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Abstract
Prototyping is a knowledge generation activity facilitating improved understanding of
problem and solution spaces. This knowledge can be generated across a range of dimen-
sions, termed knowledge dimensions (KDs), via a range of methods and media, each with
their own inherent properties. This article investigates and characterises the relationships
between prototypes and knowledge generated from prototyping activities during the
design process, by establishing how different methods and media contribute across
KDs. In so doing, it provides insights into prototyping activity, as well as affording a
means by which prototyping knowledge generation may be studied in detail. The inves-
tigation considers sets of prototypes from eight parallel 16-week design projects, with
subsequent investigation of the knowledge contributions that each prototype provides and
at what stage of the design process. Results showed statistical significance supporting three
inferences: i) teams undertaking the same design brief create similar knowledge profiles;
ii) prototyping fidelity impacts KD contribution and iii) KDs align with the different
phases of the project. This article demonstrates a means to describe and potentially
prescribe knowledge generation activities through prototyping. Correspondingly, the
article contends that consideration of KDs offers potential to improve aspects of the
design process through better prototyping method selection and sequencing.

Keywords: prototyping, knowledge, knowledge dimensions, prototypingmethods, product
development process

1. Introduction
Prototyping is a ubiquitous and critical part of the new product development
(NPD) process (Wall, Ulrich & Flowers 1992), supporting design development,
decision-making and testing throughout processes stages (Ulrich & Eppinger
2016). The process of prototyping is multi-purpose, with prototypes used for
learning, communication between people and teams, refinement of designs and
record keeping (Camburn et al. 2017). Prototypes themselves comprise any
representation of a product prior to the final design (Buchenau & Suri 2000)
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and so may be of vastly different forms (Ulrich & Eppinger 2016) ranging from
preliminary sketches to near-production, comprehensive products. Throughout
the process, the focus of learning will also vary, ranging from isolated prototyping
of role, implementation and aesthetic to full development of integrated and
comprehensive prototypes as the design process continues (Houde & Hill 1997).
While the ultimate aim of prototyping typically remains consistent – to support
development of products – the prototyping space introduces a breadth of options
as to how this output may be reached.

It then stands that the desired output from prototyping activities may be
described as the accumulation of learning from any number of prototypes of
different forms (see Camburn et al. 2017; Petrakis, Wodehouse & Hird 2021a)
each with associated levels of detail, costs, breadth of learning and development
complexities. From these prototypes, designers must generate the learning
required to produce their products, but they will have substantial choice as they
do, and the choices that they make will impact the cost, difficulty and duration of
the process itself.

High-quality prototyping then demands appropriate prototype method selec-
tion and sequencing aligned with design intent (Menold, Jablokow & Simpson
2017; Goudswaard et al. 2021b). However, Goudswaard et al. (2021a) suggest that
prototyping practice could be improved by improving prototyping method selec-
tion to ensure the right tool is used at the right time to generate the right knowledge
– which is of importance as, in particular, novice designers are found to approach
prototyping in an ad hocmanner (Petrakis et al. 2021a). This has led to the creation
of prototype selection frameworks to guide designers to appropriate approaches for
their given scenario (see, e.g., Filippi & Barattin 2012; Menold et al. 2017; Lauff,
Menold & Wood 2019).

Supporting better selection of prototyping methods must account not only for
tangible impacts such as cost and time commit, but also recognise that the different
properties of prototypes may affect the learning generated (Jones, Snider & Hicks
2020; Goudswaard et al. 2021b). Prototypes can be broadly considered to fall into
two domains: physical (i.e., made of atoms) and digital (made of 1s and 0s). Each of
these has its respective benefits and drawbacks. For example, the inherent tangi-
bility of physical prototypes is particularly suited to understanding feel of a product
in the hand, while the rapid reconfigurability of a digital model is suited to
performance testing of many variants in a short period of time (Li, Nee & Ong
2017; Coutts, Wodehouse & Robertson 2019; Kent et al. 2021).

To support better method selection, it is then important to understand the
potential relationships between prototyping activities and learning generated, such
that proactive steps may be taken to ensure the methods chosen by designers will
efficiently and effectively generate the learning that they need.

This article aims to understand the relationship between prototypes and
learning generated through study and comparison of the prototyping media and
methods of eight design teams, each solving the same design brief. Specifically, it
will investigate the appearance of knowledge dimensions (KDs) (Real et al. 2021)
during their prototyping activities, using them as a lens to compare between teams,
prototyping domains, project stage gates and prototyping fidelities.

Correspondingly, the contribution of this article is twofold. First, in the
elucidation of evidence that may permit mapping of KDs to prototyping activities;
and second, in so doing, the proposition and validation of a methodology that
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can be used to operationalise KDs in the context of prototyping in product
development.

The outputs of this work can therefore lead to better framings of prototyping
activities that can subsequently support method selection such that it is aligned
with the intent and needs of both the designer and design problem, as well as
providing a methodology for the wider research community to use to further
explore the prevalence and utility of KDs in prototyping.

2. Background
To contextualise the work in this article, the background section will consider: i)
prototyping in new product development (Section 2.1); ii) prototyping as iterative
knowledge generation (Section 2.2) and iii) knowledge dimensions in prototyping
(Section 2.3).

2.1. Prototyping in new product development

In literature, prototypes are typically defined at an abstract level; as preliminary
representations of a product. For example, as “an approximation of the product
along one or more dimensions of interest” (Ulrich & Eppinger 2016) or the very
broad definition of Houde & Hill (1997) – “any representation of a design idea
regardless of medium”. Such high-level definitions allow space for the wide range of
prototypes and prototyping activities that exist in design industry, in which,
prototyping methods and purposes are often in essence bespoke, in themselves,
a task for the designer to select and implement as part of the product design
process.

Others extend these artefact-driven definitions to also encompass the import-
ance of the role of prototyping. Lauff, Kotys-Schwartz & Rentschler (2018) state
that:

“A prototype is a physical or digital embodiment of critical elements of the intended
design, and an iterative tool to enhance communication, enable learning, and inform
decision-making at any point in the design process.

Prototyping is the process of creating the physical or digital embodiment of critical
elements of the intended design.”

As such they identify that a prototype is more than the sum of its parts, and plays a
broad and critical role in the learning and understanding processes of designers
and across design teams. It is therefore critical for researchers to understand how
prototypingmethods influence the learning they afford it generates such that better
tools andmethodsmay be developed and selected by designers (Menold et al. 2017;
Lauff et al. 2019).

This breadth of definition and criticality outlines a key challenge for industry –
the selection and application of prototyping methods has a substantial impact on
the success, quality and value of both the design process and design output
(Camburn et al. 2017; Rao et al. 2020); for example, through the cost of methods
employed (Christie et al. 2012) and suitability ofmethods for the intended learning
(Pei, Campbell & Evans 2011). However, prototyping can itself often be ad hoc and
lacking direction (Petrakis et al. 2021a, 2021b), with both selection of methods and
implementation left solely as a task for the designer indicating an absence of a clear
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prototyping strategy. This apparent lack of strategy risks inappropriate or sub-
optimal selection, leading to extended processes or yielding products that do not
reach their full potential. With novice designers, prototypes can be under-utilised
during the front end of design (Deininger et al. 2019). It is subsequently suggested
that prototyping practice could be improved by ensuring the right prototyping
method is used at the right time (Goudswaard et al. 2021a).

