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Abstract

In this paper, two gradient properties of explicit convex functions are given.
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1. Introduction

Convexity plays a central role in mathematical economics, engineering, management
science and optimization theory, and the subject is one currently being discussed in
the mathematical programming literature, [1, 3,4].

The definition of explicitly convex functions appears in [5].

DEFINITION 1.1. Let C be an open convex set of R", and / : C ->• R. The function
/ is said to be an explicitly convex function on C if, for every pair of points x e C,
y <=C, f{x) ^ / (v), we have

f(kx + (1 - X) y) < kf(x) + (1 - X) f(y), VA € (0, 1).

EXAMPLE 1.1. Consider
f{x)=x, x&R.

Then / is a convex function on R, but / is not an explicitly convex function on R.
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Obviously, a strictly convex function is an explicitly convex function. But the
converse is not true.

EXAMPLE 1.2. This example illustrates that an explicitly convex function need not
be either a convex function or a strictly convex function.

1 if x = 0,
o if x^O.

Then / is an explicitly convex function on R, but / is not a convex function, nor a
strictly convex function on R: for JCI = 1 andjc2 = — 1, / O i ) = f{x2) = 0, but

/[(1/2) *, + (1/2) x2] = /(0) = 1 > (1/2) /(*,) + (1/2) f(x2).

The following proposition shows that a local minimum of an explicitly convex
function over a convex set is also a global minimum.

PROPOSITION 1.1. Let C be a non-empty convex set in R" and f : C —> R.
Consider the problem of minimizing f(x) subject to x e C. Suppose that x e C is a
local optimal solution to the problem and f is an explicitly convex function. Then x
is a global optimal solution.

PROOF. Since x is a local optimal solution, then there exists an e-neighborhood
N( (x) around x such that

(•) / (*) > f{x) for each x e C n N€ (x).

By contradiction, suppose that x is not a global optimal solution so that f(x) < f(x)
for some x e C. By the explicit convexity of / , the following is true for each
ot e (0, 1)

f(ax + (1 - a)x) < af(x) + (1 - a) f(x) < f(x).

But for a > 0 and sufficiently small, ax + (I — a) x e C C\ N( (x). Hence the above
inequality contradicts (*); this completes the proof.

From Examples 1.1 and 1.2, and Proposition 1.1, it is clear that explicitly convex
functions are a very useful class and that research of such functions is worthwhile
from a mathematical point of view.

In this note, based on Karamardian and Schaible's idea in [2], we give two gradient
properties of explicitly convex functions.
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2. Main results

LEMMA 2.1. Let Cbea non-empty open convex set of R", and let f : C -*• R be an
explicitly convex function. If f is lower semi-continuous, then f is a convex function
onC.

PROOF. Let x, y e C. If f{x) ^ f(y), then by the definition of an explicitly
convex function, we must have f[kx + (1 — A) y] < Xfix) + (1 - A) f(y) for each
A e (0, 1). Now suppose that f(x) = f(y). To show that / is a convex function, we
need to show that f[kx + (1 — A) y] < f(x) for each A 6 (0, 1). By contradiction,
suppose that f[ax + (1 — a) y] > f(x) for some a e (0, 1). Denote ax + (1 — a) y
by 2. Since / is lower semi-continuous and explicitly convex, there exists a p e (0, 1)
such that

(A) / ( z ) > f[0x + (l-P)z]> f(x) = f(y).

Note that z can be represented as a convex combination of u = fix + (I — P) z and
y. Hence by the explicit convexity of / , and since f(u) > f(y), f(z) < f(u),
contradicting (A). This completes the proof.

THEOREM 2.2. Let C be an open convex set of R", and let f : C -»• R be a
differentiate function. Then f is an explicitly convex function if and only if, for
every pair of points x e C, y e C, f{x) ^ f(y), we have

f(y)> f(x) + (y-xfVf(x).

PROOF. Suppose that / is an explicitly convex function on C. By Definition 1.1,
for every pair of points x e C,y € C, f(x) ^ f(y), we have

f(kx + (1 - A) y) < A/(x) + (1 - A) f(y), VA e (0, 1).

This yields

{/[* + k(y-x)]- /(*))/A < f(y) - f(x), VA e (0, 1).

From Lemma 2.1 above and Lemma 3.1.5 in [1], we get

iy - x)T Vfix) = inf [/[* + A (y - x)] - /(x)) / A < fiy) - fix),

that is, fiy) > fix) + iy- x)T Vfix).
Conversely, suppose that for every pair of points x e C, y € C, fix) ^ fiy), we

have
(B) fiy) > fix) + (y- xf Vfix).
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Now let za = ax + (1 — a) y, Vc* e (0, 1). Without loss of generality, we assume
fix) < fiy). We now show that f(za) ^ f(y).

Assume to the contrary that

(l) /(zo.) = fiy),

for some a0 e (0, 1). Now from (1), we will show that /[Ay + (1 — A) zao] = fiy),
for any A e (0, 1).

Indeed, if there exists A e (0, 1), such that /[Ay + (l - A) zao] ^ f(y), then:
[ ( l - A ) z a o ] > / ( y ) , l e t

+ (1 - A.) 2ao], VA e [0, 1].

