-0112360	31.72
8	9769 -46	$51 \cdot 10$	-0052310	31.07
9	$9718 \cdot 36$	$94 \cdot 44$. 0097173	$30 \cdot 23$
10	9623.92	$137 \cdot 36$	-0142730	29.52
11	$9486 \cdot 56$	154.25	-0162602	28.94
12	$9332 \cdot 31$	$222 \cdot 40$. 0238313	28.41
13	9109.90	188.01	-0206379	28.10
14	$8921 \cdot 90$	196.93	-0220729	27.68
15	$8724 \cdot 96$	309.15	. 0354331	27.29
16	$8415 \cdot 81$	223.28	-0265306	27.28
17	8192.53	241.46	.0294737	27.01
18	$7951 \cdot 07$	340.01	. 0427631	26.81
19	7611.06	318.60	-0418605	26.99
20	7292.46	477.90	. 0655340	$27 \cdot 14$
21	$6814 \cdot 55$	$370 \cdot 26$	-0543338	28.01
22	$6444 \cdot 29$	$448 \cdot 38$	-0695771	28.59
23	5995.92	512.92	-0855457	$29 \cdot 69$
24	5482.99	550.97	-1004863	$31 \cdot 42$
25	4932.03	654.61	-1327273	$33 \cdot 88$
26	$4277 \cdot 41$	$412 \cdot 50$	-0964361	37.99
27	$3864 \cdot 91$	$346 \cdot 38$	-0896226	40.99
28	3518.53	304.75	-0866142	43.97
29	3213.78	$284 \cdot 41$	-0884956	47.09
30	$2929 \cdot 37$	$228 \cdot 26$	-0779221	50.62
31	$2701 \cdot 11$	249.04	-0921986	53.85
32	2452.07	162.83	-0664063	58.27
33	$2289 \cdot 24$	$173 \cdot 14$. 0756303	$61 \cdot 38$
34	$2116 \cdot 10$	202.91	-0958904	$65 \cdot 36$
35	$1913 \cdot 19$	$134 \cdot 60$	$\cdot 0703518$	71.24
36	1778-59	134.60	-0756757	$75 \cdot 60$
37	$1644 \cdot 00$	76.91	-0467836	$80 \cdot 74$
38	1567.08	86.53	-0552147	$83 \cdot 68$
39	$1480 \cdot 56$	77.92	$\cdot 0526316$	87.54
40	1402.63	88.28	-0629371	91.38
41	$1314 \cdot 36$	9.81	-0074627	96.48
42	1304-55	79.06	-0606061	96.21
43	1225.48	50.22	-0409836	101.38
44	$1175 \cdot 26$	$30 \cdot 13$. 0256410	104.69
45	$1145 \cdot 12$	$60 \cdot 80$	-0530973	106.43
46	$1084 \cdot 32$	$40 \cdot 16$	-0370370	111.37
47	1044-16	$50 \cdot 69$	$\cdot 0485437$	114.64
48	$993 \cdot 47$	$30 \cdot 41$	-0306122	$119 \cdot 46$
49	963.06	$10 \cdot 14$	-0105263	$122 \cdot 22$
50	952.92	20.28	-0212766	122-51
60	768.66	32.94	-0428571	$140 \cdot 90$
70	651.92	-	-	$155 \cdot 42$
80	578.69	-	-	164.59
90	558.02	-	-	160.57
100	$535 \cdot 68$	-	-	156.95
110	$501 \cdot 21$	11.66	. 0232558	157.55
120	$454 \cdot 59$	-	-	163.38
130	419.62	-	-	166.51
140	372.99	-	-	$176 \cdot 54$
150	$350 \cdot 39$	-	-	177.54
160	$330 \cdot 06$	-	-	$178 \cdot 23$
170	310.34	--	-	$179 \cdot 30$
180	$289 \cdot 65$	-	-	181.96
190	$279 \cdot 67$	-	-	
200	267.51	-	-	
Journ. of	xx			

Table IV c．B_{3} experiment．
1．xi． 27 to 24．xi． 28.
Specific deaths．

	tion of life
Age	limited to
\boldsymbol{x}	120 days
0	$30 \cdot 87$
1	$30 \cdot 02$
2	$29 \cdot 07$
3	$28 \cdot 14$
4	$27 \cdot 25$
5	$26 \cdot 32$
6	$25 \cdot 40$
7	$24 \cdot 52$
8	$23 \cdot 83$
9	23.00
10	$22 \cdot 26$
11	$21 \cdot 62$
12	$21 \cdot 01$
13	20.57
14	$20 \cdot 04$
15	$19 \cdot 52$
16	$19 \cdot 27$
17	$18 \cdot 83$
18	$18 \cdot 43$
19	$18 \cdot 29$
20	$18 \cdot 11$
21	$18 \cdot 40$
22	$18 \cdot 49$
23	$18 \cdot 89$
24	$19 \cdot 68$
25	$20 \cdot 91$
26	$23 \cdot 12$
27	$24 \cdot 62$
28	$26 \cdot 09$
29	$27 \cdot 62$
30	$29 \cdot 38$
31	$30 \cdot 95$
32	$33 \cdot 19$
33	$34 \cdot 66$
34	$36 \cdot 62$
35	$39 \cdot 63$
36	$41 \cdot 78$
37	$44 \cdot 35$
38	$45 \cdot 72$
39	$47 \cdot 58$
40	$49 \cdot 44$
41	$51 \cdot 97$
42	$51 \cdot 62$
43	$54 \cdot 18$
44	$55 \cdot 76$
45	$56 \cdot 48$
46	$58 \cdot 91$
47	$60 \cdot 46$
48	$62 \cdot 83$
49	$64 \cdot 12$
50	$64 \cdot 12$
51	$64 \cdot 83$
52	$67 \cdot 11$
53	$68 \cdot 83$
54	$68 \cdot 98$
55	$70 \cdot 00$
56	$71 \cdot 12$
57	$70 \cdot 47$
58	$69 \cdot 83$
59	$71 \cdot 94$
60	$72 \cdot 33$

Probability of dying in the nex 5 days
$\cdot 0077 \pm .0017$
$.0060 \pm .0015$
$\cdot 0086 \pm .0018$
$.0189 \pm .0027$
$\cdot 0215 \pm .0029$
－0302 土 ． 0034
$\cdot 0424 \pm .0040$
． 0555 土．0045
$\cdot 0675 \pm .0050$
$\cdot 0820 \pm .0055$
$\cdot 0934 \pm .0059$
$\cdot 1129 \pm .0064$
－1221 土．0067
－1272 $\pm .0069$
$\cdot 1469 \pm .0074$
－1642 $\pm .0078$
$\cdot 1903 \pm \cdot 0085$
$\cdot 2134 \pm .0090$
$\cdot 2459 \pm .0096$
－2796 土－0103
$\cdot 3237 \pm .0110$
$\cdot 3723 \pm .0117$
$\cdot 4003 \pm .0122$
$\cdot 4132 \pm .0128$
$\cdot 4139$ 土 ．0134
$\cdot 4061 \pm .0141$
$\cdot 3685 \pm .0149$
$-3656 \pm .0158$
$\cdot 3494 \pm .0165$
$\cdot 3416 \pm .0174$
$\cdot 3469 \pm .0183$
$\cdot 3415 \pm .0190$
$\cdot 3295 \pm .0198$
$\cdot 3155 \pm .0203$
$\cdot 3003 \pm .0209$
$\cdot 2669 \pm .0211$
$\cdot 2610$ 土 0218
$\cdot 2065 \pm .0209$
$\cdot 2180 \pm .0218$
－2062 $\pm .0221$
$\cdot 1836 \pm .0218$
$\cdot 1750 \pm .0221$
－1996 土 ． 0235
$\cdot 1893 \pm \cdot 0239$
－1806土－0240
$\cdot 1678 \pm .0237$
$\cdot 1399 \pm .0225$
$-1456 \pm .0234$
$\cdot 1330 \pm .0231$
$\cdot 1161 \pm .0222$
$\cdot 1280 \pm .0232$
$\cdot 1311 \pm .0237$
$\cdot 0916 \pm .0209$
$\cdot 0591 \pm .0173$
$\cdot 0841 \pm .0204$
$\cdot 0749 \pm .0197$
$\cdot 0922 \pm .0220$
$\cdot 1051 \pm \cdot 0233$
$\cdot 1051 \pm .0233$
$\cdot 0833 \pm \cdot 0221$
$\cdot 0972 \pm \cdot 0239$

