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Abstract

For a distribution function F on [0, oo) we say FeSf if {1 -F<2»(x)}/{1 -F(*)}-»-2 as x-»-oo, and
Fe&y if for some fixed y > 0 , and for each real y, lim,_a{1 -F(x+y)}I'{l-F(x)}=e-y'.
Sufficient conditions are given for the statement FeSfoFtGeSf, and when both F and G are
in y it is proved that F*Ge#'opF+(l-p)Ge&' for some (aH)pe(0,l). The related classes
SP-, are proved closed under convolutions, which implies the closure of the class of positive
random variables with regularly varying tails under multiplication (of random variables). An
example is given that shows 5* to be a proper subclass of SCo-

1980 Mathematics subject classification (Amer. Math. Soc): Primary 60 E 05; Secondary 60 F 99.

1. Statement of results and discussion

We consider probability distribution functions F on [0, oo) satisfying F(0) = 0,
F(oo) = 1, F(x)< 1 for x<oo, and will write F for the tail function l—F, similarly
F<2) for 1 -F(2\ F*G for 1 -F*G, and so on, where F(2) denotes the convolution
F*F.

DEFINITION. F and G are said to be max-sum-equivalent, written F ~ M G if

(1.1) F*G(x)~F(x)+G(x), ;c->-oo.

Note that F(x)+G(x)~F(x)+G(x)-F(x)G(x), so that if Xand Yare independent
random variables with distribution functions F, G respectively, we may rewrite
(1.1) as

P(X+Y>x)~P(max(X, Y)>x), x-+oo.

Hence the terminology.

*On leave from University of Sussex.
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244 Paul Embrechts and Charles M. Goldie [2]

DEFINITION. F is said to belong to the subexponential class ¥ if F ~M F.

DEFINITION. For each y ^ 0, the class ££y is the set of F for which for each fixed
real y, ]hnx^nF(x+y)lF(x) = e-». Write JSP for JS?O.

The class £f originated in branching processes (Chistyakov (1964)) has found
applications in queues, random walks and transient renewal theory, and has
recently entered the theory of infinite divisibility, where (Embrechts et al. (1979))
it characterizes those infinitely divisible distributions on [0, oo) whose tail functions
are asymptotically equal to the tails of their Levy measures. See the last-mentioned
article for references to the other applications. Work on applications has led to
interest in, and discovery of, many properties of £f, but one major conjecture
remains unverified, that y is closed under convolutions: Fey, Gey=>7F*Ge y.
We have not solved this problem, but give some partial results about it, and relate
it to the closure of y under finite mixing. Our results also give some sufficient
conditions for the converse proposition, that F*G&y, Gey=>Fey. In this
connection it is appropriate to mention that there is no problem when F = G,
because for any positive integer n, Fey<>Fwey (see Embrechts et al. (1979),
the left-to-right implication being Chistyakov's). This carries over to when
G{x)~cF(x) for some c>0, because y is known to be closed under tail equivalence.

THEOREM 1. Let Fe^C, Gey, and supxG(x)/F(x)<cc. Then Fey<^F*Gey.

A related result is in Pitman (1979): if F and G have densities whose ratio G'/F'
is bounded, then Fey=>F*Gey.

If the boundedness of G/F in Theorem 1 is strengthened to the requirement
lim^a, G(x)/F(x) = 0 then the condition Fe£C can be omitted (Embrechts et al.
(1979), Proposition 1). However this is not so in general, for in some circum-
stances the conclusion F*Ge£f implies Fe£C, as follows.

PROPOSITION 1. IfsupxG(x)/F(x)<cn, F*Ge&>, andFGe&, then Fe&.

For the next result on convolution closure, 9) is to be the class of F with
dominated-variation tails:

PROPOSITION 2.IfFe^n¥ and Ge3>n£f then

We now give equivalent forms of convolution closure.

THEOREM 2. Let Fey, GeSf and H = F*G. Then limsup,.^Hl2\x)/U(x) < 4,
and the following are equivalent:

(i)
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[3] On subexponential distributions 245

(iii) pF+(l -p)Ge£f for some (all)p satisfying 0<p<l.

