CLASSIFICATION OF LAGRANGIAN WILLMORE SUBMANIFOLDS OF THE NEARLY KAEHLER 6-SPHERE $S^{6}(1)$ WITH CONSTANT SCALAR CURVATURE \dagger

HAIZHONG LI and GUOXIN WEI
Department of Mathematical Sciences, Tsinghua University, 100084, Beijing, People's Republic of China e-mail: hli@math.tsinghua.edu.cn,weigx03@mails.tsinghua.edu.cn

(Received 10 May, 2005; accepted 22 July, 2005)

Abstract

In this paper, we classify 3-dimensional Lagrangian Willmore submanifolds of the nearly kaehler 6 -sphere $S^{6}(1)$ with constant scalar curvature.

2000 Mathematics Subject Classification. 53 B 25; 53 D 12; 53 C 42.

1. Introduction. It is well known that a 6 -dimensional sphere $S^{6}(1)$ admits an almost kaehler structure J by making use of the Cayley system. Many interesting theorems about the topology and the geometry of nearly kaehler manifolds have been proved (see[2, 4, 7]). There have been many results on geometry of submanifolds in a kaehler manifold. Especially, submanifolds (called Lagrangian submanifolds) for which J interchanges the tangent and normal spaces. The theory of Lagrangian submanifolds in a nearly kaehler manifold was studied by many authors (cf. e.g. N. Ejiri, B. Y. Chen, F. Dillen, L. Vrancken and L. Verstraelen etc.). About Lagrangian submanifolds of $S^{6}(1)$, in [5], the authors classified the compact Lagrangian submanifolds of $S^{6}(1)$ whose sectional curvatures satisfy $K \geq \frac{1}{16}$. In [2], the authors classified the Lagrangian submanifolds of $S^{6}(1)$ with constant scalar curvature that realize the Chen's inequality. In this paper, we classify Lagrangian Willmore submanifold of the nearly kaehler 6 -sphere $S^{6}(1)$ with constant scalar curvature and obtain all possible values for the norm square of the second fundamental form S about these submanifolds. It is similar to Chern's conjecture which states that the set of all possible values for S of a compact minimal submanifold in the sphere with $S=$ constant is a limit set.
2. Preliminaries. We give a brief introduction to the standard nearly kaehler structure on $S^{6}(1)$. Let $e_{0}, e_{1}, \cdots, e_{7}$ be the standard basis of R^{8}. Then each point m of R^{8} can be written in a unique way as $m=a e_{0}+x$, where $a \in R$ and x is a linear combination of $e_{1}, e_{2}, \cdots, e_{7} . m$ can be regarded as a Caylay number, and is called purely imaginary when $a=0$. If x and y are purely imaginary, we defined the multiplication - as

$$
x \cdot y=-<x, y>e_{0}+x \times y
$$

where $<,>$ is the standard inner product on R^{8} and $x \times y$ is defined by the following multiplication table for $e_{j} \times e_{k}$:

Table 1. multiplication table for $e_{j} \times e_{k}$

\times	e_{1}	e_{2}	e_{3}	e_{4}	e_{5}	e_{6}	e_{7}
e_{1}	0	e_{3}	$-e_{2}$	e_{5}	$-e_{4}$	e_{7}	$-e_{6}$
e_{2}	$-e_{3}$	0	e_{1}	e_{6}	$-e_{7}$	$-e_{4}$	e_{5}
e_{3}	e_{2}	$-e_{1}$	0	$-e_{7}$	$-e_{6}$	e_{5}	e_{4}
e_{4}	$-e_{5}$	$-e_{6}$	e_{7}	0	e_{1}	e_{2}	$-e_{3}$
e_{5}	e_{4}	e_{7}	e_{6}	$-e_{1}$	0	$-e_{3}$	$-e_{2}$
e_{6}	$-e_{7}$	e_{4}	$-e_{5}$	$-e_{2}$	e_{3}	0	e_{1}
e_{7}	e_{6}	$-e_{5}$	$-e_{4}$	e_{3}	e_{2}	$-e_{1}$	0

For two Cayley numbers $m=a e_{0}+x$ and $n=b e_{0}+y$, the Cayley multiplication•, which makes R^{8} the Cayley algebra \mathfrak{I}, is defined by

$$
m \cdot n=a b e_{0}+a y+b x+x \cdot y .
$$

The set \mathfrak{I}_{+}of all purely imaginary Cayley numbers clearly can be viewed as a $7-$ dimensional linear subspace R^{7} of R^{8}. In $\mathfrak{\Im}_{+}$we consider the unit hypersphere which is centered at the origin:

$$
S^{6}(1)=\left\{x \in \mathfrak{I}_{+} \mid<x, x>=1\right\} .
$$

Then the tangent space $T_{x} S^{6}$ of $S^{6}(1)$ at a point x may be identified with the affine subspace of \mathfrak{I}_{+}which is orthogonal to x. The standard nearly kaehler structure on $S^{6}(1)$ is obtained as follows:

$$
\begin{equation*}
J A=x \times A, \quad x \in S^{6}(1), \quad A \in T_{x} S^{6}(1) . \tag{2.1}
\end{equation*}
$$