To this end, researchers have developed many classifications of prototyping
that have focused on elements including:

• prototyping methods and physical characteristics of prototypes (Hannah,
Michaelraj & Summers 2009; Ulrich & Eppinger 2016);

• the embodiment of prototypes (Camburn et al. 2013);
• prototype types (Houde & Hill 1997);
• prototype functionality (Buchenau & Suri 2000);
• prototype fidelity (McCurdy et al. 2006; Pei et al. 2011);
• purpose of prototyping activities (Otto & Wood 2001; Ulrich & Eppinger 2016;
Camburn et al. 2017);

• prototype scope (McCurdy et al. 2006) and
• how prototyping enables progress in design processes (Lauff et al. 2018).

Through these perspectives, researchers aim to understand how prototyping is
used and may be better used to support the design process, with learnings then
passed forwards to designers by way of better prototyping tools, methods and
selection approaches.

2.2. Prototyping as iterative knowledge generation

Within a design process, and as highlighted by Lauff et al. (2018), a key role of
prototyping lies in supporting the learning of the designer(s) implementing
the prototyping activity. This view – of iterative knowledge generation lying central
to prototyping activities – aligns closely with how we understand the wider design
process itself. For example, Maher & Poon (1996) and Smulders, Reyman & Dorst
(2009) describe design as an iterative co-evolution of the problem space and the
solution space, where activity within one increases knowledge of the appropriate
state of the other with iteration until both align. Similarly, the Function, Behaviour,
Structure (FBS) model (Gero & Kannengiesser 2004; Gero 1990) highlights the
iteration between a design’s expected behaviour and actual behaviour with the
learning generated from their comparison leading to alignment and the final
product, while C-K theory (Hatchuel &Weil 2009) describes design as an iteration
between an exploratory conceptual space and an explicit knowledge space where
conceptual effort iteratively increases knowledge.

Through these models and definitions, it is clear that design, and hence
prototyping as an activity within it, can be considered as a knowledge generation
process – a view echoed by many (see Ulrich & Eppinger 2016; Camburn et al.
2017; Lauff et al. 2019; Goudswaard et al. 2021b). Increasing knowledge of the
current design representation and comparison against expectation or some pre-
defined ideal supports the next stage of iteration, with type and quality of know-
ledge generated then impacting the success of the design process.

Considering the breadth of prototyping tools and methods required and
employed to meet the variant needs of different design projects, it then stands that
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the prototyping activity employed may directly impact the form of knowledge that
is generated through the process. As such it is important to understand how the
prototyping method employed may affect the knowledge that is subsequently
generated, and whether it forms the appropriate set given the needs of the activity.

This argument underpins this work – direct investigation of the relationships
between prototyping activity and knowledge generated, with an eventual view to
influence said knowledge for the benefit of the wider design process itself. This is
achieved by mapping of prototyping activity to KDs generated across eight
comparable design projects, then exploring consistency both between cases, and
between methods employed. In so doing, the article sets grounding for better
method selection with respect to the knowledge that is most appropriate to the
needs of the designer and design process.

2.3. Knowledge dimensions in prototyping

Where the development of a product or system requires knowledge to be
generated across a range of dimensions (Ulrich & Eppinger 2016), prior works
have investigated the application of frameworks to observe the knowledge
contributions from prototyping against such a range of dimensions. For instance,
in the study of architecture, Schon &Wiggins (1992) and Schon (1968) outline a
set of knowledge domains to which the designer registers knowledge; describing
the process as a reflective conversation with the materials of a design’s solution,
with the designer attributing information beyond the medium itself to a range of
different domains.

Schon &Wiggins (1992) give the example of a designer working in themedium
of drawing, ‘the designer sees what is “there” in some representation of a site, draws
in relation to it, and sees what has been drawn, thereby informing further
designing’. The designer not only registers visual information, but identifies and
gives meaning to patterns beyond the medium itself, registering, and further
evaluating this knowledge against the different dimensions required for the overall
understanding of a concept. Further, research has shown that the medium used in
an activity affects the form of and learning of the activity itself (Camburn et al.
2017; Kent et al. 2021). This raises the question of the relationships between
activity, medium and knowledge generated, and specifically to what degree the
medium benefits, constrains, or otherwise influences knowledge generation such
that it affects the progress of the design process itself.

In the context of NPD, Real et al. (2021) recontextualise Schon’s domains to
classify and characterise the design knowledge afforded by different prototype
fabrication and evaluation methods (Real et al. 2023). The KDs proposed by Real
et al. (2021) delineate design knowledge into a set of 10 dimensions against which
knowledge is required for the creation of a new product in NPD (Table 1). These
dimensions are not claimed to be an exhaustive set, instead representing those
proposed by Schon translated into the NPD domain. Where this work examines
their feasibility as a research tool to generate insight, specific KDs of interest should
be investigated or developed on a case-by-case basis in future work.

By considering these different KDs, researchers can better understand the
complex and multidisciplinary nature of prototyping, as well as the challenges
and opportunities involved in developing effective prototypes for different pur-
poses and contexts.
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Real et al. (2021, 2023) highlight a number of relevant findings in their study of
dimensions, predominantly, in the distinctions between the physical and digital
fabrication and evaluation methods commonly employed in the product develop-
ment process. The authors in this work identify strong relationships between the
methods selection and the KD(s) that they contribute towards.

The study, based on a participant questionnaire, in which raters review and
score a broad and representative selection of prototyping media by their perceived
contributions to each of the dimensions, posits the hypothesis that different media
or methods will provide varying degrees of learning against different dimensions.
Thus, by observing dimensions and understanding the methods, prototyping
activities can be better supported with prescribed strategies to streamline know-
ledge generation in the necessary dimensions.

2.4. Summary and research hypotheses

Prototyping can be understood as a process inwhich a designer utilises any number
of methods to form preliminary representations of their design, from which they
generate knowledge about it as a product, iterate and refine until reaching a
satisfactory final design.

The variant properties of different media (Lim, Stolterman & Tenenberg 2008;
Pei et al. 2011; Christie et al. 2012; Ulrich & Eppinger 2016; Kent et al. 2021) and
previous preliminary work (Goudswaard et al. 2021c; Real et al. 2021) imply that

Table 1. Knowledge dimensions that adapted from Schon & Wiggins (1992)

ID
Knowledge
dimension Description

KD1 Programme use What the design is intended to do (i.e., its function)?

KD2 Environment How the design performs within its intended conditions of use?

KD3 Resources What is needed to make the design (e.g., materials, components, tools,
time and cost)?

KD4 Design elements Identification of the features or components that will comprise the design

KD5 Form The shape and size of the design including how it looks and feels

KD6 Manufacturing
processes

How the design will be made, the steps and tools required to make it?

KD7 Configuration The arrangement of features and components, how the design fits
together

KD8 Character How the design is supposed to look (including any context of brand
and/or product family)

KD9 Explanation How the prototype, or elements of, communicate what it does

KD10 Lifecycle The envisaged life of the design, including its creation, use and disposal
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different media are differently suited to generating knowledge against different
dimensions. However, the specific suitability and relationships between such
media and knowledge generated is not currently understood. There is, hence, a
need to investigate the knowledge generated during prototyping in order to enable
improved method selection. Further, there is a need to understand the degree by
which knowledge generation may be expected to be consistent or variant
dependent on designer, scenario, or common prototyping properties such as
fidelity and process stage.