	Expecta－ tion of life	Probability of
Age	limited to	dying in the next
\boldsymbol{x}	120 days	5 days
61	74.95	$.0710 \pm .0207$
62	$75 \cdot 42$	$\cdot 0721 \pm .0210$
63	$74 \cdot 82$	$\cdot 0863 \pm .0228$
64	$75 \cdot 31$	$\cdot 0729 \pm .0211$
65	76．95	$\cdot 0606 \pm \cdot 0198$
66	77．53	$\cdot 0462 \pm .0176$
67	78.51	－0471 土 ． 0177
68	78.78	$\cdot 0323 \pm .0150$
69	78.21	$\cdot 0799 \pm .0232$
70	78.91	$\cdot 0965 \pm .0255$
71	78.34	$\cdot 0965 \pm .0255$
72	79.07	$\cdot 0975 \pm .0256$
73	78.51	$\cdot 0975 \pm .0256$
74	81.99	$\cdot 0508 \pm .0193$
75	$84 \cdot 31$	$\cdot 0175 \pm .0117$
76	83.77	$\cdot 0175 \pm .0117$
77	84.72	$\cdot 0182 \pm .0119$
78	84．18	$\cdot 0182 \pm .0119$
79	$83 \cdot 64$	． $0182 \pm .0119$
80	$83 \cdot 10$	$\cdot 0357 \pm .0166$
81	82.56	$\cdot 0357 \pm .0169$
82	83.55	$\cdot 0179 \pm \cdot 0120$
83	83.03	$\cdot 0179 \pm .0121$
84	82.50	$\cdot 0179 \pm .0120$
85	83.46	． 0000
86	82.94	． 0000
87	82.42	．0000
88	81.88	－0000
89	$81 \cdot 34$	－0000
90	80.79	． 0000
91	$80 \cdot 24$	－0196土．0126
92	79.69	$.0196 \pm .0125$
93	79.14	$\cdot 0196 \pm .0128$
94	78.59	$\cdot 0196 \pm .0130$
95	78.04	$\cdot 0400 \pm \cdot 0185$
96	79.05	$\cdot 0208 \pm .0136$
97	78.51	$\cdot 0412 \pm .0190$
98	77.97	$\cdot 0412 \pm .0192$
99	$77 \cdot 43$	－0838 土－ 0270
100	78.54	$.0644 \pm .0242$
101	78.01	$\cdot 0644 \pm .0239$
102	79.14	$\cdot 0444 \pm .0205$
103	78.62	$\cdot 0444 \pm \cdot 0207$
104	81.76	．0000
105	81.24	． 0000
106	80.71	$\cdot 0233 \pm .0155$
107	$80 \cdot 17$	$\cdot 0233 \pm .0155$
108	79.64	．0233土 .0155
109	79.11	－0698 $\pm .0262$
110	78.57	$\cdot 0698 \pm .0262$
111	$79 \cdot 91$	． $0714 \pm .0268$
112	79.39	$\cdot 0714 \pm .0268$
113	78.85	$\cdot 0714 \pm \cdot 0268$
114	82.23	$\cdot 0250 \pm .0166$
115	81.69	$\cdot 0250 \pm \cdot 0166$
116	83.25	－0000
117	82.72	． 0000
118	82.20	－0000
119	81.67	$\cdot 0256 \pm .0171$
120	$81 \cdot 15$	$\cdot 0256 \pm \cdot 0171$

Table V. B_{6} experiment.

1. xi. 26 to 31. x. 27.

Cage age in days	All deaths (2226 mice).			
	l_{x}	d_{x}	q_{x}	e_{x}
0	10000.00	36.53	-0036530	$47 \cdot 13$
1	$9963 \cdot 47$	50.34	-0050528	$46 \cdot 30$
2	$9913 \cdot 13$	32-11	-0032392	45.53
3	9881.02	50.58	. 0051187	44.68
4	$9830 \cdot 44$	60.22	-0061263	$43 \cdot 90$
5	$9770 \cdot 21$	55.78	. 0057088	$43 \cdot 17$
6	9714-44	$102 \cdot 45$	-0105465	$42 \cdot 42$
7	9611.98	$130 \cdot 71$	-0135988	$41 \cdot 86$
8	$9481 \cdot 27$	121.68	-0128332	$41 \cdot 43$
9	9359.60	$150 \cdot 81$	-0161128	40.97
10	9208.79	198.55	.0215606	$40 \cdot 63$
11	$9010 \cdot 24$	189.59	. 0210416	40.51
12	$8820 \cdot 65$	$190 \cdot 10$. 0215517	$40 \cdot 37$
13	$8630 \cdot 55$	1.61 .94	. 0187638	40.25
14	8468.61	$253 \cdot 15$	-0298928	$40 \cdot 01$
15	$8215 \cdot 46$	$263 \cdot 47$. 0320700	$40 \cdot 23$
16	7951.99	$230 \cdot 63$. 0290030	40.55
17	7721.36	$240 \cdot 84$	-0311915	40.74
18	7480.52	241.46	-0322789	41.04
19	7239.05	308.57	-0426252	$41 \cdot 39$
20	$6930 \cdot 49$	$260 \cdot 32$. 0375620	$42 \cdot 21$
21	$6670 \cdot 17$	359.88	.0539542	$42 \cdot 84$
22	$6310 \cdot 28$	$341 \cdot 23$	-0540752	44.25
23	5969.05	$406 \cdot 19$	-0680498	45.75
24	$5562 \cdot 86$	$362 \cdot 26$	-0651204	48.06
25	$5200 \cdot 60$	363-64	-0699234	$50 \cdot 37$
26	4836.96	425-61	. 0879917	53.12
27	4411.35	$306 \cdot 48$	-0694761	57.20
28	$4104 \cdot 86$	304-44	. 0741656	60.43
29	$3800 \cdot 42$	$256 \cdot 44$	-0674764	64.23
30	3543.99	$247 \cdot 25$	-0697674	67.84
31	3296.73	$252 \cdot 80$	-0766823	71.89
32	$3043 \cdot 93$	191.54	-0629252	76.82
33	$2852 \cdot 39$	139.77	-0490018	80.95
34	$2712 \cdot 62$	103.53	.0381679	84.09
35	2609.08	57.06	-0218688	86.41
36	2552.03	103.95	-0407332	87.33
37	$2448 \cdot 07$	$109 \cdot 15$	-0445860	90.02
38	2338-92	82.98	.0354767	$93 \cdot 19$
39	2255.95	31.26	.0138568	$95 \cdot 60$
40	$2224 \cdot 69$	72.77	-0327103	95.94
41	2151.92	57.32	-0266344	98.17
42	$2094 \cdot 60$	31.26	-0149254	99.84
43	$2063 \cdot 34$	47.01	-0227848	$100 \cdot 34$
44	$2016 \cdot 33$	21.06	-0104439	101-67
45	$1995 \cdot 27$	$42 \cdot 12$	-0211082	101.74
46	1953.15	$42 \cdot 23$	-0216216	102.92
47	$1910 \cdot 92$	26.39	-0138122	104-19
48	1884.53	47.51	. 0252101	104.64
49	1837.02	31.67	-0172414	106-33
50	$1805 \cdot 34$	10.56	-0058480	$107 \cdot 19$
60	1617.82	$22 \cdot 16$	-0136986	109.02
70	1460.73	$5 \cdot 68$. 0038911	110.23
80	$1301 \cdot 37$	$5 \cdot 71$. 0043886	$113 \cdot 07$
90	1226.14	17.43	-0142180	$109 \cdot 67$
100	1114.61	18.58	-0166667	110.26
110	1033.87	$6 \cdot 19$	-0059880	108.53
120	953.03	$12 \cdot 22$	-0128205	$107 \cdot 24$
130	873.49	$6 \cdot 15$	$\cdot 0070423$	106.70
140	836.58	-15	-	$101 \cdot 27$
150	786.96	13.01	-0165289	$97 \cdot 37$
160	701.56	-	-	98.73
170	654.07	-	- -12	95.40
180	610.88	7.36	. 0120482	91.80
190	558.52	7.76	$\cdot 0138889$	90.03
200	535.02	-	-	83.86