Let G be the (2,1)-tensor field on S^{6} defined by

$$
\begin{equation*}
G(X, Y)=\left(\bar{\nabla}_{X} J\right) Y \tag{2.2}
\end{equation*}
$$

where $X, Y \in T\left(S^{6}\right)$ and $\bar{\nabla}$ is the Levi-Civita connection on S^{6}. This tensor field has the following properties (see[7])

$$
\begin{equation*}
G(X, X)=0 ; \quad G(X, Y)+G(Y, X)=0 ; \quad G(X, J Y)+J G(X, Y)=0 \tag{2.3}
\end{equation*}
$$

It is clear that a Lagrangian submanifold M of $S^{6}(1)$ is 3-dimensional. In [7], Ejiri proved that M is minimal, orientable and that for tangent vector fields X and Y to M, $G(X, Y)$ is normal to M, i.e.

$$
G(X, Y) \in T^{\perp} M
$$

We denote the Levi-Civita connection of M by ∇. The formulas of Gauss and Weingarten are then given by

$$
\begin{equation*}
\bar{\nabla}_{X} Y=\nabla_{X} Y+h(X, Y) ; \quad \bar{\nabla}_{X} \xi=-A_{\xi} X+D_{X} \xi \tag{2.4}
\end{equation*}
$$

where X and Y are vector fields on M and ξ is a normal vector field on M. The second fundamental form h is related to A_{ξ} by

$$
\begin{equation*}
<h(X, Y), \xi>=<A_{\xi} X, Y> \tag{2.5}
\end{equation*}
$$

From (2.3) and (2.4), we find

$$
\begin{equation*}
D_{X}(J Y)=G(X, Y)+J \nabla_{X} Y ; \quad A_{J X} Y=-J h(X, Y) \tag{2.6}
\end{equation*}
$$

Since M is a Lagrangian submanifold of $S^{6}(1), J T^{\perp} M=T M$ and $J T M=T^{\perp} M$. We can easily verify that the second formula of (2.6) is equivalent to

$$
\begin{equation*}
<h(X, Y), J Z>=<h(X, Z), J Y>=<h(Y, Z), J X> \tag{2.7}
\end{equation*}
$$

Next, we give some lemmas
Lemma 2.1. ([15]) Let M be a 3-dimensional Lagrangian submanifold of $\left(S^{6}, J\right)$. If p is every non totally geodesic point of M. Then there exists an orthonormal basis $\left\{e_{1}, e_{2}, e_{3}\right\}$ of $T_{p} M$ such that

$$
\begin{array}{ll}
h\left(e_{1}, e_{1}\right)=\lambda_{1} J e_{1}, & h\left(e_{2}, e_{2}\right)=\lambda_{2} J e_{1}+\lambda_{3} J e_{2}+\lambda_{4} J e_{3}, \\
h\left(e_{1}, e_{2}\right)=\lambda_{2} J e_{2}, & h\left(e_{2}, e_{3}\right)=\lambda_{4} J e_{2}-\lambda_{3} J e_{3}, \tag{2.8}\\
h\left(e_{1}, e_{3}\right)=-\left(\lambda_{1}+\lambda_{2}\right) J e_{3}, & h\left(e_{3}, e_{3}\right)=-\left(\lambda_{1}+\lambda_{2}\right) J e_{1}-\lambda_{3} J e_{2}-\lambda_{4} J e_{3} .
\end{array}
$$

where $\lambda_{1}>0$ and h is the second fundamental form of M.
Remark 2.1. Lemma 1 means that ($h_{i j}^{k^{*}}$) can be expressed as

$$
\begin{gathered}
\left(h_{i j}^{1^{*}}\right)=\left(\begin{array}{ccc}
\lambda_{1} & 0 & 0 \\
0 & \lambda_{2} & 0 \\
0 & 0 & -\lambda_{1}-\lambda_{2}
\end{array}\right) \\
\left(h_{i j}^{2^{*}}\right)=\left(\begin{array}{ccc}
0 & \lambda_{2} & 0 \\
\lambda_{2} & \lambda_{3} & \lambda_{4} \\
0 & \lambda_{4} & -\lambda_{3}
\end{array}\right) \\
\left(h_{i j}^{3^{*}}\right)=\left(\begin{array}{ccc}
0 & 0 & -\lambda_{1}-\lambda_{2} \\
0 & \lambda_{4} & -\lambda_{3} \\
-\lambda_{1}-\lambda_{2} & -\lambda_{3} & -\lambda_{4}
\end{array}\right)
\end{gathered}
$$

where $k^{*}=k+3,1 \leq i, j, k, \cdots \leq 3$ and $h_{i j}^{k^{*}}$ denotes the element of the second fundamental form of the immersion.