Additionally, there is a need for a methodology that can be used to elicit and
analyse the appearance of KDs during prototyping activities in product develop-
ment. As stated in the article’s contributions, the methodology proposed in this
article constitutes a first-of-a-kind approach to enable this.

To indicate the utility of KDs as a method to measure and support design
activity, this work probes an initial situated investigation of KDs in a real-world
design context by considering the what, when and how of prototype contribu-
tions towards each KD. To aid this intention, four hypotheses will be tested,
chosen to investigate where across the breadth of prototyping activities KDs may
provide insight. These frame the study of knowledge generation through dimen-
sions in three ways: i) that of determining the knowledge profiles generated by
designers within a set design context; ii) that of studying relationships between
prototypemedia and characteristics of application and knowledge generated and
iii) that of studying relationships between process characteristics and knowledge
generated.

This article will investigate the relationships between prototyping media and
methods, project stages and KDs through comparison of eight different teams
completing a 16-week design project with identical brief. Through this, it will
explore similarity in appearance of KDs, relationships between KDs andmedia and
process stages, and potential value both of different prototyping activities, and of
KDs as a research tool to understand design. To explore similarities in appearances
of KDs, the knowledge profiles of different teams will be examined. A knowledge
profile is the prevalence of knowledge generated through the duration of a project
categorised against each of the different KDs.

Given a consistent design task with similar designer experience, design
process and availability of prototyping methods, it may be expected that the
knowledge generated will also show consistency. This would indicate that
knowledge generated is not random or individualistic, and instead closely
related to the design scenario meaning that knowledge profiles would be
dependent upon the design task, team composition and prototyping methods
used during a project. This leads to H1, exploring what knowledge is generated
for each KD, and consistency in knowledge profiles across teams for the same
design brief:

H1: Teams of similar compositions undertaking the same design task over the same
period of time will generate similar knowledge profiles in the process.

Next, this work explores the relationships between prototyping and generation
of knowledge. This intends to investigate whether there is indeed a determinance
on knowledge generation derived from the prototyping method used. While many
specific properties could be investigated, this work focuses on the fundamental
distinction between prototypes in the physical domain (i.e., made of atoms) and the
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digital domain (i.e., made of bits), and the specific distinction between prototypes
of varying representative fidelity (i.e., the degree to which they present a realistic
representation of the complete design solution (seeMcCurdy et al. 2006; Camburn
et al. 2017). H2 and H3 are therefore as follows:

H2: Different prototyping domains are suited to generating knowledge in specific
dimensions.

H3: High-, medium- and low-fidelity prototypes will generate knowledge in dif-
ferent dimensions.

Finally, this work investigates the relationship between knowledge generation
and process stage via prototypes. With a general shift in such characteristics as
prototyping purpose (Camburn et al. 2017; Menold et al. 2017), fidelity (Ulrich
2003), type (Houde & Hill 1997) and more as the design process progresses from
idea to solution, it may be expected that the form of knowledge generated also
evolves. Hence, H4 investigates whether a change in knowledge generation itself
may be detected as the design process progresses, stating:

H4: Contributions towards different knowledge dimensions will be made across
different phases of the project.

Through these four hypotheses, this work continues to investigate the gener-
ation of knowledge within prototyping, and its relationship to prototyping media,
characteristics of implementation and process stage.

3. Methodology
This section will present the methodology with attention to the study setup, data
capture, coding and analysis processes. An overview of the methodology followed
to test these hypotheses is shown in Figure 1. It will be elaborated upon in the
following sections.

3.1. Study setup: team and task structure

Design teams comprised of students completing Proyecto Intermedio
(Intermediate Project –Uniandes unit code IMEC2700) – a project-based learning
course on design prototyping at the Universidad de los Andes (Uniandes), Colom-
bia. The course follows a conceive, design, implement and operate (CDIO) scheme
and ran from late January to June 2021. Students were required to complete the
unit as a credit-bearing part of their course. The course is the second design project
in the Mechanical Engineering syllabus at Uniandes and is expected to prepare
students for their graduate theses in the final semesters of the course. Students can
be considered to be novice designers with some prior design experience acquired
from the previous taught design course.

Group demographics are presented in Table 2. Groups initially had eight or nine
students, with a single seven-member team are due to students dropping the unit
part way through the course. All students weremajoring inMechanical Engineering
and if students were also pursuing a minor degree, this was recorded in the minor
column. The average experience across all groups was 5.77 semesters. All groups
with the exception of groups three and six have means within one semester of this
global average. These outlying teams are due to single participants being in
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Table 2. Team demographics

Group Gender

Average
semester
(SD) Minor

Ratio of
in:out of
Bogota

Team 1 2 female, 7 male 5.3 (1.1) 1 × Electronic Engineering, 1 × Arts,
2 × Languages

7:2

Team 2 2 female, 5 male 5.9 (1.5) 1 × Management, 1 × Maths 7:0

Team 3 2 female, 6 male 5.43 (1.0) 1 × Electrical Engineering, 1 × Electronic
Engineering, 1 × Physics, 1 × Languages,
1 × Systems Engineering

6:2

Team 4 8 male 5.1 (1.0) 1 × Electronic Engineering, 1 × Languages,
2 × Industrial Engineering

2:6

Team 5 9 male 6.1 (2.2) 2 × Management, 1 × Industrial
Engineering

6:3

Team 6 2 female, 6 male 6.7 (1.4) 2 × Industrial Engineering 3:5

Team 7 2 female, 5 male 6.3 (1.4) 1 × Industrial Engineering, 1 × Astronomy,
1 × Design, 1 × Administration

6:2

Team 8 2 female, 6 male 6.0 (1.9) 1 × Maths, 1 × Management, 1 × Electronic
Engineering, 1 × Industrial Engineering

4:4

Total 12 female, 52 male
(64 total)

5.8 (1.5) – 5:3

Figure 1. Process diagram for methodology followed in this article.
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semesters 18 and 19, respectively, which can be due to a change in major, study
breaks and/or part time study. Group composition was determined in accordance
with Uniandes practice and sought to enable equal groups but without margin-
alising under-represented groups. For this reason, six groups had two female
students, and two had none. Uniandes is based in Bogotá, and due to pandemic
conditions during the study, some students were working from their home cities
and towns. This ratio of students in versus out of Bogotá is also presented in Table 2.
Due to consistency of major across participants, similarities in experience in terms
of completed semesters of undergraduate study and that all students met requisite
requirements to partake in the course, teams are considered comparable for this
study however, any potential impacts of team composition will be considered in
Section 5.

While differing significantly in experience, the design activities undertaken by
novice designers have been observed to generally encompass those of design
practitioners (Cash, Hicks & Culley 2013). The population selected for this study
is therefore considered to be appropriate for testing the hypotheses of the study set
out in the previous section.

Ethics procedures were followed in accordance with those from Uniandes. All
students gave informed consent to participate in the study. Whilst undertaking of
the course was mandatory, participation in the study was optional and students
were given the option to opt out of the study and continue as normal with the
course. All students on the course chose to take part in the study.

The design task asked the students to design, prototype, and test a system to
safely transport vaccines to isolated locations while maintaining cold temperatures
and hence vaccine viability. The environment given was that of Colombia, com-
prising a mix of mountainous, rainforest, and otherwise isolated locations requir-
ing a range of airborne, waterborne, or manually carried transportation.