Table V A．B_{6} experiment．
1．xi． 26 to 31．x． 27.
All deaths．

$\underset{x}{\text { Age }}$	Expecta－ tion of life limited to 120 days	Probability of dying in the next 5 days	$\underset{x}{\text { Age }}$	Expecta－ tion of life limited to 120 days	Probability of dying in the next 5 days
0	36.91	$.0230 \pm .0022$	61	74．76	． $0492 \pm .0086$
1	$36 \cdot 14$	$\cdot 0250 \pm .0023$	62	$74 \cdot 67$	$.0567 \pm .0093$
2	35－42	$\cdot 0304 \pm .0025$	63	$74 \cdot 31$	$\cdot 0641 \pm .0098$
3	$34 \cdot 62$	$\cdot 0405 \pm \cdot 0029$	64	$74 \cdot 48$	$\cdot 0540 \pm .0091$
4	33．88	$\cdot 0479 \pm .0031$	65	$75 \cdot 22$	$\cdot 0477 \pm .0087$
5	$33 \cdot 18$	$\cdot 0575 \pm \cdot 0034$	66	$75 \cdot 41$	$\cdot 0409 \pm .0081$
6	32.46	$\cdot 0725 \pm .0038$	67	75.92	$\cdot 0417 \pm .0083$
7	31．89	$\cdot 0823 \pm .0041$	68	76．17	$\cdot 0384 \pm .0080$
8	31.42	$\cdot 0897 \pm .0043$	69	75．54	．0461 $\pm .0088$
9	30.92	$\cdot 0952 \pm .0044$	70	75.81	$\cdot 0467 \pm .0089$
10	$30 \cdot 51$	$\cdot 1079 \pm \cdot 0047$	71	$75 \cdot 47$	$\cdot 0586 \pm .0099$
11	$30 \cdot 26$	$\cdot 1174 \pm .0050$	72	76.06	$\cdot 0556 \pm .0097$
12	$30 \cdot 00$	$\cdot 1246 \pm \cdot 0052$	73	76.05	－0641
13	29.75	$\cdot 1333 \pm \cdot 0054$	74	76.03	$.0646 \pm .0105$
14	29.41	$\cdot 1452 \pm \cdot 0056$	75	$76 \cdot 35$	$\cdot 0655 \pm .0107$
15	29.41	$\cdot 1564 \pm .0059$	76	77.00	．0541 $\pm .0098$
16	29.48	－1612 ${ }^{\text {－}} 00061$	77	77.37	$\cdot 0506 \pm .0096$
17	$29 \cdot 44$	$\cdot 1827 \pm \cdot 0065$	78	78.08	$\cdot 0343 \pm .0080$
18	$29 \cdot 49$	$\cdot 2021 \pm \cdot 0069$	79	$78 \cdot 17$	$\cdot 0260 \pm .0071$
19	29.57	$\cdot 2315 \pm .0074$	80	78.59	$\cdot 0132 \pm .0051$
20	29.99	$\cdot 2496 \pm \cdot 0078$	81	78.35	$\cdot 0223 \pm .0066$
21	$30 \cdot 26$	$\cdot 2748 \pm .0082$	82	$78 \cdot 45$	$\cdot 0317 \pm .0079$
22	31．09	$\cdot 3009 \pm .0087$	83	77.86	$\cdot 0362 \pm .0084$
23	31.97	$\cdot 3123 \pm \cdot 0090$	84	$77 \cdot 27$	$\cdot 0362 \pm .0085$
24	$33 \cdot 43$	$\cdot 3168 \pm .0094$	85	76.68	$\cdot 0452 \pm .0094$
25	$34 \cdot 87$	$\cdot 3185 \pm .0097$	86	77.12	$\cdot 0459 \pm .0096$
26	36．62	$\cdot 3184 \pm \cdot 0101$	87	77.95	$\cdot 0421 \pm .0093$
27	39.29	$\cdot 3100 \pm \cdot 0105$	88	$77 \cdot 72$	$\cdot 0423 \pm .0093$
28	$41 \cdot 38$	$-3051 \pm \cdot 0109$	89	77－13	．0612 $\pm .0111$
29	$43 \cdot 86$	－2862 士－0112	90	$77 \cdot 26$	．0619 $\pm .0112$
30	46.22	$\cdot 2638 \pm .0113$	91	77.77	－0581 $\pm .0109$
31	48.88	－2259 土 0112	92	78.32	－0543 ${ }^{\text {土 }} \cdot 0107$
32	$52 \cdot 15$	$\cdot 1958 \pm .0110$	93	$78 \cdot 11$	$\cdot 0547 \pm .0108$
33	54.89	$-1800 \pm \cdot 0110$	94	79.08	． $0407 \pm .0095$
34	56.97	$\cdot 1684 \pm .0110$	95	$79 \cdot 28$	$\cdot 0310 \pm .0084$
35	58.50	$\cdot 1473 \pm \cdot 0107$	96	79.51	．0372 $\pm .0092$
36	59.08	$\cdot 1568 \pm \cdot 0111$	97	79.74	$.0326 \pm .0087$
37	60.86	$\cdot 1444 \pm \cdot 0109$	98	79.56	$\cdot 0386 \pm .0095$
38	62.98	$\cdot 1178 \pm .0102$	99	79.39	．0334 士．0090
39	64.59	$\cdot 1062 \pm .0100$	100	78.79	$\cdot 0334 \pm .0090$
40	64.81	$\cdot 1031 \pm .0099$	101	79.52	．0284土．0084
41	66.31	$\cdot 0924 \pm .0096$	102	79.38	$\cdot 0343 \pm .0093$
42	$67 \cdot 44$	$\cdot 0877 \pm .0095$	103	79.71	$\cdot 0346 \pm .0094$
43	$67 \cdot 79$	$\cdot 0867 \pm \cdot 0096$	104	79.12	$\cdot 0346 \pm .0094$
44	68.71	$\cdot 0889 \pm .0098$	105	78.53	$\cdot 0404 \pm .0101$
45	68.78	$\cdot 0952 \pm .0102$	106	78.85	$\cdot 0349 \pm .0095$
46	69.60	$\cdot 0811 \pm \cdot 0096$	107	79.19	$\cdot 0294 \pm .0087$
47	$70 \cdot 49$	$\cdot 0718 \pm .0092$	108	79.54	－0179土 0069
48	70.83	$\cdot 0728 \pm \cdot 0093$	109	78.96	$\cdot 0298 \pm .0088$
49	72.01	－0603土－0086	110	78.85	$\cdot 0299 \pm .0089$
50	72.63	$\cdot 0527 \pm \cdot 0081$	111	78.73	$\cdot 0241 \pm .0080$
51	72.42	$\cdot 0561 \pm .0084$	112	78.62	．0302 $\pm .0090$
52	72.64	$\cdot 0571 \pm .0085$	113	78.03	$\cdot 0481 \pm .0112$
53	73.08	$\cdot 0459 \pm .0078$	114	78.39	$\cdot 0435 \pm .0108$
54	$73 \cdot 34$	$\cdot 0468 \pm .0079$	115	78.27	$\cdot 0497 \pm .0115$
55	$73 \cdot 40$	$\cdot 0540 \pm .0085$	116	77.67	$\cdot 0619 \pm .0127$
56	$73 \cdot 47$	$\cdot 0581 \pm .0089$	117	78.02	$\cdot 0750 \pm .0140$
57	$73 \cdot 78$	$\cdot 0527 \pm .0086$	118	78.88	$\cdot 0701 \pm .0137$
58	$73 \cdot 39$	$\cdot 0529 \pm \cdot 0086$	119	78.86	$\cdot 0696 \pm \cdot 0137$
59	73.73	$\cdot 0506 \pm \cdot 0086$	120	79.27	$\cdot 0641 \pm .0132$