Recently, B. Y. Chen has given in [1] a best possible inequality between the sectional curvature K, the scalar curvature $\tau(p)=\sum_{i<j} K\left(e_{i} \wedge e_{j}\right)$ definded in terms of an
orthonormal basis $\left\{e_{1}, e_{2}, e_{3}\right\}$ of the tangent space $T_{p} M$ to 3 -dimensional submanifolds of $S^{6}(1)$, states

$$
\delta_{M}(p) \leq \frac{9}{4} H^{2}(p)+2
$$

for each point $p \in M$, where H denotes the length of the mean curvature vector and $\delta_{M}(p)$ is the Riemannian invariant, definded by

$$
\delta_{M}(p)=\tau(p)-(\inf K)(p)
$$

Here

$$
(\inf K)(p)=\inf \left\{K(\pi) \mid \pi \text { is a } 2-\text { dimensional subspace of } T_{p} M\right\}
$$

Submanifolds realizing the equality are called submanifolds satisfying Chen's equality. For a Lagrangian submanifold of $S^{6}(1), M$ realizes Chen's equality if and only if $\delta_{M}=2$. About those submanifolds, we have

LEMMA 2.2. (Theorem 2.2 of [2]). Let M be a 3-dimensional Lagrangian submanifold of $S^{6}(1)$. Then $\delta_{M} \leq 2$ and equality holds at a point p of M if there exists a tangent basis $\left\{e_{1}, e_{2}, e_{3}\right\}$ of $T_{p} M$ such that

$$
\begin{array}{ll}
h\left(e_{1}, e_{1}\right)=\lambda J e_{1}, & h\left(e_{2}, e_{2}\right)=-\lambda J e_{1}, \\
h\left(e_{1}, e_{2}\right)=-\lambda J e_{2}, & h\left(e_{2}, e_{3}\right)=0 \\
h\left(e_{1}, e_{3}\right)=0, & h\left(e_{3}, e_{3}\right)=0
\end{array}
$$

where λ is a positive number satisfying $2 \lambda^{2}=3-\tau(p)$.
REMARK 2.2. If we replace e_{2}, e_{3} by $e_{3},-e_{2}$ respectively in Lemma 2.2 , then we have: Let M be a 3 -dimensional totally real submanifold of $S^{6}(1)$. Then $\delta_{M} \leq 2$ and equality holds at a point p of M if there exists a tangent basis $\left\{e_{1}, e_{2}, e_{3}\right\}$ of $T_{p} M$ such that

$$
\begin{array}{ll}
h\left(e_{1}, e_{1}\right)=\lambda J e_{1}, & h\left(e_{3}, e_{3}\right)=-\lambda J e_{1} \\
h\left(e_{1}, e_{3}\right)=-\lambda J e_{3}, & h\left(e_{2}, e_{3}\right)=0 \\
h\left(e_{1}, e_{2}\right)=0, & h\left(e_{2}, e_{2}\right)=0
\end{array}
$$

where λ is a positive number satisfying $2 \lambda^{2}=3-\tau(p)$.
Lemma 2.3. (Main Theorem of [2]). Let $x: M^{3} \rightarrow S^{6}(1)$ be a Lagrangian immersion. If M^{3} has constant scalar curvature τ and $\delta_{M}=2$ holds identically, then either x is totally geodesic, or locally congruent to φ_{1} or φ_{2}, where φ_{1} and φ_{2} has been given in Section 3.

From now on, we agree on the following index ranges:

$$
1 \leq i, j, k, \cdots \leq 3 ; \quad i^{*}=3+i ; \quad j^{*}=3+j ; \cdots
$$

Choose $\left\{e_{1}, e_{2}, e_{3}, e_{1^{*}}, e_{2^{*}}, e_{3^{*}}\right\}$ to be a local orthonormal frame field of the tangent bundle $T S^{6}$ such that e_{i} lies in $T M$ and $e_{i^{*}}=J e_{i}$ lies in $N M$. Let
$\left\{\omega_{1}, \omega_{2}, \omega_{3}, \omega_{1^{*}}, \omega_{2^{*}}, \omega_{3^{*}}\right\}$ be the associated coframe field. Denote $\left(\omega_{i^{*} j^{*}}\right)$ to be the associated Levi-Civita connection form. Then the structure equations of M are:

$$
\begin{gather*}
d x=\sum_{i} \omega_{i} e_{i} ; \quad d e_{i}=\sum_{j} \omega_{i j} e_{j}+\sum_{k, j} h_{i j}^{k^{*}} \omega_{j} e_{k^{*}}-\omega_{i} x, \tag{2.9}\\
d e_{k^{*}}=-\sum_{i, j} h_{i j}^{k^{*}} \omega_{j} e_{i}+\sum_{l} \omega_{k^{*} l^{*} e^{*}} . \tag{2.10}
\end{gather*}
$$