An immediate consequence is that the following three conjectures are equivalent
(all true or all false):

(a) y is closed under convolutions;
(b) y is closed under finite mixtures;
(c) Fey, Gey=>F~MG.

As regards finite mixtures, Pitman (1979) proves that under the density condition
quoted above, Fey impliespF+(l-p)Gey.

We turn to the classes S£r It is well known that y<^<£, and S£ plays an
important role in the study of y. The classes £fy for }>>0 bear a similar relation
to the classes yy of Chover et al. (1973). We prove convolution closure. For this
theorem only we drop the restriction that the distribution functions have support
in [0, oo), that is we no longer insist that .F(0) = 0, G(0) = 0. The definition of
£Cy is unaltered, and y can be any nonnegative number. Let 3ta denote the class
of functions regularly varying at oo with exponent a.

THEOREM 3. (a) If Fe£Cy and G =o(F), in particular ifGe£frfor / > y , then
F*Ge<£T

(b) IfFe&y and Ge£Cy then F*Ge&r

COROLLARY. Let X* and Y* be independent positive random variables with
distribution functions F*, G* respectively, and let H* be the distribution function
of the product X*Y*. Let F*e<M_y. Then ff*e^_y if either (a) G*=o(F*), or

It is of interest to compare Theorem 3 with the corresponding well-knowns
result in which £Py, ££r are replaced by M_y, 0t-y. In that case one concludes
not just that F*Ge8i-y but also that F*G~F+G. However in the circumstances
of Theorem 3 one does not have that sort of extra information, because if for
instance G = F and y = 0, then the conclusion F*G~F+G would mean that
Fe SP, and we know (see below) that £f is a proper subclass of <£0.

The classes ^ _ r Sf, 3) are closed under convolution roots (see Embrechts et al.
(1979) for the first two; the case of 3) is elementary). We conjecture that for each
y > 0, Z£y is closed under convolution roots: F((I)eify =>?Fe i? r

The corollary may be related to domains of attraction. First, 31 _,, for y>0 is
the class of tail functions of the domain of attraction for maxima of Gnedenko's
canonical law Or. Second, 01-y for 0 < y < l is the class of tail functions of non-
negative random variables in the domain of attraction for sums of a completely
asymmetric stable law of exponent y. Thus the corollary asserts the closure of
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these domains of attraction under multiplication by certain random variables, or
(the same thing), under the taking of certain scale mixtures.

One may without difficulty relax the positivity of X* and Y* required by the
corollary, and instead allow Y* to take any real values and X* to be nonnegative.
The conclusion then applies to the upper tail of X* Y*. If the same condition as
on G* is imposed on G*(—x) as x->oo, then one also obtains a lower-tail con-
clusion. However, there is not necessarily any balance between the tails, so the
extended corollary is not a domain-of-attraction theorem. Under more stringent
conditions one can balance the tails; see Breiman (1965), Proposition 3.

Another view of the corollary is obtained by realizing that E* is the Mellin-
Stieltjes convolution of G* and F*:

H*(x)= \G*(x/t)F*(dt).

The corollary is thus an Abelian theorem for Mellin-Stieltjes convolutions, of a
rather different sort, it appears, from those mainly studied (see Bingham and
Teugels (1979)).

Our final result, forming Section 3, is an example of a distribution function in
Jif\£f. We found this example last year, but it then seemed over-complicated in
comparison with Ffi(x) = exp{—x(logx)~f}, x^l, which was thought to be an
element of £C\^ when 0<P^ 1. However Pitman (1979) shows that in fact
FfeSf for each /?>0. Pitman also gives a new example in ££\£f, and his example
and ours are therefore the only known elements of that class. Neither is
particularly simple.

2. Proofs

Denote max(x,y) by xvy and min^,^) by xAy. The operators v, A are to
bind more tightly than + , —. Intervals of integration will include {exclude}
finite right {left} endpoints, unless otherwise indicated. We always write H for
F*G and AT for FG. Independent random variables X, Xu X2, Y, Yu Y2 will be
used to aid explanations, the X's each having distribution function F, the Y's
each having distribution function G. Note that

K(x) =P(Xv Y>x) = F(x)+G(x)-F(x)G(x)~F(*)+G(;c), x->ao.