Table V B. B_{6} experiment.

1. xi. 26 to 31. x. 27.

Table V c．B_{6} experiment．
1．xi． 26 to 31．x． 27.

Age\boldsymbol{x}	Specific deaths．				
	Expecta－ tion of life			Expecta－ tion of life	Probability of
	limited to	dying in the next	Age	limited to 120 days	dying in the next 5 days
	120 days	5 days	x	120 days	
0	38.90	$.0139 \pm .0017$	61	$78 \cdot 63$	$.0389 \pm .0077$
1	38.08	$\cdot .0158 \pm .0018$	62	$78 \cdot 35$	$\cdot 0463 \pm .0084$
2	$37 \cdot 29$	．0211 士－0021	63	78.06	． $0537 \pm .0091$
3	$36 \cdot 47$	$.0293 \pm .0025$	64	$78 \cdot 04$	．0470 .0442 ． 0080
4	$35 \cdot 68$	－0377 士．0028	65	$78 \cdot 60$	．0442
5	$34 \cdot 94$	．0477 土－0031	66	$78 \cdot 90$	－0373 土－0078
6	34－17	－0627 士．0036	67	$79 \cdot 21$	．0417 $\ddagger .0083$
7	$33 \cdot 56$	－0734 $\pm .0039$	68	$79 \cdot 54$	－0384 士 $\cdot 0080$
8	33.02	．0831 士．0041	69	78.97	－0461 $\pm .0088$
9	$32 \cdot 50$	．0879 $\pm .0043$	70	$79 \cdot 31$	$\cdot 0428 \pm .0085$
10	32.08	－0994 士－0046	71	$79 \cdot 05$	$.0508 \pm .0093$
11	31.82	$\cdot 1083 \pm .0048$	72	$79 \cdot 73$	$.0478 \pm .0091$
12	31.56	－1148土－0050	73	79.81	$\cdot 0523 \pm .0095$
13	$31 \cdot 33$	－1217 $\pm \cdot 0052$	74	$79 \cdot 88$	．0529 土 $\cdot 0096$
14.	$30 \cdot 96$	$\cdot 1346 \pm \cdot 0055$	75	$79 \cdot 97$	－0575 $\pm .0100$
15	30.93	－1466 士－0058	76	$80 \cdot 40$	$.0501 \pm .0095$
16	30.96	－1515 土－0059	77	80.84	－0466 土－0092
17	$30 \cdot 92$	$\cdot 1747 \pm \cdot 0064$	78	$81 \cdot 32$	－0343 士 0080
18	$30 \cdot 94$	－1950士－0068	79	81.48	$.0260 \pm .0071$
19	31.05	$\cdot 2223 \pm .0073$	80	82.00	． $0132 \pm .0051$
20	$31 \cdot 47$	$\cdot 2408 \pm \cdot 0077$	81	81.82	6
21	$31 \cdot 73$	$.2684 \pm .0081$	82	$82 \cdot 01$	－0317土 ${ }^{-0079}$
22	$32 \cdot 64$	$\cdot 2929 \pm .0086$	83	81.47	$.0362 \pm .0084$
23	$33 \cdot 58$	$\cdot 3047 \pm .0089$	84	80.93	$.0362 \pm .0085$
24	34.99	$\cdot 3105 \pm .0093$	85	$80 \cdot 38$	．0452 $\pm .0094$
25	$36 \cdot 49$	$\cdot 3106 \pm-0097$	86	$80 \cdot 92$	$\cdot 0459 \pm .0096$
26	$38 \cdot 39$	$\cdot 3105 \pm .0100$	87	81.88	－0421 $\pm .0093$
27	$41 \cdot 11$	$\cdot 3019 \pm .0104$	88	81.72	$\cdot 0423 \pm .0093$
28	$43 \cdot 30$	$\cdot 2966 \pm .0108$	89	81.18	－0612土－0111
29	$45 \cdot 83$	$\cdot 2780 \pm .0111$	90	81.41	－0619 士．0112
30	$48 \cdot 15$	．2556 土－ 0112	91	82.04	$\cdot 0533 \pm .0105$
31	50.98	$\cdot 2173 \pm .0110$	92	$82 \cdot 70$	$\cdot 0444 \pm \cdot 0097$
32	$54 \cdot 27$	－1878 $\pm .0109$	93	82.57	－0448 士．0098
33	57.08	－1734土－0109	94	$83 \cdot 69$	$.0307 \pm .0083$
34	$59 \cdot 19$	$\cdot 1633$ 土－0109	95	$84 \cdot 00$	．0208士．0069
35	$60 \cdot 58$	－1455 士－0106	96	83.88	$\cdot 0322 \pm .0086$
36	$61 \cdot 25$	$\cdot 1550 \pm .0110$	97	$83 \cdot 77$	$\cdot 0326 \pm .0087$
37	63.02	$\cdot 1444 \pm .0109$	98	$83 \cdot 68$	－0486 土－0107
38	$65 \cdot 27$	－1178 士．0102	99	$83 \cdot 59$	－0334 士－0090
39	67.00	． 1062 土－0100	100	$83 \cdot 05$	－0334 士．0090
40	$67 \cdot 29$	－1031 士．0099	101	83.90	－0284 士 0084
41	68.91	$\cdot 0924 \pm .0096$	102	$83 \cdot 85$	$\cdot 0343 \pm .0093$
42	$70 \cdot 15$	． 08552 士．0094	103	$84 \cdot 30$	－0346土－0094
43	$70 \cdot 59$	．0841 士．0094	104	$83 \cdot 77$	－0346－． 0094
44	71.61	．0864 士．0097	105	$83 \cdot 23$	－0404 $\pm .0101$
45	71.75	$.0927 \pm .0100$	106	$83 \cdot 68$	$.0350 \pm .0095$
46	$72 \cdot 69$	． $0785 \pm .0094$	107	$84 \cdot 14$	－0294 土－0087
47	$73 \cdot 47$	．0718 士．0091	108	84－61	．0179 ${ }^{0} \cdot 0069$
48	73.91	．0700土 ${ }^{\text {土 }} 0091$	109	84.09	－0237 $\pm .0079$
49	$75 \cdot 22$	－0575 土．0084	110	$84 \cdot 07$	－0240 士．0080
50	75.93	$\cdot 0499 \pm .0079$	111	$84 \cdot 04$	－0181 $\pm .0070$
51	$75 \cdot 80$	－0533 土－0082	112	84.03	－0242土 ．0081
52	$76 \cdot 10$	．0542 士．0083	113	$83 \cdot 49$	$\cdot 0423 \pm .0106$
53	$76 \cdot 44$	－0429 士－0075	114	$83 \cdot 47$	．0425 .048 .0107
54	76.79	$\cdot 0437$ 士－0077	115	$83 \cdot 45$	$\cdot 0488 \pm .0114$
55	$76 \cdot 93$	．0509 士－0083	116	82.92	－0610 士．0126
56	$77 \cdot 09$	－0551 $\pm .0087$	117	$83 \cdot 40$	－0679土－0133
57	$77 \cdot 50$	．0462 士．0080	118	$84 \cdot 44$	－0566 士 0124
58	76.94	－0496土	119	$84 \cdot 45$	$\cdot 0571 \pm .0124$
59	$77 \cdot 38$	．0438 $\pm .0080$	120	$85 \cdot 02$	$.0515 \pm .0119$
60	78	$.0416+.00$			

Table VI. $P_{3 N}$ experiment.
24. ii. 27 to 24. ii. 28. Omitting the 50 original mice at beginning of the experiment.