The Gauss equations are:

$$
\begin{gather*}
R_{i j k l}=-\left(\delta_{i k} \delta_{j l}-\delta_{i l} \delta_{j k}\right)-\sum_{r}\left(h_{i k}^{h^{*}} h_{j l}^{*^{*}}-h_{i l}^{r^{*}} h_{j k}^{r_{k}^{*}}\right), \tag{2.11}\\
R_{i k}=\sum_{l} R_{i l l k}=2 \delta_{i k}-\sum_{r, j} h_{i j}^{r_{i}^{*} h_{j k}^{*} ; \quad 2 \tau=6-S}, \tag{2.12}
\end{gather*}
$$

where $S=\sum_{l, i, j}\left(h_{i j}^{*}\right)^{2}$ is the norm square of the second fundamental form.
The Codazzi equation is:

$$
(\nabla h)(X, Y, Z)=(\nabla h)(Y, X, Z)
$$

where $(\nabla h)(X, Y, Z)=D_{X} h(Y, Z)-h\left(\nabla_{X} Y, Z\right)-h\left(Y, \nabla_{X} Z\right)$.
Finally, we introduce Willmore submanifolds. $x: M^{3} \rightarrow S^{6}(1)$ is called Willmore if it is an extremal submanifold of the following Willmore functional:

$$
\begin{equation*}
W(x)=\int_{M}\left(S-3 H^{2}\right)^{\frac{3}{2}} d v \tag{2.13}
\end{equation*}
$$

where $S=\sum_{i, j, k^{*}}\left(h_{i j}^{k^{*}}\right)^{2}$ and H are respectively the norm square of the second fundamental form and the mean curvature of the immersion $x, d v$ is the volume element of M. For more details about Willmore submanifolds we refer the reader to [11] and [10]. About Willmore submanifolds, we have:

Lemma 2.4. Let M be a Lagrangian submanifold in $\left(S^{6}, J\right)$ with constant scalar curvature. Then M is a Willmore submanifold if and only if

$$
\begin{equation*}
\rho\left(\sum_{i, j, k, l} h_{i j}^{h^{*}} h_{i k}^{*^{*}} h_{k j}^{*}\right)=0, \quad \forall t \text { with } 1 \leq t \leq 3 \tag{2.14}
\end{equation*}
$$

where $\rho^{2}=S=\sum_{i j k}\left(h_{i j}^{k^{*}}\right)^{2}$.
Proof. Since M is minimal and has constant scalar curvature, we can easily get our result by using of Theorem 1.1 of [11].
3. Examples. In this section, we give some examples of Lagrangian Willmore submanifolds of $S^{6}(1)$ with constant scalar curvature. In addition, we also give one example of Lagrangian submanifold of $S^{6}(1)$ with constant scalar curvature which is not a Willmore submanifold.

Example 3.1. Define a map

$$
\begin{aligned}
& f: S^{3}(1)=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in R^{4} \mid \sum_{i=1}^{4} x_{i}^{2}=1\right\} \longrightarrow \\
& S^{6}(1)=\left\{\left(y_{1}, y_{2}, y_{3}, y_{4}, y_{5}, y_{6}, y_{7}\right) \in R^{7} \mid \sum_{i=1}^{7} y_{i}^{2}=1\right\},
\end{aligned}
$$

where

$$
y_{1}=x_{1}, \quad y_{3}=x_{2}, \quad y_{5}=x_{3}, \quad y_{7}=x_{4}, \quad y_{2}=y_{4}=y_{6}=0 .
$$

It is clear that $f: S^{3}(1) \rightarrow S^{6}(1)$ is a Lagrangian totally geodesic immersion. That M is totally geodesic implies M is a Einstein submanifold. In [8], the authors proved that all n-dimensional minimal Einstein submanifolds in a sphere are Willmore submanifolds. So M^{3} is a Lagrangian Willmore submanifold with constant scalar curvature.

Example 3.2. Define a map

$$
\begin{gathered}
f: S^{3}\left(\frac{1}{16}\right)=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in R^{4} \mid \sum_{i=1}^{4} x_{i}^{2}=16\right\} \longrightarrow \\
S^{6}(1)=\left\{\left(y_{1}, y_{2}, y_{3}, y_{4}, y_{5}, y_{6}, y_{7}\right) \in R^{7} \mid \sum_{i=1}^{7} y_{i}^{2}=1\right\},
\end{gathered}
$$

