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MASSEY PRODUCTS AND 
LOWER CENTRAL SERIES OF FREE GROUPS 

R O G E R F E N N A N D D E N I S SJERVE 

1. Introduction. The purpose of this paper is to continue the investiga
tion into the relationships amongst Massey products, lower central series 
of free groups and the free differential calculus (see [4], [9], [12] ). In 
particular we set forth the notion of a universal Massey product 
<Ca,, . . . , a A >, where the at are one dimensional cohomology classes. 
This product is defined with zero indeterminacy, natural and multilinear 
in its variables. 

In order to state the results we need some notation. Throughout F will 
denote the free group on fixed generators xx, . . . , xn and 

f = f | 3 F 2 2 F 3 2 . . . , Fk + ] = [F,Fk] 

will denote the lower central series of F. If / = ( / , , . . . , ik) is a sequence 
such that 1 ^ / , , . . . , / A ^ n then 37 is the iterated Fox derivative 
3, o . . . o 8, and e7 = e o 37, where e:ZF —» Z is the augmentation. By 
convention we set 37 = identity if I is empty. 

Let G be a one relator group presented by {JCJ, . . . , J C J W } , where 
W e [F, F] is not a proper power. Then HXG is free abelian on generators 
w,, . . . , un which are dual t o i , , . . . , i w and H2G is infinite cyclic with 
generator denoted by {W} (see [3] ). If a,, . . . , a7 e HlG are arbitrary 
cohomology classes, say 

n 

at = 2 altur 
i = I 

then we will prove (see also [9] ) 

THEOREM. Suppose W e FA., k â 2. 7/2 ^ / < k then the Massey prod
uct (a, , . . . , a7) /s identically equal to 0. Ott //ze #//zer hand Massey products 
oj length k are defined, have zero indeterminacy, and are evaluated on {W} 
according to the formula 

< < a h . . . , a A > , {W}) = 2 aXh . . . akjtJx_Jk(W). 
Oi 7A) 

If we set 
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MASSEY P R O D U C T S 323 

aj = a\h
a2,2 • • • akjk for J = (y,, . . . , jk) 

then this last formula amounts to the multilinearity of Massey products, 
i.e., 

<<*,, . . . , ak) = 2 aj(uj), where u, = <w/V . . . , uJk). 

Here the summation is over all sequences J of length k. 
We also prove theorems about more general groups. Let G be presented 

by {JCJ, . . . , xn\Wi, . . . , Wp}, where the relators ^be long to [F, F]. If Xis 
the 2 dimensional CW complex associated to this presentation and 
a,, . . . , ak G H]X then Massey products ( a b . . . , ak) can be defined 
in certain cases and evaluated in H2(X) by similar formulas (see 
Section 4). 

In Section 2 we collect the preliminary material we need on the 
cohomology of groups. Then in Section 3 we treat Massey products via 
the approach in Dwyer's paper [1] and finally Section 4 is concerned with 
Massey products in 2 complexes. 

2. Group cohomology. For any discrete group G let B*G denote the 
normalized bar resolution (see [7] ). Thus, for any p > 0, B G is the free 
left G module on generators [g,| . . . \g_], where the gy e G and gf ¥= 1. If 
/? = 0 B0G = A = ZG is free on one generator [ ]. We can also define 
BpG to be the left G module presented by 

generators [gx\ . . . \gp], gl e G\ 

relators [g,| . . . |g^], some g7 = 1. 

In either case the boundary operators are the A module homomor-
phisms 

dp.BpG^Bp_xG 

defined by 

dp[g\\ • • • \gp] = g\[g2\ • • • 1^] 

P-\ 

+ 2 (-lyigil- .- lg/a+il . . . |g„] 

+ (-i)"[g,i. . . ig / ,_.1]. 

In particular 

^i[g] = (g - 1)[ ] and ûf2[g,|g2] = gi[g2] - [gig2] + [gil-

If e:B0G —» Z is the augmentation then 
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324 R. FENN AND D. SJERVE 

0 ^ Z < - BQG*1 BXG^ . . . 

is a free A resolution of Z, and therefore can be used to define homology 
and cohomology of G. For a right A module A we have 

H*(G\A) = H\(A ® A £ * G ) 

and for a left A module A we set 

f/*(G; >4) = //*(HomA(£*G, ^ ) ). 