Cage age	Specific deaths (1095 mice).			
in days	l_{x}	d_{x}	q_{x}	e_{x}
0	$10000 \cdot 00$	18.27	. 0018265	40.92
1	9981.74	$45 \cdot 87$. 0045956	$40 \cdot 00$
2	$9935 \cdot 86$	$73 \cdot 87$	$\cdot 0074349$	39.18
3	9861.99	83.42	-0084586	$38 \cdot 47$
4	$9778 \cdot 57$	102.74	.0105062	37.79
5	$9675 \cdot 84$	$178 \cdot 14$	-0184109	37-19
6	$9497 \cdot 70$	$160 \cdot 18$	-0168651	36.88
7	9337.52	66.36	-0071066	36.50
8	$9271 \cdot 16$	152-45	-0164440	35.76
9	9118.70	191-37	-0209864	35.35
10	8927.33	134-10	. 0150215	35.09
11	$8793 \cdot 23$	183-19	. 0208333	34.62
12	$8610 \cdot 04$	$125 \cdot 76$	$\cdot 0146067$	$34 \cdot 35$
13	$8484 \cdot 28$	232.71	-0274286	33.85
14	$8251 \cdot 56$	$184 \cdot 88$. 0224057	$33 \cdot 79$
15	$8066 \cdot 68$	$371 \cdot 11$	-0460049	33.55
16	7695.58	$363 \cdot 65$	-0472541	$34 \cdot 15$
17	7331.93	335.96	. 0458221	$34 \cdot 82$
18	6995.96	376.02	. 0537482	$35 \cdot 46$
19	6619.94	$417 \cdot 47$. 0630631	36.45
20	$6202 \cdot 47$	359.56	. 0579710	37.87
21	5842.91	370.82	. 0634648	$39 \cdot 17$
22	$5472 \cdot 09$	410.91	-0750916	40.79
23	$5061 \cdot 18$	261.09	. 0515873	43.06
24	$4800 \cdot 09$	241.01	-0502092	44.38
25	4559.08	$272 \cdot 33$	-0597345	45.70
26	4286.74	221.90	-0517647	47.57
27	$4064 \cdot 84$	91.23	.0224439	49.14
28	$3973 \cdot 61$	$163 \cdot 44$. 0411311	49.25
29	$3810 \cdot 17$	$144 \cdot 56$.0379404	$50 \cdot 34$
30	$3665 \cdot 61$	113.90	.0310734	$51 \cdot 31$
31	3551.71	$146 \cdot 25$. 0411765	51.94
32	$3405 \cdot 46$	$104 \cdot 46$.0306748	$53 \cdot 15$
33	$3301 \cdot 00$	$62 \cdot 68$. 0189873	53.81
34	3238.32	125.35	-0387097	$53 \cdot 85$
35	3112.97	146.74	-0471380	54.99
36	$2966 \cdot 23$	$126 \cdot 22$. 0425532	56.69
37	$2840 \cdot 01$	$84 \cdot 46$	-0297398	$58 \cdot 19$
38	2755.55	52.79	-0191571	58.95
39	2702.76	52.79	. 0195313	59.10
40	2649.97	$42 \cdot 23$	-0159363	59.26
41	2607.74	73.90	-0283401	59.22
42	$2533 \cdot 84$	53.23	. 0210084	59.93
43	$2480 \cdot 60$	$96 \cdot 23$.0387931	60.20
44	2384•37	$64 \cdot 15$	-0269058	61.61
45	$2320 \cdot 22$	42.77	-0184332	$62 \cdot 30$
46	$2277 \cdot 45$	85.94	-0377358	$62 \cdot 46$
47	$2191 \cdot 51$	75.57	-0344828	63.89
48	2115.94	32.55	. 0153846	$65 \cdot 16$
49	$2083 \cdot 39$	$43 \cdot 63$.0209424	$65 \cdot 17$
50	$2039 \cdot 76$	32.72	. 0160428	65.55
60	$1765 \cdot 65$	-	-	64.98
70	1474.64	22.69	-0153846	66.77
80	1372.09	$22 \cdot 87$	-0166667	$61 \cdot 40$
90	$1222 \cdot 37$	$23 \cdot 28$	-0190476	58.45
100	1034-14	-	-	$58 \cdot 34$
110	867.73	-	-	58.58
120	771.78	-	-	$55 \cdot 18$
130	710.70	-	-	
140	624.93	12.25	. 0196078	
150	538.88	-	-	
160	426.09	12.53	. 0294118	
170	325.83	-	-	
180	275.70	12.53	. 0454545	
190	237.45	-	-	
200	196.99	14.07	. 0714286	

Table VI a．$P_{3 N}$ experiment．
24．ii． 27 to 24．ii． 28.
Specifio deaths．

$\underset{x}{\text { Age }}$	Expecta－ tion of life	Probability of dying in the next	$\begin{gathered} \text { Age } \\ x \end{gathered}$	Expecta－ tion of life limited to 60 days	Probability of dying in the next
	limited to				
	60 days	5 days			5 days
0	29.45	$\cdot 0324 \pm .0036$	31	$32 \cdot 16$	$\cdot 1648 \pm .0136$
1	28.68	． $0485 \pm .0044$	32	32.87	$\cdot 1660 \pm \cdot 0139$
2	27.99	－0602 \pm－0049	33	33.23	$\cdot 1652 \pm .0141$
3	27.37	．0599 土 ． 0049	34	$33 \cdot 22$	$\cdot 1654 \pm .0142$
4	26.76	－0675 土－0052	35	$33 \cdot 89$	$\cdot 1487 \pm \cdot 0139$
5	26.21	$\cdot 0774 \pm \cdot 0056$	36	34.92	$\cdot 1209 \pm \cdot 0131$
6	25.87	－0742 $\pm \cdot 0056$	37	35.83	$\cdot 1078 \pm .0128$
7	$25 \cdot 47$	$\cdot 0779 \pm .0058$	38	36．30	$\cdot 0998 \pm .0125$
8	24.82	$\cdot 0849 \pm .0060$	39	36.39	$\cdot 1178 \pm .0136$
9	24.39	$\cdot 0951 \pm .0064$	40	36.49	$\cdot 1244 \pm .0140$
10	24.06	－0964 ${ }^{\text {－}} 00065$	41	36.48	$\cdot 1267 \pm .0143$
11	23.59	$\cdot 1248 \pm \cdot 0074$	42	36.93	$\cdot 1351 \pm \cdot 0149$
12	23.25	$\cdot 1484 \pm \cdot 0080$	43	37－11	$\cdot 1470 \pm .0157$
13	22.76	－1754土－0087	44	38.01	$\cdot 1262 \pm .0150$
14	$22 \cdot 56$	－1977 土－0092	45	38.46	$\cdot 1209 \pm .0149$
15	22.24	$\cdot 2311 \pm .0099$	46	38.58	$\cdot 1187 \pm .0150$
16	22.48	$\cdot 2407 \pm \cdot 0103$	47	39.49	$\cdot 0941 \pm .0138$
17	22.76	$\cdot 2537 \pm .0108$	48	$40 \cdot 31$	$\cdot 0773 \pm .0129$
18	23.02	$\cdot 2766 \pm .0113$	49	$40 \cdot 35$	$\cdot 0682 \pm .0123$
19	23.52	$-2749 \pm .0117$	50	40．63	$\cdot 0644 \pm .0121$
20	24－29	$\cdot 2650 \pm .0119$	51	40.72	$\cdot 0710 \pm .0128$
21	$24 \cdot 98$	－2663土－0123	52	40.60	$\cdot 0829 \pm .0138$
22	$25 \cdot 89$	－2572 土－ 0126	53	$40 \cdot 70$	$\cdot 0787 \pm .0136$
23	$27 \cdot 21$	－2149土 $\cdot 0123$	54	$40 \cdot 36$	$\cdot .0734 \pm .0132$
24	27.93	－2062 $\pm .0125$	55	$40 \cdot 47$	$\cdot 0748 \pm .0135$
25	28.67	$\cdot 1960 \pm .0126$	56	$40 \cdot 86$	$\cdot 0530 \pm .0116$
26	29.75	－1715 士－0123	57	$41 \cdot 28$	$\cdot 0485 \pm .0112$
27	$30 \cdot 66$	$\cdot 1622 \pm .0124$	58	41.23	$\cdot 0616 \pm .0127$
28	$30 \cdot 65$	$\cdot 1693 \pm .0128$	59	$40 \cdot 67$	． $0803 \pm .0144$
29	31.27	$\cdot 1501 \pm .0125$	60	40.86	$\cdot 0757 \pm .0141$
30	31.82	$\cdot 1508 \pm \cdot 0128$			