where

$$
\begin{aligned}
& y_{1}= \sqrt{15} 2^{-10}\left(x_{1} x_{3}+x_{2} x_{4}\right)\left(x_{1} x_{4}-x_{2} x_{3}\right)\left(x_{1}^{2}+x_{2}^{2}-x_{3}^{2}-x_{4}^{2}\right) \\
& y_{2}= 2^{-12}\left[-\sum_{i} x_{i}^{6}+5 \sum_{i<j}\left(x_{i} x_{j}\right)^{2}\left(x_{i}^{2}+x_{j}^{2}\right)-30 \sum_{i<j<k}\left(x_{i} x_{j} x_{k}\right)^{2}\right] \\
& y_{3}= 2^{-10}\left[x_{3} x_{4}\left(x_{3}^{2}-x_{4}^{2}\right)\left(x_{3}^{2}+x_{4}^{2}-5 x_{1}^{2}-5 x_{2}^{2}\right)+x_{1} x_{2}\left(x_{1}^{2}-x_{2}^{2}\right)\left(x_{1}^{2}+x_{2}^{2}-5 x_{3}^{2}-5 x_{4}^{2}\right)\right] \\
& y_{4}= 2^{-12}\left[x_{2} x_{4}\left(x_{2}^{4}+3 x_{3}^{4}-x_{4}^{4}-3 x_{1}^{4}\right)+x_{1} x_{3}\left(x_{3}^{4}+3 x_{2}^{4}-x_{1}^{4}-3 x_{4}^{4}\right)\right. \\
&+2\left(x_{1} x_{3}-x_{2} x_{4}\left(x_{1}^{2}\left(x_{2}^{2}+4 x_{4}^{2}\right)-x_{3}^{2}\left(x_{4}^{2}+4 x_{2}^{2}\right)\right)\right] \\
& y_{5}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=y_{4}\left(x_{2},-x_{1}, x_{3}, x_{4}\right) \\
& y_{6}= \sqrt{6} 2^{-12}\left[x_{1} x_{3}\left(x_{1}^{4}+5 x_{2}^{4}-x_{3}^{4}-5 x_{4}^{4}\right)-x_{2} x_{4}\left(x_{2}^{4}+5 x_{1}^{4}-x_{4}^{4}-5 x_{3}^{4}\right)\right. \\
&\left.\quad+10\left(x_{1} x_{3}-x_{2} x_{4}\right)\left(\left(x_{3} x_{4}\right)^{2}-\left(x_{1} x_{2}\right)^{2}\right)\right] \\
& y_{7}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=y_{6}\left(x_{2},-x_{1}, x_{3}, x_{4}\right) .
\end{aligned}
$$

In [5], the authors proved that $f: S^{3}\left(\frac{1}{16}\right) \rightarrow S^{6}(1)$ is a Lagrangian immersion with constant sectional curvature $\frac{1}{16}$. That M^{3} is a constant sectional curvature submanifold implies M^{3} is a Einstein submanifold. From [7], we know that M is minimal. In [8], the authors proved that all n-dimensional minimal Einstein submanifolds in a sphere are Willmore submanifolds. So M^{3} is a Lagrangian Willmore submanifold with constant scalar curvature.

Example 3.3. (Example 3.1 of [2]) Consider the unit sphere

$$
S^{3}=\left\{\left(y_{1}, y_{2}, y_{3}, y_{4}\right) \in R^{4} \mid y_{1}^{2}+y_{2}^{2}+y_{3}^{2}+y_{4}^{2}=1\right\}
$$

in R^{4}. Let X_{1}, X_{2} and X_{3} be the vector fields defined by

$$
\begin{aligned}
X_{1}\left(y_{1}, y_{2}, y_{3}, y_{4}\right)= & \left(y_{2},-y_{1}, y_{4},-y_{3}\right) ; \quad X_{2}\left(y_{1}, y_{2}, y_{3}, y_{4}\right)=\left(y_{3},-y_{4},-y_{1}, y_{2}\right) \\
& X_{3}\left(y_{1}, y_{2}, y_{3}, y_{4}\right)=\left(y_{4}, y_{3},-y_{2},-y_{1}\right) .
\end{aligned}
$$

Then X_{1}, X_{2} and X_{3} form a basis of tangent vector fields to S^{3}. Moreover, we have [X_{1}, X_{2}] $=2 X_{3},\left[X_{2}, X_{3}\right]=2 X_{1}$ and $\left[X_{3}, X_{1}\right]=2 X_{2}$. In [2], the authors define a metric $<,>_{1}$ on S^{3} such that X_{1}, X_{2} and X_{3} are orthogonal and such that $<X_{1}, X_{1}>_{1}=<$ $X_{2}, X_{2}>_{1}=6$ and $<X_{3}, X_{3}>_{1}=36$. Then $E_{1}=\frac{1}{\sqrt{6}} X_{1}, E_{2}=\frac{1}{\sqrt{6}} X_{2}$ and $E_{3}=\frac{1}{6} X_{3}$ form an orthonormal basis on S^{3}. We denote the Levi-Civita connection of $<,>_{1}$ by ∇, then $\nabla_{E_{i}} E_{j}$ and $R\left(E_{i}, E_{j}\right) E_{k}$ can be computed. We now define a symmetric bilinear form α on $T S^{3}$ in accordance with Theorem 2.2 of [2] by

$$
\begin{array}{lll}
\alpha\left(E_{1}, E_{1}\right)=\sqrt{\frac{5}{3}} E_{1}, & \alpha\left(E_{3}, E_{1}\right)=0, & \alpha\left(E_{1}, E_{2}\right)=-\sqrt{\frac{5}{3}} E_{2}, \\
\alpha\left(E_{3}, E_{2}\right)=0, & \alpha\left(E_{2}, E_{2}\right)=-\sqrt{\frac{5}{3}} E_{1}, & \alpha\left(E_{3}, E_{3}\right)=0 .
\end{array}
$$