LEMMA 1. IfKeSP andHeSf then F~MG.

PROOF. Define X = X1 v X2, f = Yt v Y2, and denote their distribution functions
by F2, G2 respectively, so that

(2.1) F 2 = ( 2 - F ) F , G2=(2-G)G.
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[5] On subexponential distributions 247

Fix w>0 and x > 2w, then

(2.2) H(x) = P(Xt < w,X1 + Yl>x)+P(Yl < w,Xt + Yt>x)
+P(X1 >w,Yt> w, Xt + Yi > x)

< P(Yl>x-w)+P(Xl>x-w)+P(Xl>w,

Next,

(2.3)

w,X+t>x)

^ P{X < w, ?>x)+P(Y < w,X>x)+P(X>w, ?>w, X+t>x)

= F2(w)G2(x)+G2(w)F2(x)+fa>G2((x-«)vw)F2(du),
J w

and then, using (2.1),

(2.4) °° G2((x - M) v w) F2(du) > {2 - G(w)} °° G((x -u)vw) F2(du)
J W J W

= {2-GXw)}P(X>w,Y>w,X+Y>x)

= {2 - G(w)} °° F2((x -u)vw) G(du)
J W

f 0 0 -
> {2 - G(w)} {2 - F(w)} F((x - u) v w) G{du)

J w

= {2-F(w)} {2-G(w)}P(X>w, 7>w,X + y >x)

Combining (2.2), (2.3) and (2.4),

J7<2>(x) > F2(w)G2(x)+G2(w)F2(x)
-F(w)} {2-G(w)} {H(x)-F(x-w)-G(x-w)}

> \_{F2(w)(2-G(x))} A{G2(w)(2-F(*))}]{F(x)+G(x)}
+{2-F(w)}{2~G(w)}H(x)-4{F(x-w)+G(x-w)},

using (2.1). Rearranging,

[{2-F(w)} {2-G(w)}-n<2Xx)/H{xy]H(x) < 4{F(x- w)+G(x-w)}
-L{F2(w)(2-G(x))} A (G2(w)(2-F(x))}] {F(

Divide through by K(x) and let x-+oo. We have

H')~X(X) since
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Also HaXx)lE(x)-+2 by our assumption that HeSf. Hence

[{2 - F(w)} {2 - G(w)} - 2] lira sup H(x)/K(x) ^ 4 - 2{F2(w) A G2(W) } .
x-*oo

Now let W-KX>, and then limsup^..^E(x)/R(x) < 1. However H^K and so the
lemma is proved.

LEMMA 2. IfGe£C, FeS? and c = supxG(x)/F(x)<co, then F~MG.

PROOF. For any fixed w>0,

{F(x-t)/F(x)}F(dt)=F^2\x)/F(x)-l- fW {F(x-t)/F(x)}F(dt)
JJ 0-

the terms on the right converging by subexponentiality and dominated convergence,
respectively. Then

F*G(x)=F(x)+ \G(x-t)F(dt)+ I G\x-t)F{dt)
Jo Jw

< F(x)+G\x - w)+F(x). c I" {F(x - t)/F(x)} F(dt)
J w

< {F(x)+G(x)}/Fl+c p{F(x-O/F(x)}Fidt)]v{Gix-w

Consequently

limsupF*G(x)/{F(x)+G(x)}
oc->oo

Let w-*co, then limsup,_>00F*G(x)/{F(x)+G(x)} < 1 and the lemma follows.

PROOF OF THEOREM 1. (a) Suppose

, Ge2>, He9> and c s supxGix)/Fix)<oo.