The task comprised four stage gates: 1) concept design (CD); 2) design selection
(DS); 3) system-level design (SD) and 4) detail design (DD). Each stage gate
occurred over a 4-week period. At the end of the DS stage, gate teams were
expected to generate a low/mid fidelity digital prototype. At the end of SD stage,
gate students undertook a performance test of a design representation of their
choice. By the end of the project after the DD stage gate, students were expected to
design, make and evaluate a physical prototype. To meet the goals, set out for each
stage students were expected to prototype their designs according to their own
preference of methods. The project structure is shown in Table 3. As part of course

Table 3. Design project structure

Stage Concept Design selection System-level design Detail design

Time 4 weeks 4 weeks 4 weeks 4 weeks

Purpose Develop potential
design solutions

Evaluate ideas and
select

Produce
preliminary
design and test

Final manufacture and
full testing

Role of
prototyping

Produce low
fidelity, for
ideation

Produce first
low–mid-fidelity
prototype

Produce testable
prototypes of
chosen design

Produce full integrated
prototype of chosen
design
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formalities, students presented their progress and outputs at three stage gates and
in final presentations for feedback, although these reviews did not form part of the
analysed dataset.

As all groups possessed similar experience and process knowledge, followed the
same framework, and performed the same design task, this study does not claim
that specific results are fully generalisable and care must be taken when applying
these findings to alternative design scenarios or team structures. Rather, it intends
to demonstrate and evaluate the capability of the approach to generate research-
level knowledge that provides insight into design through study of the relationships
between prototyping domains and KDs in a specific, comprehensive case, with
sufficient internal repetition to allow within-task comparison between design
teams and hence establish consistency.

3.2. Data capture: design logs

As part of the course, students were encouraged to complete design logs charting
their progress and documenting prototypes made during the project. Completion
of the log was notmandatory and did not have weight on course outcome. Students
were encouraged to use them in order to keep track of their prototypes and design
process, facilitate both intra-team and external communication and to encourage
on-going documentation for stage-gate and/or final presentations. The outputs of
these formed the primary dataset for analysis.

The design logs comprised a spreadsheet completed by each teamwith one row
per prototype, asking students to input a range of information describing their
prototyping activity, its method, purpose and learning. Information requested in
the design log is detailed in Table 4. The information captured in the design log was
based upon the information included for different prototype capture tools (Nelson,
Berlin & Menold 2019; Erichsen et al. 2020) as well as additional information
required to address the study’s research questions.

Format for the design logs was iterated through a previous design project where
they were first applied, following which students discussed categories and utility
with researchers. This involved ensuring that meaning of categories were well

Table 4. Information requested in the design log

Category Description

Prototyping method The fabrication method for the prototype

Stage-gate The phase of the design process in which the prototype was
created

Description of prototype Brief textual description of the prototype

Design purpose of prototype The intended design purpose of the prototype

What did you learn from the
prototype?

A statement of what the team learned from the prototype

Picture of prototype An image of the prototype

Prototype domain Whether the prototype was primarily digital or physical

Prototype fidelity A subjective measure of the prototype’s detail and realism
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understood by students and that the design logs were able to support and improve
students’ design processes rather than making them more difficult.

Prior to completing the design logs, the participants were briefed on the
meaning and intention of each data category, with opportunity for questions. At
each stage gate, the design logs were reviewed by the course director to ensure data
entry was in line with intention. Between stage gates, design logs were observed by a
course monitor who had direct insight into team progress and behaviour. This
course monitor was able to input on how the ‘as-done’ design work was reflected in
the design logs. An example of a design log entry is given in Figure 2.

Prototype method was selected from a list produced and utilised in previous
work (Real et al. 2021) that was abridged for the purpose of this study (see Table 5).
Prototype domain was selected from physical (made of atoms), digital (made of 0s
and 1s) and sketch. Sketches, including all pen-/pencil- and paper-based repre-
sentations, were considered as their own category as physical and digital sketches
have been shown to be analogous (Ranscombe & Bissett-Johnson 2017). Prototype
fidelity (the level of visual representation of the design; McCurdy et al. 2006; Pei
et al. 2011) was rated on a three-point Likert scale labelled as low, medium and
high. All other entries were free text. To ensure understanding of the above terms,
students were provided with a video resource made by the research team that
defined each category the students needed to assign their prototypes into. Students
also had the opportunity to ask questions to the study team in the event that terms
were not fully understood.

Design logs were captured from each of the 8 teams, with between 4 and
22 prototypes listed by each (median 11). Design logs were completed by each team
member on creation of a prototype and thus served as a boundary object between
team members for communication of design status. Teams were able to amend
their prototype entries to align the ‘as-documented’ to ‘as-done’ work from the
project making the design log a living document.

3.3. Data coding

Entries were collated for all teams and coded for appearance of KDs by the three
raters. These were two lecturers in Design and Manufacture and one PhD

Figure 2. Extract of a team’s design log.
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candidate with 13, 17 and 11 years’ design experience, respectively. The KDs
considered were the same as those presented in Section 2.3 that are consolidated
from previous work (Real et al. 2021, 2023) and shown in Table 1.

Appearance of KDs was not considered to be mutually exclusive, that is, a
prototypemay contribute tomultiple KDs. Each entry was coded for each KD as ‘2’
(substantial contribution to the KD), ‘1’ (some appearance of the KD), or ‘0’
(no appearance of the KD). An example of coded data is shown in Figure 3.

To ensure validity and consistency in coding, all data were coded according to a
three part inter-coder reliability process (see Klenke 2008; Blessing and Chakra-
barti 2009; Krippendorff 2018). Before rating, each rater was familiarised with the
KDs, study process and coding process to build shared understanding. Following

Table 5. Prototyping methods and their associated domain

Prototyping method Examples Domain

Sketching (by hand) Pencil drawings, sketches, free-body diagrams Sketch

CAD mock-up Rough CAD models to demonstrate a concept Digital

CAD detailed modelling Detailed CAD model Digital

Hand calculation/analysis Load calculations, heat transfer calculations without
computational assistance

Sketch

Rough computer-aided
engineering (CAE)

E.g., CFD, FEA – used to make rough calculations Digital

Detailed computer-aided
engineering (CAE)

E.g., CFD, FEA, used to make detailed calculations Digital

Junking Assembly of existing objects, hacking existing designs Physical

Card/foam modelling Foam shaping, card modelling Physical

Manual (hand) tool fabrication Workshop tools: saws, drills/general cutting, joining Physical

3D printing Material extrusion, stereolithography Physical

Laser cutting Physical

Manual machining Manual milling, manual turning Physical

Vacuum forming Physical

CNC machining CNC routing, CNC milling Physical

Moulding Silicone moulding, fibreglass, carbon fibre Physical

Sculpting Clay, wax Physical

Kits Lego/Meccano/Knex Physical

Other digital prototyping
method

Digital

Other physical prototyping
method

Physical
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coding best practice (Krippendorff 2018), during this process, the definitions for
each KD were discussed to ensure consistency between raters and alignment
between KD definitions and their intention.

• (1): Each rater was presented with the same log comprising 13 entries, and coded
it in isolation. Rating was assessed for Fleiss’ kappa (Fleiss 1971) and showed
moderate agreement (κ = 0.557, p < 0.0005). Following, each conflict was
discussed by all raters until agreement was reached. Conflicts were defined either
as disagreement in presence of a KD (a score of ‘0’ vs ‘1’ or ‘2’) and in scale of
contribution (a score of ‘1’ vs ‘2’).