A straightforward computation shows that α satisfies the conditions of the existence theorem, i.e. Theorem 3.2 of [2]. Hence we obtain a Lagrangian isometric immersion

$$
\varphi_{1}:\left(S^{3},<., .>_{1}\right) \rightarrow S^{6}(1)
$$

whose second fundamental form satisfies $h(X, Y)=J \alpha(X, Y)$. That is,

$$
\begin{array}{lll}
h\left(E_{1}, E_{1}\right)=\sqrt{\frac{5}{3}} J E_{1}, & h\left(E_{3}, E_{1}\right)=0, & h\left(E_{1}, E_{2}\right)=-\sqrt{\frac{5}{3}} J E_{2}, \\
h\left(E_{3}, E_{2}\right)=0, & h\left(E_{2}, E_{2}\right)=-\sqrt{\frac{5}{3}} J E_{1}, & h\left(E_{3}, E_{3}\right)=0
\end{array}
$$

Hence

$$
\begin{gathered}
\Sigma_{i, j, k, l} h_{i j}^{1^{*}} h_{i k}^{l^{*}} h_{k j}^{*^{*}}=\left(\sqrt{\frac{5}{3}}\right)^{3}-\left(\sqrt{\frac{5}{3}}\right)^{3}+\sqrt{\frac{5}{3}} \frac{5}{3}-\sqrt{\frac{5}{3}} \frac{5}{3}=0, \\
\Sigma_{i, j, k, l} h_{i j}^{2^{*}} h_{i k}^{l^{*}} h_{k j}^{l^{*}}=0+0=0=\Sigma_{i, j, k, l} h_{i j}^{3^{*}} h_{i k}^{l^{*}} h_{k j}^{l^{*}}, \\
S=\sum_{l, i, j}\left(h_{i j}^{l^{*}}\right)^{2}=\frac{20}{3}, \quad \tau=-\frac{1}{3} .
\end{gathered}
$$

From Lemma 2.4, we know that M is a Lagrangian Willmore submanifold with constant scalar curvature.

Example 3.4. (Example 3.2 of [2]) We also consider the unit sphere S^{3} in R^{4}. Let X_{1}, X_{2} and X_{3} be the vector fields defined in the previous example. In [2], the authors define a metric $<., .>_{2}$ on S^{3} such that X_{1}, X_{2} and X_{3} are orthogonal and such that $<X_{1}, X_{1}>_{2}=<X_{2}, X_{2}>_{2}=2$ and $<X_{3}, X_{3}>_{2}=4$. Then $E_{1}=\frac{1}{\sqrt{2}} X_{1}, E_{2}=\frac{1}{\sqrt{2}} X_{2}$ and $E_{3}=-\frac{1}{2} X_{3}$ form an orthonormal basis on S^{3}. We denote the Levi-Civita connection of $<,>_{2}$ by ∇, then $\nabla_{E_{i}} E_{j}$ and $R\left(E_{i}, E_{j}\right) E_{k}$ can be computed. We now define a symmetric bilinear form α on $T S^{3}$ in accordance with Theorem 2.2 of [2] by

$$
\begin{array}{lll}
\alpha\left(E_{1}, E_{1}\right)=E_{1}, & \alpha\left(E_{3}, E_{1}\right)=0, & \alpha\left(E_{1}, E_{2}\right)=-E_{2}, \\
\alpha\left(E_{3}, E_{2}\right)=0, & \alpha\left(E_{2}, E_{2}\right)=-E_{1}, & \alpha\left(E_{3}, E_{3}\right)=0 .
\end{array}
$$

A straightforward computation shows that α satisfies the conditions of the existence theorem, i.e. Theorem 3.2 of [2]. Hence we obtain a Lagrangian isometric immersion

$$
\varphi_{2}:\left(S^{3},<\ldots,>_{2}\right) \rightarrow S^{6}(1),
$$

whose second fundamental form satisfies $h(X, Y)=J \alpha(X, Y)$. That is,

$$
\begin{array}{lll}
h\left(E_{1}, E_{1}\right)=J E_{1}, & h\left(E_{3}, E_{1}\right)=0, & h\left(E_{1}, E_{2}\right)=-J E_{2}, \\
h\left(E_{3}, E_{2}\right)=0, & h\left(E_{2}, E_{2}\right)=-J E_{1}, & h\left(E_{3}, E_{3}\right)=0
\end{array}
$$

Hence

$$
\begin{gathered}
\Sigma_{i, j, k, l} h_{i j}^{i^{*}} h_{i k}^{l^{*}} h_{k j}^{l^{*}}=1-1+1-1=0, \\
\Sigma_{i, j, k, l} h_{i j}^{2^{*}} h_{i k}^{l^{*}} h_{k j}^{l^{*}}=0=\Sigma_{i, j, k, l} h_{i j}^{3^{*}} h_{i k}^{l^{*}} h_{k j}^{l^{*}}, \\
S=\sum_{l, i, j}\left(h_{i j}^{l *}\right)^{2}=4, \quad \tau=1 .
\end{gathered}
$$

From Lemma 2.4, we know that M is a Lagrangian Willmore submanifold with constant scalar curvature.