An element of the cochain group 

BP(G;A) = Hom A (5 , (GM) 

can be identified with a set function u:Gp —* A which satisfies the 
normalization condition 

"(gn- • . . g , ) = 0 if some g, = 1. 

Using the normalized bar resolution permits a simple description of cup 
products of cochains. Suppose u e BP(G\ A) and uf e BP(G; A'). Then 

« U i/' e BP+P'(G; A ® A') 

is that cochain given by 

w u i / ( g h . . . , gpi g ' b . . . , g;,) = w(g, , . . . , gp) 0 i/(gi>.. . , gv>. 
This then induces the cup product pairing 

HP(G\ A) ® Hp'{G\ A') -> HP+P'(G; A ® ,4')-

As an example consider the case A = A' = Z with the trivial module 
structure. Then 

H]G = B\G; Z) = Homz(G, Z) 

and the cup product pairing of 1 dimensional classes is given by 

u U z/[g|g'] = u(g)u'(g'). 

These formulas are particularly amenable when G is a 1-relator group 
{*,, . . . , xn\ W), where W e [F, F] is not a proper power. Let X be the 2 
complex associated to this presentation of G and let X be its universal 
covering space. Thus X is a bouquet of n circles with a 2 cell sewn on by 
means of W. Since W is not a proper power it follows that X is 
contractible (see [2] ) and therefore the cellular chain complex C*(X) can 
also be used to compute homology and cohomology of G. In fact 
augmenting C*(X) in the usual way results in the Lyndon resolution [6] 

0 <- Z 4- C0(X) *± C,(tf) ^ C2(*) <- 0, 

where 
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C0(X) = A, CX(X) = A", C2(X) = A 

</|(A„...,\,) = 2\(<H*,) - 1) 

d2(X) = (\<j>(dlW),...,Xcjy(dnW)). 

Here <j> is just the presenting homomorphism 

F-^ G. 

We also let <j> denote the corresponding ring homomorphism <j>:ZF-^> ZG. 
Since both C*(X) and B*G are resolutions of Z by free A modules we 

can find a chain transformation 

T:C*(X)^B*G 

commuting with augmentation. Thus define 

T0:C0(X) -» B0G and TX:CX(X) -> £,G 

by 

r0(A) = A[ ], Tx(Xl9 . . . , A„) = 2 \-[#*,•) ]. 

In order to define T2:C2(X) 
homomorphisms 

B2G first consider the abelian group 

s0:B0G-^> BxG,s0:g[ ] -> [g] 

.*,:£, G -> B2G, siiglgt] -> [gig,]. 

Then define T2:C2(!) -> £2G by T2(\) = As, 7 ^ ( 1 ) . 

(2.1) THEOREM. T:C*(X) —» #*G /s a C/ZÛJ/H transformation commuting 
with augmentation. 

Proof. We must show that the following diagram commutes 

€ 

But this follows easily from the definitions and the identity 

d2sx + s0d} = id. 

The homomorphism T2.C2(X) —» B2G can also be described in terms of 
the Fox derivatives of W. An immediate consequence of the definitions 
is 

https://doi.org/10.4153/CJM-1987-015-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1987-015-5


326 R. FENN AND D. SJERVE 

T1(\) = X 2 alx[cj>(x)\ct>(xl)l where a^H/) = 2 alxx. 

Now consider the chain complex 

Z ® A C*(X) = C*(*), 

where Z is the trivial A module. Since W G [F, F] it follows that all 
boundary operators are zero and therefore H2G = H2X = Z has a 
fundamental cycle, namely 

1 0 A 1 e Z ® A C2(X). 

Also (id 0 T2){\ ® A 1) is a fundamental cycle in Z ® A B2G. Now 
Z ® A B2G is the free abelian group on generators [gt|g2], where gx ^ 1, 
g2 ^ 1, and 

(id ® r2)(i ®A l) = 2 <y<K*) l<H*,) ]• 

A É F 

Definition. 

{^} = 2 « ;v[^)l^)i. 
1 ^ / ^ / 7 

A" G F 

(2.2) THEOREM. { W} e Z ® A B2G is a fundamental cycle, i.e., it is a cycle 
with homology class a generator for H2G = Z. 