• (2): Each rater was assigned two-thirds of the total dataset, ensuring that every
log was coded by two raters. Each coded their sample in its entirety, in isolation.

• (3): All double-coded samples were compared in a single sitting attended by all
raters. During this meeting, the duplicated samples were compared to identify
conflicts and discussed by all raters, with the rater who did not initially code each
set acting as adjudicator. In this process, every code was assessed for the entire
dataset, thereby reaching three-way consensus between raters on all data points.

This process produced a single agreed set of coded data for all design logs to
then be processed in subsequent analysis.

3.4. Analysis

Coded data were compared via means of a range of statistical tests. To compare
variance between groups one-way ANOVAwas used in all cases as underlying data
were found to meet assumptions of normality. One-way ANOVA is a parametric
test and as such has greater statistical power than non-parametric alternatives such
as the Kruskal–Wallis test. To augment these comparisons, Tukey multiple

Figure 3. Example of design log coding. Empty cells indicate a 0 – no appearance of this KD.
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comparison tests were carried out to identify between which groups statistical
differences could be observed. Where this was used, correction for multiple
comparison was made by using statistical hypothesis testing. Descriptive statistics,
one-way ANOVA, Tukey multiple comparison tests and normality tests were all
carried out using Graphpad Prism 9 software.

Chi-squared tests were carried out to determine statistical differences in count
data considering the occurrences of KDs. These were carried out using Social
Science Statistics (Stangroom 2022) with P and chi-square values corroborated
with Graphpad Prism 9.

Further information about the applications of each statistical tests including
how assumptions were met are outlined along with each result.

4. Results
Results are first presented as an overview, and then grouped according to com-
parisons of teams, domains, fidelities and stage gates in alignment with the paper’s
hypotheses.

4.1. Data overview

Table 6 presents results from the study. It provides overall data for all prototypes
and also breaks this down across domains (physical, digital and sketch), teams (1–
8), prototype fidelity (high, medium and low) and stage gate (CD, DS, SD andDD).
Figure 4 presents examples of physical, digital and sketch prototypes from the
dataset. No prototypes were present in the dataset that contributed to KDs 8–10
and they will therefore be omitted for the remainder of the analysis. Potential
causes for this are the nature of the design task and a number of constraints on the
project. This will be discussed further in Section 5.

Figure 5 presents a high-level overview of how prototypes in each domain
contribute to each KD at different phases of the project. It can be seen that sketches
are most present in the CD stage gate. Physical prototypes are more apparent at
later phases of the project – SD and DD. KD1 (programme use), KD4 (design
elements) and KD5 (form) have clear peaks in CD, feature physical, digital and
sketch prototypes and exponentially decrease as the projects progress.

KD3 (resources) peaks in DS and features prototypes from all domains. KD2
(environment) has a joint peak in CD and DS and features mostly digital proto-
types with physical prototypes appearing in DD. KD6 (manufacturing process) has
a joint peak in DS and SD featuring digital in all stages and physical prototypes in
SD and DD. KD7 (configuration) fluctuates throughout the project phases and
features physical and digital prototypes.

From Figure 5, the relatively high quantity of digital prototypes in the dataset
can be observed. The underlying cause of this, and its implications will be discussed
in Section 5.

4.2. Comparisons

The data are used to make comparisons across teams, prototyping domains,
prototyping fidelities and stage gates in alignment with the study’s hypotheses.
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Table 6. Results table

Instances KD1 KD2 KD3 KD4 KD5 KD6 KD7 KD8 KD9 KD10
Total

knowledge
Normalised
knowledge

All prototypes

Total 98 130 52 53 12 84 28 13 0 0 0 372 3.8

Prototypes split by domain

Physical 13 11 3 10 1 6 4 4 0 0 0 39 3.0

Digital 72 96 49 39 9 57 24 9 0 0 0 283 3.9

Sketch 13 23 0 4 2 21 0 0 0 0 0 50 3.8

Prototypes split by team

Team 1 18 13 7 7 1 11 5 4 0 0 0 68 3.8

Team 2 22 13 8 7 2 12 3 1 0 0 0 63 2.9

Team 3 11 11 2 7 1 5 1 2 0 0 0 38 3.5

Team 4 10 9 5 8 0 6 2 3 0 0 0 42 4.2

Team 5 10 9 4 5 3 4 6 0 0 0 0 36 3.6

Team 6 4 4 3 4 2 4 1 1 0 0 0 27 6.8

Team 7 11 11 6 2 0 6 4 1 0 0 0 47 4.3

Team 8 12 12 5 5 2 9 0 0 0 0 0 51 4.25

Prototypes split by fidelity

High 18 12 13 10 2 3 9 3 0 0 0 52 2.9

Medium 36 48 30 22 5 23 14 3 0 0 0 145 4.0

Low 44 70 9 21 5 58 5 7 0 0 0 175 4.0

Prototypes split by stage gate

CD 46 74 17 18 7 66 4 6 0 0 0 192 4.2

DS 26 34 17 19 3 11 9 2 0 0 0 95 3.7

SD 14 12 12 12 1 4 9 4 0 0 0 54 3.9

DD 12 10 6 4 1 3 6 1 0 0 0 31 2.6

Note: Instances correspond to the number of prototypes in each category. The value associated with each KD correspond to the aggregate knowledge points for all prototypes in each category. Normalised
knowledge corresponds to the total knowledge points for a category divided by prototype instances.
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4.2.1. Across teams
Identification of similarities across teams undertaking the design task was carried
out to test H1. Knowledge profiles represent the prevalence of knowledge gener-
ated through the duration of a project, categorised against each of the KDs. To
determine similarities in profiles, differences in each KD across all teams are
subject to statistical tests. Similarities in knowledge profiles are determined by
exploring if statistical differences between teams’ knowledge profiles exist and if,
when the data are grouped by teams, differences in individual dimensions can be
observed due to the design activity undertaken. Knowledge profiles for each team
are shown in Table 6.

Similarities between knowledge profiles in different teams were determined via
two statistical tests; a one-wayANOVA andTukeymultiple comparisons. The data
were found to be normally distributed via means of a Kolmogorov–Smirnov test.1

Knowledge profiles from each team were then compared via means of a one-way
ANOVA. This revealed that there was no statistically significant difference
between knowledge profiles between at least two groups (F(3.046,
18.28) = 2.691, p = 0.0758). As the results were close to the 0.05 threshold for
significance, further analysis was carried out in the form of Tukey’s test formultiple

(a) Sample Digital Prototype (b) Sample Physical Prototype (c) Sample Sketch Prototype

Figure 4. Sample prototypes from dataset. (a) Sample digital prototype. (b) Sample physical prototype.
(c) Sample sketch prototype.

Figure 5. Graph showing contributions of each prototyping domain for all teams’ prototypes combined.
Initialisms are defined as follows: CD, concept design; DD, detail design; DS, design selection; SD, system
design.

1A D’Agostino and Pearson test could not be used as the sample size was too small.
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comparisons which facilitated comparison of the knowledge profiles for each of the
teams. These tests yielded no statistical differences. Results of both of these tests
therefore indicate that there are no differences between teams’ knowledge profiles.