Example 3.5. ([5]) Define a map

$$
\begin{aligned}
\varphi_{3} & : S^{3}(1)=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in R^{4} \mid \sum_{i=1}^{4} x_{i}^{2}=1\right\} \\
& \longrightarrow S^{6}(1)=\left\{\left(y_{1}, y_{2}, y_{3}, y_{4}, y_{5}, y_{6}, y_{7}\right) \in R^{7} \mid \sum_{i=1}^{7} y_{i}^{2}=1\right\}
\end{aligned}
$$

where

$$
\begin{array}{ll}
y_{1}=\frac{1}{9}\left(5 x_{1}^{2}+5 x_{2}^{2}-5 x_{3}^{2}-5 x_{4}^{2}+4 x_{1}\right) ; & y_{2}=-\frac{2}{3} x_{2} \\
y_{3}=\frac{2 \sqrt{5}}{9}\left(x_{1}^{2}+x_{2}^{2}-x_{3}^{2}-x_{4}^{2}-x_{1}\right) ; & y_{4}=\frac{\sqrt{3}}{9 \sqrt{2}}\left(-10 x_{3} x_{1}-2 x_{3}-10 x_{2} x_{4}\right) \\
y_{5}=\frac{\sqrt{3} \sqrt{5}}{9 \sqrt{2}}\left(2 x_{1} x_{4}-2 x_{4}-2 x_{2} x_{3}\right) ; & y_{6}=\frac{\sqrt{3} \sqrt{5}}{9 \sqrt{2}}\left(2 x_{1} x_{3}-2 x_{3}+2 x_{2} x_{4}\right) \\
y_{7}=-\frac{\sqrt{3}}{9 \sqrt{2}}\left(10 x_{1} x_{4}+2 x_{4}-10 x_{2} x_{3}\right) &
\end{array}
$$

By direct computation, we have

$$
\begin{array}{lll}
h\left(e_{1}, e_{1}\right)=\frac{\sqrt{5}}{2} J e_{1}, & h\left(e_{2}, e_{2}\right)=-\frac{\sqrt{5}}{4} J e_{1}, & h\left(e_{3}, e_{3}\right)=-\frac{\sqrt{5}}{4} J e_{1} \\
h\left(e_{1}, e_{2}\right)=-\frac{\sqrt{5}}{4} J e_{2}, & h\left(e_{2}, e_{3}\right)=0, & h\left(e_{1}, e_{3}\right)=-\frac{\sqrt{5}}{4} J e_{3}
\end{array}
$$

Then we know that $\varphi_{3}: S^{3} \rightarrow S^{6}(1)$ is a Lagrangian immersion with constant scalar curvature $\frac{23}{16}$. On the other hand, we have

$$
\Sigma_{i, j, k, l} h_{i j}^{1^{*}} l_{i k}^{*^{*}} h_{k j}^{\tau^{*}}=\frac{45 \sqrt{5}}{64} \neq 0
$$

From Lemma 2.4, we obtain that $\varphi_{3}: S^{3} \rightarrow S^{6}(1)$ is not a Willmore submanifold.
4. Theorem and the proof. First of all, we give this paper's main theorem.

THEOREM 4.1. Let $\varphi: M^{3} \rightarrow S^{6}(1)$ be a Lagrangian Willmore immersion with constant scalar curvature. Then locally one of the following four possibilities occurs:
(1) φ is congruent with a totally geodesic immersion;
(2) φ is congruent with a constant sectional curvature $\frac{1}{16}$ immersion;
(3) φ is congruent with φ_{1};
(4) φ is congruent with φ_{2};

Here φ_{1} and φ_{2} are as in Section 3.
Proof. From Gauss equations (2.12) and $\tau=$ constant, we get

$$
\begin{equation*}
S=\sum_{i, j, k}\left(h_{i j}^{h^{*}}\right)^{2}=6-2 \tau=C=\text { const. } \tag{4.1}
\end{equation*}
$$

If $C=0$, then M is totally geodesic and φ is congruent with a totally geodesic immersion.

