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Abstract

In this paper, two gradient properties of explicit convex functions are given.
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1. Introduction

Convexity plays a central role in mathematical economics, engineering, management
science and optimization theory, and the subject is one currently being discussed in
the mathematical programming literature, [1, 3, 4].

The definition of explicitly convex functions appears in [5].

DEFINITION 1.1. Let C be an open convex set of R”, and f : C — R. The function
f is said to be an explicitly convex function on C if, for every pair of points x € C,
yeC, f(x)# f(y), we have

FOx+A=2y) <A@+ -1 @), Yre@©1).
EXAMPLE 1.1. Consider
f(x)=x, xe€R.

Then f is a convex function on R, but f is not an explicitly convex function on R.
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Obviously, a strictly convex function is an explicitly convex function. But the
converse is not true.

EXAMPLE 1.2. This example illustrates that an explicitly convex function need not
be either a convex function or a strictly convex function.

1 if x=0,
f(x)‘[ 0 if x#0.
Then f is an explicitly convex function on R, but f is not a convex function, nor a
strictly convex function on R: for x, = 1 and x, = —1, f(x;) = f(x,) =0, but

/2y x + (/2 %] = £(0) = 1> (1/2) f(xi) + (1/2) f(x2).

The following proposition shows that a local minimum of an explicitly convex
function over a convex set is also a global minimum.

PROPOSITION 1.1. Let C be a non-empty convex set in R" and f : C — R.
Consider the problem of minimizing f (x) subject to x € C. Suppose that x € C is a
local optimal solution to the problem and f is an explicitly convex function. Then X
is a global optimal solution.

PROOF. Since x is a local optimal solution, then there exists an e-neighborhood
N, (x) around x such that

™) f(x)> f(x) foreach x € CNN.(x).

By contradiction, suppose that x is not a global optimal solution so that f(X) < f(x)
for some x € C. By the explicit convexity of f, the following is true for each
ae(0,1)

flex+ (1 -a)x) <afF)+1—-a) f(&) < f(X).

But for ¢ > 0 and sufficiently small, X + (1 — @) ¥ € C N N, (x). Hence the above
inequality contradicts (*); this completes the proof.

From Examples 1.1 and 1.2, and Proposition 1.1, it is clear that explicitly convex
functions are a very useful class and that research of such functions is worthwhile
from a mathematical point of view.

In this note, based on Karamardian and Schaible’s idea in [2], we give two gradient
properties of explicitly convex functions.
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2. Main results

LEMMA 2.1. Let C be a non-empty open convex set of R", andlet f : C — R bean
explicitly convex function. If f is lower semi-continuous, then f is a convex function
onC.

PROOE Let x,y € C. If f(x) # f(y), then by the definition of an explicitly
convex function, we must have f[Ax 4+ (1 — 1) y] < Af(x) + (1 — 1) f(y) for each
A € (0, 1). Now suppose that f(x) = f(y). To show that f is a convex function, we
need to show that f[Ax + (1 — A) y] < f(x) for each A € (0, 1). By contradiction,
suppose that f[otx +(1 - y] > f(x) forsomea € (0, 1). Denote ax + (1 —a) y
by z. Since f is lower semi-continuous and explicitly convex, there existsa 8 € (0, 1)
such that

(A) f@ > f[Bx+UA~B)z] > fx) = f(y).

Note that z can be represented as a convex combination of u = 8x + (1 — B) z and
y. Hence by the explicit convexity of f, and since f(u) > f(y), f(z) < f(u),
contradicting (A). This completes the proof.

THEOREM 2.2, Let C be an open convex set of R", and let f : C — R be a
differentiable function. Then f is an explicitly convex function if and only if, for
every pair of points x € C,y € C, f(x) # f(y), we have

fO > fO+ -0 VFE).

PROOF. Suppose that f is an explicitly convex function on C. By Definition 1.1,
for every pair of points x € C,y € C, f(x) # f(y), we have

fOhx+ A =0y) <Afx)+ 1A =2 f(y), Yre(01).
This yields
[flx+r0-0]-foln < fo-reo. vien.
From Lemma 2.1 above and Lemma 3.1.5 in [1], we get

0 =07 Vi@ =inf{ flr + 20— 0] = f0) /3 < fO) - Fa),

thatis, f(y) > f(x) +(y —x)" Vf(x).
Conversely, suppose that for every pair of points x € C, y € C, f(x) # f(y), we
have

(B) O > fO+ -0 V).
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Now let z, = ax + (1 —a) y, Ya € (0, 1). Without loss of generality, we assume

fx) < f(y). We now show that f(z,) # f(y).
Assume to the contrary that

(1) f o) = fF)

for some ¢y € (0, 1). Now from (1), we will show that f[)\y +{1—-2) zao] = f(y),
for any A € (0, 1).

Indeed, if there exists X € (0, 1), such that f[Xy + (1 — 1) z,,] # f(»), then:

WD I F[Ay + (1 = 1) zg] > F(3), let

g = f[Ay+ 1 =2Nz,], VAel0,1].