To further explore similarities in knowledge profiles, these were grouped by
teams in order to explore how the design activity impacted knowledge contribu-
tions to different dimensions. The data were found to be normally distributed by
means of a D’Agostino and Pearson test. Figure 6a presents this data graphically
from which amounts of knowledge generated per domain can be seen to vary in
spread and quantity across each KD. To identify differences in this total knowledge
generated in different KDs, and therefore, identify if knowledge variation is
attributed to the design activity and remains consistent across teams, a one-way
ANOVA was performed. This revealed that there was a statistically significant

(a) (b)

(c) (d)

Figure 6.Comparisons of Knowledge Dimensions against team, domain, fidelity and
stage gate. Values are taken from Table 6 and normalised to yield a percentage to
enable comparison across different prototype population sizes. (a) KDs across
knowledge dimensions. Plot shows mean and standard deviation for all teams.
(b) KDs across domains – percentage contribution of domains to each knowledge
dimension. (c) KDs across prototype fidelity – percentage contribution of prototypes
at each fidelity to each KD. KDs marked * denote that differences were identified in
chi-squared tests. (d) KDs across stage gates – percentage contribution to each KD
during each stage gate. KDs marked * denote that differences were identified in chi-
squared tests.
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difference in knowledge generated between at least two groups (F(3.046,
21.33) = 22.17, p < 0.0001). Tukey’s test for multiple comparisons found that
the mean knowledge generated was significantly different between the following
groups:

• KD1 (programme use) and KD2 (environment) (p = 0.005, 95% CI = [3.45,
16.05]);

• KD1 and KD3 (resources) (p = 0.023, 95% CI = [1.42, 17.83]);
• KD1 and KD4 (design elements) (p = 0.001, 95% CI = [7.38, 22.12]);
• KD1 and KD6 (manufacturing processes) (p = 0.004, 95% CI = [4.69, 20.81]);
• KD1 and KD7 (configuration) (p = 0.001, 95% CI = [7.52, 21.73]);
• KD2 and KD7 (p = 0.037, 95% CI = [0.29, 9.46]);
• KD3 and KD4 (p = 0.035, 95% CI = [0.36, 9.89]);
• KD3 and KD7 (p = 0.003, 95% CI = [2.00, 7.80]);
• KD4 and KD5 (p = 0.02, 95% CI = [�16.49, �1.51]) and
• KD5 and KD7 (p = 0.018, 95% CI = [1.634, 16.12]).

The tests in this section have shown that knowledge profiles of different teams
do not show statistical differences and that when performing the same design
activity, teams grouped together generate statistically different amounts of know-
ledge for different dimensions.

4.2.2. Across prototyping domains
Table 6 contains the raw data for total prototype instances with total knowledge per
KD in each domain. It is noteworthy that there were far more instances of digital
prototypes (72) than physical or sketch prototypes (13 and 13, respectively). The
reason for this will be commented in Section 5. Results for graphs and comparisons
are presented in Table 6.

Comparison of prototypes in different domains is carried out to test H2.
Figure 6b displays the proportion of knowledge in each dimension that is contrib-
uted by each domain. It can be seen that physical and digital prototypes contribute
to all KDs, with sketching contributing only toKD1 (programme use), KD4 (design
elements), KD5 (form) and KD3 (resources). Figure 7a shows the same informa-
tion but with the axes reversed to indicate the proportion of knowledge in each
domain contributed to each KD.

Chi-squared tests could not be carried out on the impact of domain on
knowledge generation as the data failed to meet an underpinning assumption of
fewer than 20% of the data containing values of less than 5 (McHugh 2013).

4.2.3. Across prototype fidelities
To explore H3, Figure 6c displays the proportion of knowledge in each dimension
that is contributed by each prototyping fidelity. Figure 7b displays the same
information but with the axes reversed. They demonstrate that high-, medium-
and low-fidelity prototypes all contribute KDs 1–7 but in differing amounts.
Results for graphs and comparisons are presented in Table 6.

A chi-square test of independence was performed to examine the relation
between prototype fidelity and KD that they contribute to. To meet the assump-
tions required for the chi-squared test (no cells having values of zero, and 80%
above five), KDs 4 and 7 were omitted from the test. The relation between these
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variables was significant, χ2(1,N = 246) = 34.84, p = 0.000029. Chi-squared table is
presented in Table 7 indicating values that are higher or lower than would be
expected if the contribution to KDs were to be randomly distributed. High-fidelity
prototypes are shown to contribute less than expected to KD1 (programme use –
9 actual and 13 expected) and KD5 (form – 3 actual and 9 expected) andmore than
expected to KD2 (environment) and KD6 (manufacturing processes – 8 actual and
3.5 expected). Medium-fidelity prototypes contribute more than expected to KD2
(environment – 23 actual and 15.9 expected) and less than expected toKD5 (form –

17 actual and 25.3 expected). Low-fidelity prototypes contributed less than
expected to KD2 (environment – 7 actual and 17.7 expected) and KD6 (manufac-
turing processes – 4 actual and 9.8 expected) andmore than expected to KD5 (form
– 37 actual and 25.3 expected). KDs where differences are observed due to
prototyping fidelity are highlighted with an asterisk in Figures 6c, 7b.

(a)

(b)

(c)

Figure 7. Comparisons of knowledge dimensions domain, fidelity and stage gate. Values are taken from
Table 6 and normalised to yield a percentage to enable comparison across different population sizes. (a) KDs
across domains – percentage contribution of prototypes in each domain. (b) KDs across fidelities – percentage
contribution of prototypes in each domain. KDs marked * denote that differences were identified in chi-
squared tests. (c) KDs across stage gates – percentage contribution of prototypes in each domain. KDsmarked
* denote that differences were identified in chi-squared tests.
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Table 7. Chi-squared results table – value out of parentheses corresponds to observed value, value in () corresponds to expected value, value in []
corresponds to test statistic for which value over one indicates a statistical difference

KD1 KD2 KD3 KD5 KD6

Prototypes separated by fidelity

High ↓ 9 (13.00) [1.23] " 10 (6.34) [2.11] ≃ 9 (7.13) [0.49] ↓ 3 (9.04) [4.03] " 8 (3.49) [5.84]

Medium ≃ 31 (32.67) [0.09] " 23 (15.93) [3.13] ≃ 17 (17.93) [0.05] ↓ 17 (22.71) [1.43] ≃ 10 (8.76) [0.17]

Low ≃ 42 (36.33) [0.88] ↓ 7 (17.72) [6.49] ≃ 19 (19.94) [0.04] " 37 (25.26) [5.46] ↓ 4 (9.75) [3.39]

Prototypes separated by stage gate

CD ≃ 43 (39.32) [0.34] ↓ 13 (19.18) [1.99] ≃ 17 (21.58) [0.97] " 40 (26.37) [7.04] ↓ 4 (10.55) [4.07]

DS ≃ 22 (22.85) [0.03] ≃ 13 (11.15) [0.31] ≃ 16 (12.54) [0.95] ↓ 11 (15.33) [1.22] ≃ 6 (6.13) [0.00]

SD ≃ 10 (12.43) [0.48] " 9 (6.07) [1.42] ≃ 8 (6.82) [0.20] ↓ 3 (8.34) [3.42] " 7 (3.34) [4.02]

DD ≃ 7 (7.39) [0.02] ≃ 5 (3.61) [0.54] ≃ 4 (4.06) [0.00] ↓ 1 (4.96) [3.16] " 5 (1.98) [4.59]

Note: Tests were carried out separately for fidelity and stage gate.
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4.2.4. Across project stage gates
To explore H4, Figure 6d displays the proportion of knowledge in each dimension
that is contributed by prototypes in each stage gate. Figure 7c displays the same
information but with the axes reversed. They indicate that knowledge is generated
against all KDs at any phase of a project, but in differing amounts. Results for
graphs and comparisons are presented in Table 6.