By Lemma 1, J7(JC)~F(X)+G(*). Since HeS? we have H^e^; also F(2)eif
and (7(2) e ̂  by Theorem 3, and so the distribution function of

whose tail is asymptotically equal to F ( 2 ) + ( J ( 2 ) , is also in J£?. So Lemma 1 applies
to Fli>, G(2) and #<2) =F(2'*G<2), giving na\x)~Fi2\x)+Gi2\x). Since
H( 2 )~2H it follows that

{F<2Xx)+&2Xx)}/{Fix)+Gix)}-+2, x^oo.
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So for all large x the left side is at most 2 + e , and hence

F<2>(x)/F(x) ^ 2+e+{2+e-G^\x)/G(x)} G(x)/F(x).

Since lim inf, G (2)(x)/G"(x) > 2 (Chistyakov (1964)) we have

limsupF(2)(x)/F(x) < 2+£+(2+e-2)c.
X

Hence this lim sup is at most 2, whence Fe if.
(b) Suppose Fey, Getf and supxG(x)/F(x)< oo. Now F^eSf, G ( 2 ) e^ , and

F<2)~2F, G(2)~2G, whence supxG
a\x)/Fi2\x)<oo. By Lemma 2, F<2) ~MG(2>.

Then

< lim sup {F(2)(
X-*ao

= 2

since F&Sf, GeSf. Thus ^ e ^ 7 , concluding the proof.

NOTE. In (a), that is, the '<=' statement of Theorem 1, we used only GeSC

rather than the stronger assumption Ge£f.

PROOF OF PROPOSITION 1. By Lemma 1, F~M G. Suppose F£J£?, then for some
to>0 there exists xn-»oo such that F(xn-t0)/F(xn)->l>l as «-+oo. Passing to a
subsequence, we may take it that also G(xn)/F(xB)->c< oo. Define

H{t) = lim inf F(xn - t)/F(xn) > 1,
n

then p(t) > / for all t 5= t0, so ]n(t)G(dt)> 1. We have

J7(xB) = GXxn)+F(xn) ("" {F(xB- 0/F(x
J o-

whence

1 liminf I"*"
» J o-0-

and by Fatou's lemma the right side is at least

1

This contradicts F ~ M G. So it must be the case that Fe ££, proving the proposition.
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PROOF OF PROPOSITION 2. First,

P(X+ Y>x)IP(X+ Y>2x) < P(X>ix)/P(X+ Y>2x)+P(Y>ix)/P{X+ Y>2x)
< P(X> ix)/P(X> 2x)+P( Y>}x)/P( Y> 2x)

which is bounded above as x->oo, and so HzQ). Therefore to show He£f we
have only, by Goldie (1978), Theorem 1, to show HeSe. Now

(2.5) H(x) =P(X+ Y>x,X^ix)+P(X+ Y>x,

Taking the last two terms on the right,

(2.6) {P(X+ Y>x, Y < ±x)+P(X>$x)P(Y>|x)}/

= ("** {F(x-u)/F(x)}G(du)+{FUx)/F(x)}GGx)
J o-

and the integrand is bounded by a constant and converges pointwise to 1, so that
the integral of (2.6) converges to 1. The other term on the right of (2.6) is
0(1).o(l). Thus the right side of (2.6) tends to 1. Similarly,

P(X+ Y>x,X*Z ix)/G(x)^ 1.

Returning to (2.5), we conclude H(x)~F(x)+G(x). Since FeS£ and Ge&, the
conclusion He£C follows easily, which is enough to complete the proof as
indicated earlier.

PROOF OF THEOREM 2. Assume Fe£f and GeSf. We prove

(2.7) H<2Xx)/H{x)=4-2{F(x)+G(x)}/H(x)+o(l), x->oo.

Thus, let /GO = sup {Fi2\x)IF(x); x > y), f(y) = inf {F(2)(JC)/F(JC); X > y}, and
define g, q similarly in terms of G. For brevity, write Xi2) for Xt+X2, and 7<2)

for Yt + Y2. Fix w>0, then for x ^ 2w,

(2.8) Hi2\x) =P(Z(2) < w, X™+ r(2)>x)+i>(F(2) < w,
w, r 2 ) > w,

The sum of the first two terms on the right is at least

Gi2\x

which is bounded below by

g(x) G(x) F<2\w)+f(x) F(x

Similarly, an upper bound for the same quantity is

g(x - w) G(x - w) Fi2\w)+J{x - w) F{x - w
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The third term on the right of (2.8) is equal to

foo foo
G(2)((x - u) v w) Fw(du) s£ g(w) G((x - u) v w) Fm(du)

J W J W

= g(w)P(X<-2)>w,Y>w,Xi2)+Y>x)

" F(2\(x-u)vw)G(du)

foo
w) ^((x-M)vw)G(du)

- r
- fW F(x-u)G(du)\

(w) g(w) {H(x) - G(x) F(w) - F(x) (Hw) } .