Then g attains a maximum on (0, 1). Assume that g attains its maximum at Ay € (0, 1).
S0 (¥ — za,)" VF[Aoy + (1 — Ro) 2, ] = O, yielding

T
) [[hay + (= A0 2] = 2} VFPhay + (1 = 20) 2] = 0.

From (1) and (2), obtain f(z,,) > f [Ao y+(1 — Ag) z,,o], which contradicts g attaining
a maximum at A,.

(i) I f[Ay + (1 —X)z4] < f(3), then since f(z,,) = f(y) and f(x) < F(y),
we see that f(x) < f(z) and f[Ay + (1 = &) z,| < f(2a,). Hence the function

g = x4+ =2 Ry +(1-1)z,)]
attains a maximum on (0, 1). Suppose this maximum occurs at Ay. Then
g'Go) = {x—[Ay+(1- )z,,,,]} V{ror + (1= 20) 2y + (1 = ) 2] | = 0.

Now, f(x) < f{)»ox + (=2 [Ay+(1-2) zao]} implies that

Fx) > flrox + (1 —Ao) [Ay+ (1 - )Zao]}

Hx—rox =1 =29 [Xy+(1—i)zao]}r

Vf{kox +(1-2)[Ay+(1-13) Zao]}

= flaox + (1 = 20) [iy+(1—i)zao]]
+(1=29) fx = [Ly+ (1= %) Zao]}r
Vf[AOx +(1—A)[Ay+(1-13) zao]]

= f[on + (1 — Xp) [)-»y + (1 — ):) zao]}, a contradiction.
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Combining (i) and (ii), we have
3) fIy+A =Dz =f, Yrelo1].

Let h(A) = f[Ay + (1 — A) z,, ). From (3) we get

) 0=H(1)=(y—2,) V).

By the hypothesis of the theorem and (4), we obtain f(x) > f (y), a.contradiction.
Therefore

(5) fG@) # f(y), Yae(01).

If f(z,) = f(x)forsomea € (0, 1),then f(z,) < af (x)+ (1 —a) f(y)istrivial.
If f(z,) # f(x) for some « € (0, 1), then by Hypothesis (B) we have

(6) @) > fz) + (6 —2)" VI (z),
@) FO) > fza) + (v = 2)" VS (2a),
in view of (5). Multiplying (6) by «, and (7) by (1 — @), and then adding, yields
f@) <af(x)+ 1A —a) f(y).
This completes the proof of Theorem 2.2,
THEOREM 2.3. Let f be differentiable on an open convex subset C of R". Then

f is explicitly convex on C if and only if for every pair of points x € C, y € C,
f(x) # f(y), we have

O -x)"[VFy) - V)] >0.

PROOF. Suppose that f is an explicitly convex function on C. Letx, y € C,
f(x) # f(y). From Theorem 2.2 we have

) fFO > fE)+ -0 VfK),

©) @) > fO)+ & —yVFW).

Adding these we obtain (y — x)" [Vf(y) — Vf(x)] > 0.
Conversely, suppose that for every pair of points x, y € C, f(x) # f(y), we have

(©) o -x)"[V ) - Vfx)]>0.

From the mean-value theorem we obtain

10) fM) = f)=0@-0"VfQ&),
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where
an Xx=Ax+1-A)y

forsome 0 < A < 1.
(M If f(x) # f(X), then from (C) we obtain (¥ — x)” [Vf(X) — Vf(x)] > 0.
This yields
(12) O=-x)'ViE) > (-0 VFK),
in view of (11). Now from (10) and (12), we have
fFO) > f@+ G -x)"ViE).

an If f(x) = f(x), we want to show that f(x) = f(x) # f(u), where u =
ax+ (1 —a)x,forsome 0 < a < 1.
Assume to the contrary that

(13) fx) = f@&) = f),
where u = ax + (1 —a) %, forany 0 < a < 1.
Let @@ = flx+a(x—-x)], Vael01].
Then (13) implies that
$(a) = const = f(X), Va €l0,1].
This yields
0=¢'(N=GE -0V @D =0-2) (-0 V.

Hence, (y — x)7 Vf(X) = 0, which together with (10) contradicts f(x) # f(3).

Thus
(14) fO=f@O#fWw
where
(15) u=ax+(1-—a)x,

forsome 0 < a < 1.
Now from (B) and (15) we have

GE-—w)' [VFE@) -VfW)] >0, x—w) [VFfEx)-Vfw)]=>0.

This yields
(16) & -x0)" [VfE) - VFw)] >0,
(17) (x -0 [Vfx) - VF@w)] >0,
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in view of (15). Now (16) and (17) together imply
(18) x—-x)"[Vf®) - Vfw)]>0.

Multiplying (18) by 1/ (1 — A) and noting (11), we obtain

(19) —-x)"[Vf&E) - Vfw)]=>0.
That is,
(20) O =-0)"VFE) > (-0 V).

Combining (10) and (20) we have f(y) > f(x) + (y — x)" Vf(x). Given (I) and
(II), this implies that for every pair of points x, y € C, f(x) # f(y), we have

fM>fO+6-0"Vf®).

From Theorem 2.2 we conclude that f is an explicitly convex function on C.
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