A chi-square test of independence was performed to examine the relation
between prototyping stage gate and KDs that they contribute to. To meet the
assumptions required for the chi-squared test KDs 4 and 7 were omitted from the
test. The relation between these variables was significant, χ2 (1, N = 244) = 34.78,
p = 0.000507. Chi-squared table is presented in Table 7 indicating values that are
higher or lower than would be expected if the contribution to KDs were to be
randomly distributed. In the CD phase, more prototypes contributed knowledge to
KD5 (form – 40 actual and 26 expected) and less than expected to KD2 (environ-
ment – 13 actual and 19.2 expected) and KD6 (manufacturing processes – 4 actual
and 10.6 expected). In theDS phase, fewer than expected prototypes contributed to
KD5 (form – 11 actual and 15.3 expected). In the system design phase more
prototypes contributed toKD2 (environment – 9 actual and 6.1 expected) andKD6
(manufacturing processes – 7 actual and 3.3 expected) than expected and fewer to
KD5 (form – 3 actual and 8.34 expected). In the DD phase, fewer than expected
prototypes contributed to KD5 (form – 1 actual and 5.0 expected) and more than
expected to KD6 (manufacturing processes – 5 actual and 2.0 expected).

5. Discussion
This discussion section will consider whether the results can support the study’s
hypotheses, the utility of KDs in design, limitations and further work.

5.1. Hypotheses

The results presented in the previous sectionwill be considered with respect to how
they support the hypotheses posed earlier in the article.

H1: Teams undertaking the same design task over the same period of time will
generate similar knowledge profiles in the process.

Section 4.2.1 presented the knowledge profiles generated by each team during
the design task. Comparisons of knowledge profiles between teams via means of
one-way ANOVA and Tukey multiple comparisons did not show statistical
differences. With teams grouped together, consistent differences were shown for
knowledge generated for different dimensions as demonstrated via means of
statistical tests of one-wayANOVA and Tukeymultiple comparisons. These results
presented therefore support H1. The knowledge generated during the project is
shown to be related to task and its required output as it is shown to demonstrate
consistencies across teams. This finding is based upon multiple teams undertaking
a single design task and for this reason, to explore its generalisability, it would be
necessary to repeat the study with different design tasks. This will be considered in
the further work section. The results of this study therefore suggest that knowledge
profiles and therefore KDs are indicative of design scenario, team composition and
availability of prototyping resources.
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H2: Different prototyping domains are suited to generating knowledge in specific
dimensions.

Physical and digital domains have been shown to hold varying affordances for
prototyping activity (Kent et al. 2021), such as the increased accessibility of
physical, and the increased flexibility and analytic power of digital. As such, it
may be expected that prototyping in each domain may lead to varying knowledge
generation. Section 4.2.2 presented the types of knowledge generated by different
domains of prototype. Physical and digital prototypes were shown to provide
knowledge for all dimensions, whereas sketch prototypes only contributed to
dimensions of KD1 (programme use), KD3 (resources), KD4 (design elements)
and KD5 (form). While some differences in knowledge generated per dimension
according to prototype domain, statistical tests could not be carried out to verify
this due to the low occurrences of physical prototypes. The results of this study are
therefore unable to confirmH2. Section 5.3 will discuss this limitation regarding the
quantity of physical prototypes in the dataset, its causes and potential remedies for
further work.

H3: High, medium and low fidelities of prototypes will generate knowledge in
different dimensions.

Section 4.2.3 compared the types of knowledge generated by different fidelities of
prototypes. Encompassing degree of realism against the final product (McCurdy
et al. 2006), it may be expected that varying prototyping fidelity will enable
different generation of different KDs, ranging from ideative and conceptual at
earlier stages (Camburn et al. 2017) to specific to (i.e.) production and detail design
later in the design process. Via means of a chi-square test, the data showed that
prototypes of different fidelities were used to generate knowledge in different
dimensions thus supporting H3. This is as one would expect, as a certain cadence
of knowledge generation is required as it is not possible to learn everything all at
once (or at the very least is not efficient). Benefit could therefore exist in defining
how this knowledge cadence should occur, which would serve as a guideline or
blueprint for prototyping knowledge generation. This could be of great use to
novice designers who are often lacking in strategy when prototyping (Petrakis et al.
2021a). Moreover, it can be seen that for some KDs that the majority of total
knowledge generated is through low-fidelity prototypes demonstrating the import-
ance of quick and dirty prototypes typical of the fuzzy front end of the development
process.

H4: Different knowledge will be generated across different phases of the project.

As a general shift exists in characteristics such as prototyping purpose
(Camburn et al. 2017; Menold et al. 2017) and type (Houde & Hill 1997; Ulrich
& Eppinger 2016) as the design process continues, it may be expected that the
knowledge generated across process stages may also vary. Section 4.2.4 compared
the types of knowledge generated by prototypes during different stages of the
project. Via means of a chi-square test, the data showed that in different stages of a
design project, knowledge in different dimensions is generated thus supporting H4.
This is as would be expected and is linked to the supporting evidence presented for
H3 where knowledge generation in design is required to follow a certain cadence.
Like with the different fidelities of prototypes, recommendations for the types of
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knowledge that need to be generated in different phases can be used to help guide
novice designers in selecting the most appropriate prototype given the project
stage.

It can be asserted that experienced designers might support the thesis of this
article, that is, that prototyping is a knowledge generating activity. Whilst this may
be the case, there are no published examples of how prototyping activities (what,
when and how) influence the knowledge that is then generated. In contrast, the
presented study demonstrates a quantification of KDs and a number of relation-
ships between KDs and prototyping activity, namely:

• FromH1: knowledge profiles and therefore KDs are indicative of design scenario,
team composition and availability of prototyping resources;

• From H3: prototyping fidelity has a statistically significant impact on contribu-
tions to each KD with contributions to some KDs exclusively made by low-
fidelity prototypes emphasising the criticality of early stage prototyping and

• From H4: contributions towards KDs vary according to different phases of a
project.

In establishing these relationships, the application of KDs in a prototyping
context enables a more granular analysis of prototyping activities and the design
process. Their application and utility will be explored in the following section.

5.2. Utility of KDs and appraisal of methodology

This work has demonstrated that KDs are detectable in the prototyping of
designers, that their appearance holds relationships to the media and method
used, and that through classification of KDs learning about the design process may
be formed. As such, it demonstrates that as a research tool, KDs could hold value
for the academic community as a means to better understand the prototyping
methods used by designers and their link to knowledge creation. While the
population used to study prototyping contributions to KDs was that of novice
designers (mechanical engineering students), Cash et al. (2013) found that design
activities undertaken by students encompassed the majority of practitioner activ-
ities indicating that laboratory studies can give genuine insights into design
practice. Whilst conclusions from this study are therefore principally drawn
around novice designers, they are likely indicative of design practice more broadly.