correlated with the rate of mortality of the herd at the day of entrance of the batch．n days later a batch will have been reduced by death to perhaps $5,4,3,2,1$ or even no survivors，but the average after lifetime could be com－ puted and correlated with the rate of mortality prevailing in the cage at day n ， or on any day before the n th．Data were so prepared with reference to the day of entrance，to day 0 ，and to days $5,10,15,30,40$ and 50 ．As will be seen from Table VII even for the later ages the numbers，although they naturally diminish，are not inconsiderable．In Table VIII we have the results of the calculations．In it are shown the correlation between length of after－life from age x and the measure of conditions in the cage immediately before x or， alternately，the general average of conditions before x from the day of entry of the batch．It will be seen that，while all the coefficients are negative in sign they tend to decrease in absolute magnitude and at cage age 40 days are insignificant．A rougher but perhaps more striking way of bringing out the point is shown in Table IX，where we merely contrast the mean after－life times when the prevailing death rates were low（under 0．012）or high（over 0．026）． It will be noticed that the advantage accruing to the entrants or exposees when the relevant rate of mortality was low is considerable until cage age 40 when it disappears．

Table VII. B_{6} experiment.

No. of days in which $1,2, \ldots 6$ mice were used in batch for obtaining the average length of after-life from day x. $x=$ no. of days after day of entry.

No. of days when the average was $\quad x=0 \quad x=5 \quad x=10 \quad x=15 \quad x=20 \quad x=25 \quad x=30 \quad x=35 \quad x=40 \quad x=50$										
based on:										
2 mice	4	4	4	12	40	83	75	64	55	85
3 , \ldots	7	10	20	49	83	87	63	39	27	15
4 "	24	31	56	94	88	64	34	13	9	5
5 ",	56	83	108	120	91	37	10	5	5	4
6 ,"... ...	273	236	173	82	34	12	3	2	1	-
No. of days when 1 or more mice survived beyond day x...	365	365	364	363	357	335	279	225	194	158
No. of days without an observation, i.e. no survivors at day x	-	-.	1	2	8	30	86	140	171	207
No. of mice concerned, i.e. mice who lived beyond day x	2044	1994	1873	1645	1361	992	637	436	355	268

Table VIII. B_{6} experiment.

$x=$ day of cage age at which after-life begins	Correlation of after-life (unlimited) from day x with the average specific death rate in the			Life-table expectation of life at this age (limited to 120 days)	Life-table probability of dying in the next 5 days
	(i)	(ii)	(iii)		
	Total lifetime	Last 5 days before	First 5 days after		
	before day x	day x	day x		
Day					
0	-	$-.411 \pm .029$	$-.326 \pm .032$	$38 \cdot 9$.014
5	-	--315土 032	$-\cdot 305 \pm \cdot 032$	$34 \cdot 9$	- 048
10	- $329 \pm .032$	- $288 \pm \pm .032$	- -	$32 \cdot 1$. 044
15		$-.322 \pm .032$	-	$30 \cdot 9$	-147
20	- $\cdot 273 \pm .033$	- $2220 \pm .034$	-	$31 \cdot 5$	-241
25		- $\cdot 223 \pm .035$	-	36.5	-311
30	$-146 \pm .040$	$-\cdot 137 \pm .040$	-	$48 \cdot 2$	-256
35		- $201 \pm .040$	-	$60 \cdot 6$	$\cdot 146$
40	-.070 ${ }^{\text {. }} 048$	$-.073 \pm .048$	-	$67 \cdot 3$	-103
50	$-\cdot 081 \pm .053$	-	-	$75 \cdot 9$	-050

Table IX. B_{6} experiment.
Mean length of after-life
from age x for

Age			Difference	Nos. of groups	
		High death rate (over 0.026) just before day x			
	Low death rate			Low	High
	(under 0.012) just			death	death
0	${ }^{66.5}$	before day 29.2	37.3	¢3	93
5	57.05	29.96	27.09	50	97
10	55.00	25.53	$29 \cdot 47$	45	100
15	52.42	18.51	33.91	40	104
20	$50 \cdot 26$	18.48	31.78	35	107
25	51:00	$19 \cdot 16$	31.84	29	98
30	60.62	32.93	27.69	22	73
35	51.55	39.96	11.59	15	53
40	61.30	61.29	0.01	14	44

We conclude that exposure to risk of infection, so far as this factor is measured by the prevailing mortality rate, has a steadily decreasing importance as cage age advances. This might have been inferred from the asymptoting of q_{x}, but the decreasing value of r permits a second inference, viz. that the increase of q_{x} from q_{0} to a maximum about q_{20} is probably not due or not mainly due to anything occurring at or about that cage age but more probably to what happens very early in cage life.

We think this is an important result and shall discuss some of its possible interpretations, but desire to be on our guard and to put our readers upon their guard against exaggeration. We are only examining the relations noticed in our particular experience, using a particular measure of exposure to risk, we must not extrapolate beyond that experience. Suppose we accept, for argument's sake, as proved, that, in the actual experience of each herd, variations of severity of exposure after a certain period of residence do not affect subsequent mortality at all, that admission does not commit us to the view that, in a herd taken as a going concern, the discontinuous introduction of--say-a batch of heavily infected immigrants would not increase the risk to life of all the members of the herd then older than some assigned age. We have indeed good reason to think that it would greatly increase the risk. All that the work described suggests is that the variations of risk naturally occurring when the government of the community is not changed are of relatively little importance.