The next theorem completely describes the cup product pairing 

H]G ® HlG -> H2G. 

Similar results, with different proofs, can also be found in [3], [5], [10], 
[11]. The evaluation pairing H G ® H2G —> Z will be denoted by ( , ). 
Recall that u{ e H G is the class dual to xt. 

(2.3) THEOREM. (ut U u/9 {W} ) = e^W). 

Proof ul U U: is represented by the cocyle in B (G\ Z) defined by 

Evaluating on {H7} gives 

(«,- U ur {W} ) = 2 akxuÉ(4<x) )u:(<Kxk) ) 

j e F 

2 a^u^x)) 

i 2 ^ 
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since ufi> = ez 

Now we generalize this result to finite 2 dimensional CW complexes. 
Thus let 

C = {xl,...,x„\Wl,...,Wp} 

be a finitely presented group and let X be the associated 2 complex. If 
(j>:F —> G is the presenting homomorphism and X is the universal covering 
space then the cellular chain complex C*(X) is given by 

o <- c 0 w ^ CjC^) ^ c2(X) <- o, 
where 

C0(X) = A, CX(X) = A", C2(^) = Ap, 

n 

^(X„...,XW) = 2 A , ( ^ ) -1 ) 
7 = 1 

^(M,,...,/^) = (..., 2 ^o^) , . . . ) 
. 7 = 1 

/* coordinate. 

In general CjJC) is not exact since X may not be a A (̂G, 1). However, we 
still have a chain transformation 

T:C*(X) -> fl*G 

commuting with augmentation: 

0*« Z ^ — 1 - C0(X)^L. -c,W<i - C2(X)+ 0 ^ _ 

id T() T\ T2 

CU 2 Z^ B( P-+ L<L 1 r 

7J}, Tx are defined as before and 

T2:C2(X)-> B2G 

is defined by 

p 

r2(/x,, . . . , iip) = 2 iLjS^T^ej), 
7 = 1 " 

where 
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328 R. FENN AND D. SJERVE 

e} = (0, . . . , 0, 1, 0, . . . , 0) e N\ 1 ^j^p. 

y'th coordinate 

If we put 

3,-(Wp = 2 aijxx for 1 ^ / ^ w, 1 ^j ^ p, 
i- e f 

then 

n 

2 #3,-«*)[*(*,)] = 2 ^Jtf*) M*,-)]. 
/ = i 

Now assume that the relators ^ G [F, F], 1 = j = p. Then H X is free 
abelian on generators w,, . . . , w/7 and / / 2 ^ *s ^ r e e abelian on generators 

1 ® A eA, 1 ^ A: ^ />. 

The cup product structure in X is given by the following theorem. 

(2.4) THEOREM, (U, U W/, 1 ® A eA) = 6 / y (^) . 

Proof. The chain transformation F:C*(.Î) —» #*(? induces an isomor
phism 

T*:II]G-+ HXX. 

Thus we may consider uh u. as elements of H]G and compute their cup 
product as follows: 

(W/ U W/, 1 ® A ek) = {ut U ur 1 ® r2(l ® A ek) ) 

= ("/ U i/, 2 «,**[#*) l<K*v)]) 

2 askxUi(<ti{x))uj(4}(xs)) 
1 ^.s=s/> 

v G / 

2 a^UjMx)) 
f £ F 

e, 2 «Mvx = f ,a /(Hl) = e,/(Hl). 
i e f 

It is also possible to further generalize these results by dropping the 
restrictions W- e [F, F]. Theorem (2.4) remains valid if we change the 
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coefficients from Z to Zd where 

d = L.CM.{c |.(Wp|l S / â H, 1 ^j ^ p}. 

3. Massey products in groups. First we recall the definition of the 
Massey product of 1 dimensional classes a}, . . . , ak e H G, see [1], [4] or 
[8]. Thus suppose given a (k 4- 1) X (A 4- 1) "matrix" 

M = 

m]2 

1 

m 13 m \k 

m 23 m 2k 

\± 

1 

where the m-- are defined for only those (/,y) satisfying 1 ^ i <j ^k k + 1 
and (1,7) ^ (1, A: 4- 1). Moreover the following conditions must hold: 

(1) ml} <E B\G\ Z); 
(2) m / / + 1 is a cocycle representing a,; 
(3) if 8IB\G; Z) -> £2(G; Z) is the coboundary then 

7 - 1 

7 5 = 7 + 1 
' • ? / • 

M is called a defining system for the Massey product ( a h . . . , ak). It 
readily follows that the element 

2*i mis U m 
s = 2 

5,/V+l G £2(G; Z) 

is a cocycle. The cohomology class of this cocycle is defined to be the value 
of M and is denoted by (a}9 . . . , cck)M. In general the Massey product 
(aj, . . . , ak) is defined only if some defining system exists, in which 
case 

(«j, . . . , ak) = { («!, . . . , ak)M\M a defining system} Q HG. 