Similarly, a lower bound for the third term on the right of (2.8) is

f(w) g(w) {H(x) - G(x - w) F(w) - F(x - w) G(w)}.

Replacing the right side of (2.8) by its upper bounds we calculate

m2\x)+2F(x)+2G(x) <J(w)g(W)H(x)

+ [2-f(w)g(w) {F(w) A G(w)} ] {F(x)+G(x)}

+ l{9(.x-w)F<2Kw)} v {f(x- w)G<2\w)}l {F(x-w)+G(x-w)}.

Divide by H(x) and take limsup,.,^. We know Fe£C, GeSC, so that

F(x- w)+G(x-w)~F(x)+G(x).

Further, ]imsup(F+G)/H ^ 1. Hence

lim sup {n(2\x)+2F(x)+2G\x)}/H(x)
x-»oo

<TW5(")+\2-Kw)g(w){F(w) A G(w)}+2{F(2>(w) v G<2\W)} |
-»4+0, w-»oo.

Similarly, using the lower bounds, the lim inf is at least 4. So (2.7) is proved. This
immediately gives the first conclusion of the theorem, and also He£f-s>H~F+G,
that is, (i) <*• (ii). To complete the theorem we show that if F~ M G then pF+qG e Sf
for all p, 0<p<\, q = \—p, and conversely if pF+qGeS? for some pe(0,l)
then F ~MG.
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First assume F~MG, then

(pF+qG) l2>l(pF+qG) = {p2 F™+2pqF*G+q2 G <2>}/(pF+qG)

~{p2F<2>+2pq(.F+G)+q2G™}/(pF+qG)

~ {2p2F+2pq(F+G)+2q2G}/(j>F+qG)

= 2.

Thus pF+qGef.
For the converse, suppose it is not true that F~MG, so that there exists e>0

such that on an unbounded set of x, F*G > (l+e).(F+G). Then

y
$s iim sup {2p2F+2pq(l +s)(F+G)

+2q2G}/(pF+qG)
= 2+2pqe.limsup(F+G)/(pF+qG)

>2+2pqe/(pvq)>2.

and so pF+qG$S?. Theorem 2 is proved.

PROOF OF THEOREM 3. (a) Assume Fe&y and limx^x,G(x)/F(x)=0. Fix />0
and v>t. We have

H(x) =P(X+ Y>x) =P(X+ Y>x, Y < x- v)+P(X+ Y>x, Y>x-v)

and

0 < P(X+ Y> x,Y>x- v)/P(X+ Y> x, Y < x - v)

^P(Y>x-v)/P(X>x,0< Y^x-v)

= G(x - v)/lF(x){G(x -v)- G(0)}]

= {G(x-v)/F(x-v)} {F(x-v)/F(x)

Thus

,CX~V
(2.9) H(x)~ F(x-u)G(du), x-^oo.

J - 0 0

Altering v to v—t and x to x—t,

(2.10)
-i)~ {F(x-u-t)/F(x-u)}F(x-u)G(du).

J - o o
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Defining

Mj{y) = sup {F(x-t)/F(x), x 5* y}, m^y) = inf {F(x- t)/F(x), x > y},

the right side of (2.10) is between

mjv)\ VF(x-u)G(du) and M^v) I " F(x-v)G(du).
J — oo J — oo

Hence, using (2.9)

mf{v) < liminf H(x-t)/H(x) < lim sup H(x - t)/H(x) < M^v).

Let v-*ao and (a) follows.