We bave now reached the point that mortality with age is less and less affected by the environmental conditions as age increases. One obvious biological interpretation would be that all mice become infected within a few days of entrance but it is not the only possible interpretation. Here we reach the most difficult part of our enquiry, viz. the interpretation of the form of the mortality curve. Although our data are relatively extensive and the product of years of observation, they are extensive only relatively to the scale of other published data, not to the complexity of problems offered for solution. Contrasting the Pasteurella with the aertrycke series we are entitled to say that in the former the maximum of q_{x} is reached sooner than in the latter and that when like is compared with like (in respect of the immigration rate) the difference is striking. No other clear-cut distinction is apparent and even here two Pasteurella series, P_{3} and $P_{3 N}$, differ more than the latter does from B_{3}. The exact day of a mode is of course subject to large casual errors. But the biological mechanism of an intestinal infection must differ greatly in physiological detail from that of a respiratory infection so that in practice other factors complicate the matter seriously. Indeed although it is not hard to theorise, and one may have confidence that the true can only be separated from the false by the statistical analysis of herd experimentation, we do not think that we can yet venture to hope for a satisfying interpretation. However, it may not be uninteresting to run through some of the ideas which have occurred to us.

Perhaps the simplest hypothesis to entertain is that the number of deaths occurring in the interval of time from x to $x+\boldsymbol{d} x, \phi(x) d x$, is a resultant of two functions one giving the probability law of infection, the other that of death after infection, viz. $\phi(x)=\int_{0}^{x} f(r) F(x-r) d r$ where $f(r)$ measures the probability that a mouse is infected on the r th day of its sojourn and $F(x-r)$ the probability that if infected it will die on the $x-r$ th day after. If our distribution of life-table deaths be based upon a sufficiently large experience,
$\phi(x)$ is known and if we can from a priori considerations assign $f(r)$ the integral equation proposed may be solved. Arithmetical and graphical trials have suggested that a resolution is not impossible. Our colleague Mr H. E. Soper has provided us with an elegant example of the application of such a notion. Mr Soper took the d_{x} column of the complete table of which Table V is an excerpt and averaged into 5 -day groups down to the 125th day. He drew a smooth curve, the differences of the ordinates of which from the observational histograms were within the errors of sampling. At cage age 125, 1030 of 10,000 are still alive, about one-tenth of the entrants. Taking for convenience a 2 -day unit so that the experience may be regarded as a survivorship table of lives (out of 5000) centred at each tabular age, one can proceed as follows. Using the letter A as a mere logical symbol the index of which gives the number of unit intervals survived, then the lives from entry are represented by $d_{0}+d_{1} A+d_{2} A^{2}+d_{3} A^{3}+\ldots$. If q be the chance of an attack during any interval and $p=(1-q)$ that of escape, then, if the attacks are fortuitous, the chances of first attack occurring in the $0,1,2,3$, etc., interval are given by $q, p q, p^{2} q, p^{3} q$, etc., so that the chances of life before attack are

$$
q+p q A+p^{2} q A^{2}+\ldots
$$

If now $d_{0}{ }^{\prime}, d_{1}{ }^{\prime}, d_{2}{ }^{\prime}$, etc., replace d_{0}, d_{1}, d_{2}, etc., when the origin of measurement is not entry but date of attack, the lives subsequent to attack have array $d_{0}{ }^{\prime}+d_{1}^{\prime} A+d_{2}^{\prime} A^{2}+d_{3}^{\prime} A^{3}+\ldots$. But the whole life must be the sum of life before and after attack so that the identity

$$
d_{0}+d_{1} A+d_{2} A^{2}+\ldots=\left(q+p q A+p^{2} q A^{2}+\ldots\right)\left(d_{0}^{\prime}+d_{1}^{\prime} A+d_{2}^{\prime} A^{2} \ldots\right)
$$

results; or, inverting,

$$
d_{0}^{\prime}+d_{1}^{\prime} A+d_{2}^{\prime} A^{2}+\ldots=(1 / q-p / q A)\left(d_{0}+d_{1} A+d_{2} A^{2}+\ldots\right) .
$$

We accordingly infer that the required lives from first attack are to be obtained from the d_{x} curve by taking $1 / q$ times the corresponding ordinate of that curve and subtracting p / q times the preceding ordinate.

We have now to select a value of q and if we wish to argue the hypothesis that the slow downsweep of the curve is due to deferred first attacks, we shall so choose q as to steepen this part of the curve as much as possible without, however, producing impossible (viz. negative) frequencies in the deduced $d_{x}{ }^{\prime}$ curve. This end is attained by taking $q=2 / 7$ as the chance of attack in a 2 -day interval and therefore $1 / 6 \cdot 45$ as the chance of attack per day.

Taking 7 times the ordinate of the d_{x} curve and subtracting 5 times the preceding ordinate and dividing by 2 , one has the entries of Table A. The $d_{x}{ }^{\prime}$ column of this table represents, on the given hypothesis, the dying-out quotas from time of infection, and asserts that the results (measured by death) of a first attack is exhausted in 36 days. In this period 3975 out of 5000 or 79.5 per cent. are dead. The 1025 survivors may now be assumed subject to the same cohance law of attack. The second period of 36 days shows in the column 261 deaths; the last value being 13 and that preceding the first value

Table A.

x	d_{x}	d_{x}^{\prime}	x	d_{x}	$d_{x}{ }^{\prime}$
0	0	0	46	36.5	20
2	16	56	48	30.5	16
4	48	128	50	27	18
6	78	153	52	23	13
8	110	190	54	20	12
10	142	222	56	17.5	11
12	172	247	58	15	9
14	205	287	60	14	11
16	238	321	62	13.5	12
18	270	350	64	13	12
20	301	378	66	13	13
22	333	413	68	13	13
24	365	445	70	13	13
26	383	428	72	13	13
28	338	226			(261)
30	268	93	74	13	13
32	203	40	76	12.5	11
34	145	0	78	12.5	12
36	103	-2	80	12.5	13
		(3975)	82	12.5	12
38	73	-2	84	12	11
40	60	27	86	12	12
42	50	25	88	12	12
44	43	25	90	11.5	10

being sensibly zero. Applying the transformation again we shall estimate the deaths in the second period of illness as approximately

$$
261+5 / 2 \times 13-5 / 2 \times 0=293.5
$$

or 28.5 per cent. of the exposed to risk, 1025. This result might be interpreted as measuring the advantage of selection or immunisation by previous attack or a combination of the two. But we cannot, of course, put much stress upon so simple an hypothesis. Biologically it is rather too simple to be plausible.

We are assuming a sharp distinction between the "infected" and the " not infected," that probably does not exist. A more credible mental picture of what happens in a herd is the following. An entrant to the herd is exposed to a bombardment of shots of infective material-let us call them quanta of infection-and may receive in a unit of time $0,1,2,3$, etc., etc., quanta. We may fairly suppose that (during the period of observation) no animal which fails to receive at least 1 quantum dies at all. The mice which receive in the first unit of time of observation a single quantum will fall into two main classes. (1) Those whose effective resistance, at the moment when they receive the quantum, is so low that they will die wholly as a result of the infection. Their survival period may be short or long, death may be hastened by a second or subsequent dose, but they are doomed. (2) The other class falls into a number of sub-classes. First there will be animals who simply ignore the dose and are, in the next time unit of exposure, precisely in the position of new animals. Next there will be animals whose resistance is lowered but not to the point of death and who will be more sensitive to a second dose than unscathed animals. Then there will be animals whose resistance is increased. From what we know of immunity processes it is probable that a large number of animals will be in this last group. Such animals, if the interval between the receipt of the
first and second quantum be not too short, will be more resistant to the second than similarly constituted animals were to the first quantum. One sees therefore that interval between doses is of importance in a special way. To make the argument clear let us take a simple arithmetical example. Let us suppose that all animals receiving within a time unit interval of exposure more than 1 quantum of infection are thereby at once destroyed, but that some or all of those not receiving more than 1 quantum per unit of time will survive. Let us assume also that the unit of time selected is sufficiently long to allow an effective immunity to develop as the result of non-fatal infection. If we enumerate the possible orders of receiving, say, 3 quanta in 5 time units, there are 10 possible distributions, viz. (where A denotes the receipt of a quantum):

$A A A 00$	$00 A A A$	$A A 00 A$	$A 0 A A 0$	$0 A 0 A A$
$0 A A A 0$	$A A 0 A 0$	$0 A A 0 A$	$A 00 A A$	$A 0 A 0 A$.