Thus Massey products have indeterminacy. 
Next we relate Massey products to triangular matrices as in [1]. Thus let 

TA + 1 be the group of all (k 4- 1) X (k 4- 1) triangular matrices over Z 
having the form 
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1. 
' ' . * 

L 'l\ 
and let ZA + 1 be the central subgroup consisting of those matrices having 
the form 

X e Z arbitrary. 

Now let fA + 1 denote the quotient group rA + 1 / Z A + 1. 
If G is any discrete group then a group homomorphism 6:G —> rA + , 

consists of set maps 

tf^G-* Z, 1 ^ / ^ j ^ H l , 

satisfying 

(4) 0u(g) = 1 for all g e G; 

7 - 1 

(5) ^(g,g2) = W + W + 2 eis(gx)0sl{g2) 

for a l l g , , g2 G Gif i < j . 

Thus the near diagonal entries # / / + i, 1 ^ / ^ /r, are homomorphisms and 
therefore represent cohomology classes at e H]G. Likewise a group 
homomorphism 6:G —> 7^ + 1 consists of set maps 0/7:G —> Z defined for all 
(/,y) with 1 ^ / ^ j' t^ k + 1, except for (i,j) = (1, k + 1), and satisfying 
(4) and (5). Again the near diagonal entries are homomorphisms G —> Z, 
and hence represent cohomology classes in H G. 

The main reason for introducing these groups is the following theorem 
(see [1] ). 

(3.1) T H E O R E M . Suppose ax, . . . , ak e H G are given. Then there exists a 
one to one correspondence M <H> 6 between defining systems M for the 
Massey product ( — « j , . . . , ~otky and group homomorphisms 6:G —» 7^ + j 
having near diagonal entries ax, . . . , ak. 

To see how this correspondence works suppose 0:G —» Tk + X is such a 
homomorphism. Then set 

1 0 • • • OX 

1. 0 • • • 00 

o '•. '-o: 
\ o 

i 
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mlJ = ~eiJ G B\G; Z), 

and consider the calculation 

^KyXgilfo] = mij(g\[g2\ ~ [g\gi] + fell) 

= 2 ois(gOOs,{g2) 
5 = 7 + 1 

7 - 1 

= 2 ( -w / y ) U (~m )[gl|g2]. 

This implies that the m- satisfy the coboundary condition (3). The value of 
the defining system corresponding to 0:G —> Tk + X is on the cocycle level 
given by 

k 

< - « „ . . . , -ak)M = 2 eXs u eStk+]. 

Now we consider an example of this theorem. Let / = (/ j , . . . , ik ) be a 
fixed sequence, where 1 ^ i. ^ n for 1 ^jt=±k. Then define £:F—» TA + 1 

by 

«* ) 

1 «;,(*) «,y,(*) 

1 

£ , ( * ) 

€/,(*). 

1 

In other words the (s, t) entry, 1 S s = / S k + 1, is given by the 
formula 

U * ) = </,...,-_,(•*). * e f -

(3.2) LEMMA. £:F —» 7^ + 1 / 5 ^ homomorphism. 

Proof. 

t 
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2 eI(x)eI(y) 

where the summation is over all ordered pairs (/l9 72) satisfying 

/, • I2 = ( z y , . . . , / , _ , ) . 

But according to [4] we have 

£,/(-*>0 = €/ /, X-̂ y) = 2 ef(x)€I(y). 
/ , - / 2 = ( i „ . . . , / , _ , ) 

Therefore 

F-irA + 1 - > f A + 1 

yields a defining system for a Massey product. However the value of this 
product is automatically zero, and so not interesting. On the other hand 
suppose [f e F is an element satisfying 

(6) 6, , ^(HO = 0 for 1 ^ s < / S A: + 1, (s, 0 ^ (1, A: + 1). 