(b) Assume FeJjfy and Ge£fy. Define mG and MG for G, exactly like ntF and
AfF for F. This time

(2.11) H(x) = T " F(x - u) G(dw) + T G(x - u) f (d«)+F(v) G(x - v),
J — oo J — oo

and altering x to x—t and utot)- / ,

(2.12) if(x - 0 = {F(x -u- t)/F(x - w)} F(x - u) G(du)
J - o o

+ {G(x - u - f)/G(x - «)} G(x - M) F(rfu)
J —oo

+ {F(v-t)/F(v}}F(v)G(x-v)

^Mf(v)\X ^F(x-u)G(du)+MG(x-v+t) \" G\x-u)F(du)
J — co J — oo

+Mf{v)F(v)Gix-v)

^ {Mfiv) v MG(x - »

hence

Now

Uminf
J

UminfH(x)/f G\x-u)F(du)

Uminf "
*-»«> J o
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which by Fatou's lemma is at least

{Fiv-t)}'1 \ \imM{G(x-u)/G(x-v+t)}F(du)
J 0 x-*oo

= r eT"F(du)/{er('-f)i!l(p-0}.
J o

As i;->oo the last term tends to oo, because for v > nt,

[Ue^Fidu^ie^-^Fiv-t)} ^ £ ey(v-kt){F(v-kt)
J o * = i

• Y. e"(*"1)y'(e)'(*"1)'-e7(*"2)')
*=i

Thus by taking D sufficiently large we may ensure that

lim sup " G(x - M) F(du)/H(x) < ie.

For this v it will then be true for all large x that, from (2.11),

"F(x-u)G(du)+ j " fG(x-M)F(du)+F(t>)G(x-t;)>ff(x)(l-e
J — CO J — OO

Then from (2.12),

F ( x - 0 ^ mf(») T "F(x-«)G(<iM) + mG(x-1>+f) " ' G\x-u)F(du)
J — oo •/ — oo

^ (mf(D)AmG(x-i;+(p(x)(l-£).

Hence

liminfH(x-r)/H(x) 5= mF(t;)(l-e)^e'"(l-e), u->oo.

Since e>0 was arbitrary the above liminf is at least en, and (b) is proved.

PROOF OF COROLLARY. Set X*=e x , Y*=er, so that F*(x) = F(logx),
G*(x) = G(logx), and the corollary becomes just a re-statement of the theorem.

3. A distribution function in £C \ ¥

Let an be a sequence of positive numbers satisfying an-KX>, an<$(n+l)\. We
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specify the sequence fully later. Define F by its tail function:

F(x) = l, - o o < x < 2 ,

F((n+l)\+u) =(l+n-u/an)/(n+l)\, 0 < u < nan, n = 1,2, ....

The idea is that F decreases to zero by a sequence of slowly-flattening linear slopes,
with increasingly long flats in between. We first show FeJ§?. Fix t and let n be
large enough for nan>t. Then within the interval

F(x—t)/F(x) will be greatest in the sub-interval

(n+l)\+t < x < (n+i)\+nan.

For such x = (n+l)l+u,

F(pc-t)lF(x) = {l+n-(u-t)lan}/(l+n-u/an)

-u/an)

Thus FeSC.
Now we show F ^ y . Let Z, A" be independent, each with distribution function

F. Then for 0 < u < nan, using the fact that 2{n!+(« -1) an _ t} < (w+1)!,

aB-1/(n+l)!}r^(«-
J o

So

F(2)((n+l)!+u)/F((n + l)!+u) =2+2 f"F(x)dx/(an+nan-u)+o(l).
J o

Therefore

(3.1) )
J 0

where bn = («+l)!+«aB. To prevent FeSf we must ensure the right side of (3.1)
does not converge to 2, and so intuitively an must tend to oo very slowly. Set
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kn = max{k: (k+l)\ < nan], then

F<2Xbn)/F(bn) > 2+(2/aB) £ F(x) dx
J

>2+(2/an) |

= 2+(2/an) | k>2+k2jan.
k=l

So F ^ if k%/an++0. This can be achieved by setting an = max{A:: (A:+1)! ^ n}.

For then an-*ao, and on comparing the definitions of kn and an we see that kn>an,

which suffices.
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