If we assume that the receipt of a quantum destroys a certain proportion of animals and confers some measure of immunity upon the survivors, the total havoc wrought by the first order may be quite different from that done by the last. The survivors of one dose who receive another in the next unit of time may experience a lower rate of mortality than the group of which they are the survivors, while the survivors who are not again infected until the lapse of a free interval may have lost their acquired immunity. The illustration is a trivial one but suggests at once the nature of the problem. There is no difficulty in proposing some scheme such that, premising a random distribution of $0,1,2, \ldots r$ quanta of infections in unit time, death is to follow the receipt of some limiting number of quanta and in comparing the expected with the actual distributions of deaths. If, however, we are to distinguish the order of receipt, in such wise that the receipt of r quanta in one order may produce fewer deaths in the exposed population than the receipt of r quanta in a different order, the mathematical expression of the problem becomes much more arithmetically complex and involves many precarious assumptions. A very simple application of the principle has been tested. The assumptions were: (1) That the receipt of 2 or more quanta within a unit of time is fatal. (2) That of the survivors of 1 quantum, those who receive another in each successive time unit survive. (3) That the survivors of 1 quantum who do not receive another until after the lapse of one or more free intervals are subject to the same mortality rate as animals receiving a first quantum. It was found that the curve of life-table deaths should then be capable of representation by the difference of two exponentials, which is not true of our own data.

It appears probable that with more assumptions and these less violent but of the same type, we should still have some linear function of a set of exponentials. These might more satisfactorily describe the data, and we hope that our colleague Mr Soper, to whose expert advice we are deeply indebted, will continue the discussion of these and other possible descriptions. At present we do not feel that we have reached any mathematical interpretation of the
facts sufficiently close to arithmetical reality to justify its detailed description and in what follows we do no more than indicate the prima facie interpretation of the data. If we accept the results described on p. 258 as evidence that a large proportion of a herd become infected very early in herd life, the most probable explanation of the earlier maximum in the Pasteurella q_{x} curve is that the average period of evolution of the morbid process from fatal infection to death is shorter in a disease of the respiratory than in one of intestinal type. Acceptance of this simple explanation does not commit us to suppose that all infections which will ultimately be fatal occur in the first days of herd life. It would be sufficient if a sensible proportion were so infected. The subsequent decline of the curve and its attainment of a constant level are to be attributed to the combined working of selection and positive immunisation.

In this connection reference may be made to a small experimental epidemic of mouse typhoid, described in an earlier report*, in which daily cultures were made from the faeces of each mouse exposed to risk. The number of mice submitted to the risk of contact infection during this experiment numbered 135. Of these only 13 failed to show evidence of infection, by dying of the disease, by excreting Bact. aertrycke in their faeces, by developing agglutinins acting on that organism, or by yielding cultures from the spleen, when killed and examined at the termination of the experiment; and of these 13 mice, 6 had resided in the cage for less than 14 days. Of the 135 mice, 96 excreted Bact. aertrycke on one or more occasions during their residence in the cage. The number of days elapsing between the date of entry to the cage and the date of first excretion varied between 1 and 50 , with a mean value of $12 \cdot 18$. In 77 cases the date of first excretion fell within the first 3 weeks of residence in the cage, and in 64 cases within the first fortnight. The complete records of this experiment show clearly (a) that the majority of the mice were infected within 14 to 21 days of their entry to the cage, and (b) that the course of excretion in different mice varied widely, some excreting persistently during a short period terminating in death, others excreting intermittently over long periods while remaining in apparent health, others again excreting on one or two occasions only during the 115 days of observation. In this particular instance, therefore, the distribution and evolution of infection within the herd was demonstrably of the kind considered above.

Although the naked antithesis of selection and environment is not of much more than debating-society interest, the high, and constant, ultimate rate of mortality in these herds is a result of serious interest. Whether by virtue of selective mortality or of cumulative immunisation, the populations of these herds at later cage ages should, compared with members of a human herd, be in a remarkably favourable position to withstand the infectious diseases to which they are exposed. Yet it is obvious that their resistance-although much greater than that of unsalted animals-is very incomplete. Another way of bringing this out is to consider whether the proportional mortality from the

[^3]Table XI. B. a. experiments.
\[

$$
\begin{aligned}
& \text { Table X. Pexperiments. }
\end{aligned}
$$
\]

main specific cause of death decreases with age, and material for the study of this is provided in Tables X and XI. The approximate values of the standard errors shown are merely of use to indicate the order of magnitude of the fluctuations attributable to chance. Judgment should be based upon the general run of the observations, and it is plain enough that there is no uniform tendency for the proportional mortality from the specific cause to decrease with cage age.

On the other hand, in the B_{1}, B_{3} and B_{6} experiments (Table XI) the specific deaths are in defect at ages $0-9$ days, a result which seems to argue an incubation period as hinted (p. 262 supra). It appears, then, that the lower rate of gross mortality experienced by the older animals is not due to the substitution for the specific infection of some other infection of lower killing power within a population which, by selection and acquired immunity, has become relatively resistant to the original materies morbi. In other words, neither the elimination of the "unfit" by death nor the immunisation of the survivors will reduce the risk of death from the specific infection we have studied to negligible proportions. One often dreams of being able to render a population wholly immune from the risk of an infection by means of a routine method of prophylaxis; practical failures to achieve that end have been explained by the non-universality of application of the method. In this philosophy the reduction of opportunities to become infected-other than the resultants of immunisation -is of minor importance. Our experimental evidence, incomplete as it is, does not support that contention. We shall show in another communication that, although by purposive immunisation before exposure in a herd one can sensibly increase the expectation of life of the immunised, at least for a considerable range of x, we have not been able to extend it to a value even roughly approximating to what we take to be normal for mice shielded from the special risks which menace our herds. Nothing has emerged from our researches to suggest that under any conditions of selection or immunisation, environmental factors, in the sense of quality and quantity of infection, would become negligible.

Summary.

The results of this investigation may be summarised as follows:

1. The q_{x} or cage-age mortality curve of a herd increases rapidly to a maximum and thereafter descends to an approximately constant level which is much above the level of the q_{x} for normal mice of ages within the range of real, physiological, age of animals living in the herds.
2. At the latest ages under observation the principal factor of mortality is still the specific factor, so that the advantage produced by selective mortality and active immunisation is brought to a standstill far above the zero line. Exposure in a herd under the conditions of these experiments will not produce an ultimate population fully resistant to the specific factor of infection.
3. It is probable that a large proportion, perhaps a majority, of the members of a herd become infected early in herd life, and gradually increase their degree
of immunity because variations of environmental conditions, so far as these are measured by the general herd mortality, become less and less influential on the ultimate mortality of the exposed to risk the later the point in time chosen for measurement.
4. Study of the form of the age-mortality curve is still proceeding; at present we cannot offer an adequate mathematical description of it which takes due account of the biological factors requiring attention.
5. Quite provisionally, we attribute the difference in time of the maxima of the q_{x} curves of Pasteurella and aertrycke epidemics to a difference of average interval between infection and death.
(MS. received for publication 4. min. 1930.-Ed.)

[^0]: * Greenwood, J. Hygiene, 1928, 28, 267.

[^1]: * J. Biol. Chem. 1916, 24, 363.

[^2]: * In the Mortality Tables III to VI A, in order to reduce the heavy expense of printing, the tabular entries for cage ages greater than 50 have only been given at wider intervals. Complete tables can be sent to any workers interested.

[^3]: * Topley, Ayrton and Lewis, J. Hygiene, 1924, 23, 223.