Then g attains a maximum on (0, 1). Assume that g attains its maximum at Ao 6 (0,1).
So (y - zao)7 V/[Aoy + (1 - Ao) zao] = 0, yielding

(2) [Aoy + (1 - Ao) zao] - zao V/[Aoy + (1 - Ao) zao] = 0.

From (1) and (2), obtain / (zao) > / [Xoy + (1 — Ao) zao ], which contradicts g attaining
a maximum at Ao.

(ii) If /[Ay + (1 - A) zao] < f_(y), then since f(zj = f(y) and f(x) < f(y),
we see that f(x) < f(zao) and f[Xy + (l - A.) zao] < /(zao). Hence the function

g(X) = f[Xx + (1 - A) (Xy + (1 - A) za,

attains a maximum on (0, 1). Suppose this maximum occurs at Ao. Then

g'(Ao) = [x- [Xy + (1 - A)zao])7V/JAox + (1 - Ao) [Xy + (l - A) zao]) = 0.

Now, f(x) < f\xox + (1 - Ao) [Xy + (l - A) za o] | implies that

fix) > / JAox + (1 - Ao) [Xy + (1 - A) zao]}

+ jx - Aox - (1 - Ao) [Xy + (1 - A) zao] ^

V/JAox + (1 - Ao) [Xy + (1 - A) zao] J

= / {AOX + (1 - Ao) [Xy + (1 - A) zao] j

V/JAox + (1 - Ao) [Ay + (1 - A) zao])

= / | A O X + (1 - Ao) [Ay + (l - A) zao] J, a contradiction.
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Combining (i) and (ii), we have

(3) f[ky + (1 - k) zao] = fiy), VX e [0, 1].

Let ft (A.) = f[ky + (1 - k) zao\ From (3) we get

(4) 0 = A'(l) = (y- zao)
T

By the hypothesis of the theorem and (4), we obtain f(x) > f (y), a contradiction.
Therefore
(5) /(zo) ? f(y), Va € (0, 1).

I f / O J = /Wforsomea e (0, l),then/(za) < af(x) + (l - a) f(y) is trivial.
If /(za) T̂  fix) for some a e (0,1), then by Hypothesis (B) we have

(6) f(x) > f(za) + (x- za)
T V/(2B),

(7) fiy) > /(za) + (J - za)r V/(zo),

in view of (5). Multiplying (6) by a, and (7) by (1 — a), and then adding, yields

This completes the proof of Theorem 2.2.

THEOREM 2.3. Let f be dijferentiable on an open convex subset C of R". Then
f is explicitly convex on C if and only if for every pair of points x € C, y € C,
f(x) ^ f(y), we have

iy-x)T[Vf(y)-Vfix)]>0.

PROOF. Suppose that / is an explicitly convex function on C. Let x, y € C,
f(x) ^ f(y). From Theorem 2.2 we have

(8)

(9) fix) > fiy) + ix- y)TVf(y).

Adding these we obtain iy - x)T [V/(j) - V/(JC)] > 0.

Conversely, suppose that for every pair of points x, y e C, fix) ̂  fiy), we have

(C) iy-x)T[Vfiy)-Vfix)]>0.

From the mean-value theorem we obtain

(10) fiy)-fix) = iy-x)TVf(x),
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where
(11) x = Xx + (l-X)y

for some 0 < X < 1.
(I) If / (*) # f(x), then from (C) we obtain (x - x)T [V/(x) - V/(JC)] > 0.

This yields
(12) (y-x)TVf(x)>(y-x)TVf(x),

in view of (11). Now from (10) and (12), we have

f(y)> f(x) + {y-x)TVf(x).

(II) If f(x) = f(x), we want to show that fix) = fix) ^ /(M) , where u =
ax + (1 — a) x, for some 0 < a < 1.

Assume to the contrary that

(13) fix) = fix) = /(«),

where u = ax + (1 — a) x, for any 0 < a < 1.

Let 0(a) = / [x + a ( x - x ) ] , V o e [ 0 , l ] .

Then (13) implies that

(pia) = const = / (x) , Va e [0, 1].

This yields

0 = 0'(1) = (x- x)T V/(Jc) = (1 - A.) CV - x) r V/(Jc).

Hence, (v - J C ) 7 V/(Jc) = 0, which together with (10) contradicts fix) ^ fiy).
Thus
(14) f(x) = fix) # /(«)

where
(15) M = ax + il -a)x,

for some 0 < a < 1.

Now from (B) and (15) we have

(it - u)T [V/(Jc) - V/(n)] > 0, ix - u)T [Vfix) - V/(«)] > 0.

This yields
(16) ix - xf [Vfix) - V/(H)] > 0,
(17) ix-x)T[Vfix)-Vfiu)]>0,
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in view of (15). Now (16) and (17) together imply

(18) (jc - x)T [V/(Jc) - V/Qc)] > 0.

Multiplying (18) by 1/ (1 — X) and noting (11), we obtain

(19) (v - x)T [Vf(x) - V/OO] > 0.

That is,
(20) (y - xf V/(Jc) > (y - xf Vf(x).

Combining (10) and (20) we have / (y) > f{x) + (y - xf V/(x). Given (I) and
(II), this implies that for every pair of points x,y e C, f(x) ^ /(y) , we have

f(y)> f{x) + (y-x)TVf(x).

From Theorem 2.2 we conclude that / is an explicitly convex function on C.
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