
Calibration issues in $\delta \alpha / \alpha$

Miriam Centurión¹, Paolo Molaro¹ and Sergei Levshakov ²

¹INAF –Osservatorio Astronomico di Trieste, Via Tiepolo 11, I-34131 Trieste, Italy
²Ioffe Institute Politekhnicheskaya, Str. 26, 194021St. Petersburg, Russia

Laser Comb Wavelength calibration shows ThAr one locally unreliable with deviations up to $100~{\rm m~s^{-1}}~({\rm or}~\delta\alpha/\alpha\approx7\cdot10^{-6}~{\rm for~a~Fe\,II-Mg\,II}$ pair) while delivering an overall 1 m s⁻¹ accuracy. Comparison of line shifts of the 5 Fe II lines with identical sensitivity to $\delta\alpha/\alpha$ offers a clean way to test local wavelength calibration errors of whatever origin.

We analyzed 5 absorption systems, towards 3 QSOs. The results are shown in the Fig. Some lines are aligned within 20 m s⁻¹, but others reveal large deviations reaching 200 m s⁻¹ or higher (or $\delta\alpha/\alpha \geqslant 10^{-5}$). The origin of these deviations is not clearly identified These results suggest that extreme care is needed before drawing conclusions from $\delta\alpha/\alpha$ analysis based on one or only few lines.