Then £ induces a homomorphism 0:G —> rA + 1 such that 

is commutative, where G = {xj, . . . , JCJ W} and <|>:F—> Gis the presenting 
homomorphism. Thus 0 yields a defining system M for the Massey 
product ( — ul•, . . . , — w,- ) and its value is determined by the cocycle 

A k 

2 *,, U 0 a + 1 = 2 €,- .; U C/ • 
.v = 2 .v = 2 

(3.3). THEOREM. Suppose W e [F, F] is not a proper power, I = 
( / , , . . . , ik) is a fixed sequence and (6) above holds. Then 

0:G->fA + 1 

yields a defining system M for the Massey product ( — u}• , . . . , — ut• ). 
Moreover 

( < - « / , - • • • ' - " ' * > " < { » ' } ) = </(»')• 
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Proof. Only the last equation requires proof. Recall that there is a 
fundamental cycle {W} e H2G since we are assuming that W e [F, F] 
and that W is not a proper power. In fact 

{W} = 2 alx[<t>(x)\4>(Xi)l where a,.(»0 = 2 */v*. 

Thus we have 

k 

= 2 €, ,. u C/ , 2 A/j*(x) !#*,•)] 
5 = 2 , ' " 5 _ 1 v ' " A l ^ i ^ / i 

_x-eF 

A 

= 2 2 aix€È i (x^ ^ 

A-GF 

= 2 ^ l -1 . . . ; t_1 (* ) = c|..../A_i3/t(»0 = c/(HO. 
A G F 

Definition. Assuming the hypothesis of (3.3) we set 

« - w / V . . . , -uik> = <-w lV . . . , ~uik)M. 

We refer to <c — ul; , . . . , — w, » as a universal Massey product since it is 
defined with zero indeterminacy even though ( — ut;, . . . , — w/: ) might 
have non-zero indeterminacy. 

As an example of this consider the Massey product ( — ux, —u2, — u3) 
for the group 

G = {*!, x2, x3\W = [x]9 [x2, x3] ][xb x4] }. 

Then it is easy to check that the universal Massey product <c — ux, ~u2, 
— w3> is defined. However, the Massey product ( — w1? — w2, — u3) will 
have non-zero indeterminacy since ux U u4 ¥= 0 (see [4] ). 

(3.4) COROLLARY. Suppose G = {xh . . . , xJP^}, w/zere W <E FA w «o/ <? 
proper power, k = 2. Let I = ( / ] , . . . , zA) Z>e any sequence. Then 
<C — ux•, . . . , — t/y » w defined and 

( « ~ ^ , . . - , - i 7 / A » , {^})• = €/(W0. 

In order to extend the definition of universal Massey products we again 
assume that G = {xb . . . , x/7| Ŵ } is such that W e [F, F] is not a proper 
power. Suppose al9 . . . , ak\G —» Z are homomorphisms, say 

(7) a, = 2 a,y«.-, 1 ^ / ^ AT. 
y = l 
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Then define £:F —» Tk + ] by 

(8) £,,(x) = 2 ash...at_lJt_ej]^jt_£x), 
A .A v 

Again £ is a homomorphism. 
If we make the assumption 

(9) eJiJts(W) = 0 

for all 0 , , . . . ,y;_A.) satisfying 

1 < 5 < / ^ A: + 1, (s, /) # (1 , A: + 1), asj] . . . tf,_u * 0 

then it follows that £ induces a homomorphism 6:G —> Tk + X such that 

r 
^ ^71 + 1 

is commutative. 
In analogy with (3.3) we have 

(3.5) T H E O R E M . Suppose G = {JC,, . . . , x„| W} , where W e [F, F ] z's «etf 
« proper power. Let ax, . . . , ak\G —> Z be homomorphisms as in (7) and 
suppose (9) is valid. Then 6: G —-> 7^ + 1 yields a defining system M for 
( — « j , . . . , — aA) tfftd 

(<-«! , . . . , -aA>^{^}) = 2 ^ ( * n 
J 

where the summation is over all sequences J of length k. 