Because of this, and given the broad variance in prototyping media and
methods as employed in industry and across design teams (Goudswaard et al.
2021a), better understanding of KD appearance also presents a opportunity for
industry. With different domains aligning to different KDs (Section 4.2.2), and
different process stages requiring different KDs (Section 4.2.4), there is potential to
create recommendations by which designers are guided on the prototyping
methods they should use to achieve their aim. With further knowledge on sec-
ondary characteristics of media and methods (i.e., cost, skill required, speed), such
a system could support designers in tailoring their prototyping methods towards
efficiency and effective outputs, while still ensuring that required learning is
generated.

The application of KDs for both research and industrial applications requires
an operationalised methodology for eliciting and analysing the appearance of KDs
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in prototyping datasets. An appraisal of the methodology used in this article is
therefore useful for the future exploration of KDs in the context of prototyping.

Due to the explanatory insights into prototyping activity revealed by the study it
can be concluded that, from a research perspective, the methodology is operatio-
nalisable. Application of the methodology did however require a significant
amount of manual coding by multiple coders. This could potentially limit its use
for larger datasets in a research context and application in an industrial context.

Further development of a methodology for eliciting and analysing KDs could
take two avenues depending on whether it was to be applied descriptively or
prescriptively. If descriptive, the value in the methodology comes in KDs being
recognised and understood by the designer with them being considered in order to
identify potential blindspots in their processes. The descriptive avenue may also
hold potential for design research and researchers seeking to study the information
and knowledge generated by designers and teams, by informing their applied
research methodologies. If prescriptive, it would consider that certain knowledge
profiles are preferable for a given design scenario and that prototyping activities
must fulfil these. To apply this in an industrial context requires minimisation of
time and resource commitment. A possible means to achieve this could be through
machine learning with image recognition and natural language processing to
automatically detect KDs in prototypes in real time. Achieving these kind of
automatic system would require significant development in understanding of
KDs and is therefore considered less practical until further research into KDs is
undertaken.

5.3. Limitations and further work

There are a number of limitations within this work that must be considered when
drawing conclusions.

First, while the design task and process followed by each group was extensive, it
did not comprise the entirety of the product development process. Here, a trade-off
existed; generation of eight similar cases that could be compared required con-
trived cases which then did not have the realism or resource to proceed through
from initial ideation stages into production. Capturing the whole of the design
process would likely require observational studies of product development in
industry. The impact of this is that KDs that may be intuitively more likely to
appear at later process stages with a range of KDs (i.e., KD6 manufacturing
processes and KDs 8–10 – character, explanation and lifecycle) less present in this
dataset. This also highlights the limitation in task realism due to the use of design
students as participants and an academic rather than industrial setting. While
industry observation would increase output validity, the cost of observing a long
term, 16-week design task with multiple industrial teams for comparison prohib-
ited this option.

Second, while the KDs themselves are derived from literature and have been
verified through several studies and rounds of refinement (see Real et al. 2021) they
are not to be considered an exhaustive or complete list at this point in time. The
ways in which knowledge and learning may be categorised are broad, and the list
within this work may be extended or altered as understanding develops. Indeed, it
may be valuable for different organisations or researchers to tune KD categorisa-
tion based on their own priorities, process activities, or work breakdowns. They
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could even be tailored to individual projects or products. On a case-by-case basis,
researchers and designers may wish to consider alternative KDs in their primary
set, including at either higher or lower levels of abstraction (i.e., cost, reliability,
sustainability, interaction form, etc.). Further work should consider the set of viable
KDs for use in research.

Third, due to constraints and restrictions during the study there were a low
number of physical prototypes generated. These were largely related to Colombian
coronavirus restrictions that were in place2 and national strikes3 that reduced
students’ ability to access university workshops for making physical prototypes or
meeting to share prototypes they could have made at home. For this reason,
students were perhaps much more inclined to create digital prototypes that could
be easily shared virtually. This lack of physical prototypes meant that it was only
possible to statistically test a subset of the hypotheses for the article and as a result it
was not possible to draw conclusions as to the difference KDs that prototypes of
difference domains are appropriate for. Repeating the study with another dataset
with more physical prototypes is therefore considered as an area for further work.

Last, there are a number of statistical and methodological limitations that
should be considered. For several KDs andmedia categorisations, few appearances
occurred. This data sparsity led to incompatibility with the assumptions of several
statistical techniques, and hence limits the robustness of conclusions. This is
thought to be due to the relationships between certain media and process stages
and their preferred KDs, in that the design task structure and resources aligned
better with somemedia and KDs than others (i.e., the relatively high appearance of
digital prototypes over physical and sketch prototypes, see Table 6). Results
presented here are only those that can be considered statistically robust, and
studies should be extended to capture further data and ensure that the appearance
of all KDs is fairly considered and observed. Further, while the study of eight
parallel design tasks allows detailed comparison for a single scenario, the technical
experience of designers, use of a single CDIO framework, and task consistency
limit generalisability of specific findings. This is also true of the bias introduced by
the COVID-19-driven limitations on feasible prototyping methods. While this
study demonstrates utility of KDs as a method of generating insight into design
prototyping and provides initial specific directions, further study across design
contexts is required to increase generalisability.

Primarily, addressing these limitations requires extension of this study to
industry datasets and cases, and to larger prototyping datasets in order to further
verify and validate the findings from this paper.

6. Conclusion
The aim of this article was to understand the relationship between prototypes and
the KDs towards which they contribute. This was achieved through the study and
comparison of the prototyping activities of eight design teams, each solving the
same design brief with particular attention to the appearance of KDs and their
relationship to the prototypes that facilitate their generation.

2The second and third waves peaked in January and May 2021, respectively (INS 2022).
3Beginning on 28 April 2021 (BBC 2021).
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Prototypes were captured using design logs throughout a 16-week project-
based learning (PBL) course with 64 students in eight teams. The dataset generated
featured 98 prototypes which were categorised according to domain (physical/
digital/sketch), team, fidelity and stage gate. Based upon text entries input by teams
into the design logs, prototypes were coded according to which KDs the prototypes
contributed.

Analysis of the data and subsequent statistical tests indicated that: i) teams
were consistent with respect to the amount of knowledge generated in different
dimensions; ii) prototypes of different fidelities are used to generate knowledge in
different dimensions and iii) prototypes generated in different phases of the
project are used to generate knowledge in different dimensions. It was not
possible to draw conclusions on the impact of domain on knowledge generation
due the low occurrence of physical prototypes in the dataset. This was due to
restrictions on project execution brought about by coronavirus restrictions and
national strikes.

The results of this study therefore meet the aim set out by demonstrating
differences in knowledge generated according to different types of prototypes and
similarities across teams undertaking the same task. In doing this, the article
presented a first-of-a-kind investigation and characterisation of the relations
between prototyping media and knowledge generated during a design project.

In doing this, the article provides twofold contributions in i) the elucidation of
evidence that permits mapping of KDs to prototyping activities and ii) also the
presentation of a methodology that permits the operationalisation of KDs in a
product development context.

Potential applications of the research lie in supporting selection of designers’
prototyping media and methods which can often lack direction. By defining the
KD in which one wishes to generate knowledge at a given phase of a project, it
would be possible to suggest a prototyping method that would facilitate its
generation. On a wider project scale, it could be possible to define prototyping
strategies based upon a successful cadence of knowledge generation.
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