Definition. Assuming the hypothesis of (3.5) we define the universal 
Massey product <C — a,, . . . , — a A > by 

< - « , , . . . , - a A » = < - a , , . . . , - a A . ) M . 

Then the content of (3.5) is that the universal Massey product is 
uniquely defined and multilinear in its variables, i.e., 

<C—a,, . . . , —ak^> = ZJ aj<^ — Uj^>. 
J 

(3.6) C O R O L L A R Y . Suppose G — {xj, . . . , x,7| J f } , where W e Fk is not a 
proper power, k = 2. Then <C — a1? . . . , — ak^> is well defined and is 
evaluated on {W} as in (3.5). 

https://doi.org/10.4153/CJM-1987-015-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1987-015-5


MASSEY P R O D U C T S 335 

Next we will show that universal Massey products are natural with 
respect to degree 1 maps. To explain this let F, ¥' be free groups on 
finitely many generators and suppose W e Fk, W e Fk are not proper 
powers. Let G, G' be the corresponding 1 relator groups and suppose 

f\F —> F' is a homomorphism satisfying f(W) = W. T h e n / induces a 
homomorphism g:G —> G' which is a degree 1 map, i.e., 

g*:H2G-» H2G' 

is an isomorphism. This last statement follows from the Hopf formula. 

(3.7) THEOREM. If'a',,. . . , a î e HXG' then 

g*«a /
1, . . . , < » = <g*(ai), . . . , g * « ) » . 

Proof. Included in this statement is the fact that both sides are well 
defined. The proof is an immediate consequence of (3.6) and the chain rule 
for Fox derivatives (see (5.6) of [4] ). 

In general Massey products have indeterminacy. However, the next 
theorem proves that all Massey products of length ^k in 

G = {xu...,x„\W}, 

where W e Fk is not a proper power, are defined with zero 
indeterminacy. 

(3.8) THEOREM. If ax, . . . , a, <= H]G and I ^ k then 

( « I , . . . , « / ) = < ^ a j , . . . , « / > . 

Proof. First note that < « j , . . . , a 7 > is defined and therefore so is 
(aj, . . . , aA.). It is thus necessary to show that the indeterminacy is zero. 
But this follows from a result of May (see [8] or (2.2) of [4] ) and induction 
on /. 

4. Massey products in 2-complexes. In this final section we extend the 
results of the last section to Massey products of one dimensional classes in 
2-complexes. Our notation is the same as in Section 2. That is 

G= {x„...,xn\Wx,...,Wp}, 

X is the 2-complex associated to this presentation and X is its univer
sal covering. We also assume throughout that the relators W- G [F, F], 

Let « ] , . . . , ak\G —» Z be elements of HXG as in (7) of Section 3 and let 
£:F —> Tk + X be the homomorphism defined in (8) of Section 3. To insure 
that £ induces a homomorphism 6:G —> Tk + ] we make the assumption 
W- G Fk, 1 = j = p. Of course this is stronger than necessary. Now set 
< — « ] , . . . , —«£> equal to the cohomology class in H G which 
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corresponds to 6. Then the chain transformation T:C*(X) —> B*G induces 
an isomorphism T*:H]G —> HlX and therefore we may define universal 
Massey products in X by means of the formula 

« - / ? ! , . . . , - £ A » 

= r * < - a , , . . . , - a A > G //2X, # = r*(a /) . 

To evaluate this Massey product we note that 

H2X = Homz(H2X, Z) 

and H2X is free abelian on the generators 

\®Aer l ^ j ^ p 

(see Section 2). By arguments similar to (3.3) we can prove the following 
theorem: 

(4.1) THEOREM. For 1 ^ j ^ p we have 

( « - / ? „ . . . , - & . » , 1 0 A e}) = 2 flyCy(H;) 

where the summation is over all J having length k. 

Finally, in analogy with (3.8) we can prove that Massey products of 
length ^k are defined with zero indeterminacy and given by the universal 
Massey product. 

(4.2) THEOREM. Let /?b . . . , 0, e H]X be arbitrary, I ^ k. Then 

<-/?„...,-/?/> = < - £ „ . . . , - # » . 
This implies that Massey products of length <k vanish identically and 

products of length k are computed in terms of Fox derivatives of the 
relators. Finally we note that the universal Massey product defined in this 
paper is identical to the minimal Massey product defined in [4]. 
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