If $C \neq 0$, then every point is not totally geodesic point. From Lemma 2.1, we can choose an orthonormal basis $\left\{e_{1}, e_{2}, e_{3}\right\}$ of $T_{p} M$ such that

$$
\begin{array}{ll}
h\left(e_{1}, e_{1}\right)=\lambda_{1} J e_{1}, & h\left(e_{2}, e_{2}\right)=\lambda_{2} J e_{1}+\lambda_{3} J e_{2}+\lambda_{4} J e_{3}, \\
h\left(e_{1}, e_{2}\right)=\lambda_{2} J e_{2}, & h\left(e_{2}, e_{3}\right)=\lambda_{4} J e_{2}-\lambda_{3} J e_{3}, \\
h\left(e_{1}, e_{3}\right)=-\left(\lambda_{1}+\lambda_{2}\right) J e_{3}, & h\left(e_{3}, e_{3}\right)=-\left(\lambda_{1}+\lambda_{2}\right) J e_{1}-\lambda_{3} J e_{2}-\lambda_{4} J e_{3} .
\end{array}
$$

where $\lambda_{1}>0$.
By direct calculation, we obtain

$$
\begin{gathered}
S=4 \lambda_{1}^{2}+6 \lambda_{2}^{2}+6 \lambda_{1} \lambda_{2}+4 \lambda_{3}^{2}+4 \lambda_{4}^{2}, \\
\Sigma_{i, j, k, l} h_{i j}^{*^{*}} h_{i k}^{l^{*}} h_{k j}^{l^{*}}=-4 \lambda_{1}^{2} \lambda_{2}-4 \lambda_{1} \lambda_{2}^{2}-2 \lambda_{1} \lambda_{3}^{2}-2 \lambda_{1} \lambda_{4}^{2}, \\
\Sigma_{i, j, k, l} h_{i j}^{2^{*}} h_{i k}^{l{ }_{l}^{*}} l_{k j}^{l^{*}}=-2 \lambda_{1}^{2} \lambda_{3}-2 \lambda_{1} \lambda_{2} \lambda_{3}+4 \lambda_{2}^{2} \lambda_{3}, \\
\Sigma_{i, j, k, l} h_{i j}^{3^{*}} h_{i k}^{l^{*}} h_{k j}^{l^{*}}=-4 \lambda_{1}^{2} \lambda_{4}-10 \lambda_{1} \lambda_{2} \lambda_{4}-4 \lambda_{2}^{2} \lambda_{4} .
\end{gathered}
$$

Then, by using of Lemma 2.4, $\lambda_{1}>0$ and $S=$ constant, we can deduce that

$$
\left\{\begin{array}{l}
4 \lambda_{1}^{2}+6 \lambda_{2}^{2}+6 \lambda_{1} \lambda_{2}+4 \lambda_{3}^{2}+4 \lambda_{4}^{2}=C=\text { const } \tag{4.2}\\
2 \lambda_{1} \lambda_{2}+2 \lambda_{2}^{2}+\lambda_{3}^{2}+\lambda_{4}^{2}=0 \\
\lambda_{3}\left(\lambda_{1}^{2}+\lambda_{1} \lambda_{2}-2 \lambda_{2}^{2}\right)=0 \\
\lambda_{4}\left(2 \lambda_{1}^{2}+5 \lambda_{1} \lambda_{2}+2 \lambda_{2}^{2}\right)=0
\end{array}\right.
$$

In order to solve these equations, we consider the following cases.
Case 1: $\lambda_{2}=0$.
Then (4.2) becomes

$$
\left\{\begin{array}{l}
4 \lambda_{1}^{2}+4 \lambda_{3}^{2}+4 \lambda_{4}^{2}=C \\
\lambda_{3}^{2}+\lambda_{4}^{2}=0 \\
\lambda_{1}^{2} \lambda_{3}=0 \\
\lambda_{1}^{2} \lambda_{4}=0
\end{array}\right.
$$

Therefore, we have

$$
\begin{equation*}
\lambda_{1}=\frac{\sqrt{C}}{2}, \quad \lambda_{2}=0, \quad \lambda_{3}=0, \quad \lambda_{4}=0 . \tag{4.3}
\end{equation*}
$$

Case 2: $\lambda_{2} \neq 0, \quad \lambda_{3}=0, \quad \lambda_{4}=0$.
In this case, (4.2) becomes

$$
\left\{\begin{array}{l}
4 \lambda_{1}^{2}+6 \lambda_{2}^{2}+6 \lambda_{1} \lambda_{2}=C \\
\lambda_{1}+\lambda_{2}=0
\end{array}\right.
$$

Then we have

$$
\begin{equation*}
\lambda_{1}=\frac{\sqrt{C}}{2}, \quad \lambda_{2}=-\frac{\sqrt{C}}{2}, \quad \lambda_{3}=\lambda_{4}=0 . \tag{4.4}
\end{equation*}
$$

Case 3: $\lambda_{2} \neq 0, \quad \lambda_{3}=0, \quad \lambda_{4} \neq 0$.
In this case, (4.2) becomes

$$
\left\{\begin{array}{l}
4 \lambda_{1}^{2}+6 \lambda_{2}^{2}+6 \lambda_{1} \lambda_{2}+4 \lambda_{4}^{2}=C \\
2 \lambda_{1} \lambda_{2}+2 \lambda_{2}^{2}+\lambda_{4}^{2}=0 \\
2 \lambda_{1}^{2}+5 \lambda_{1} \lambda_{2}+2 \lambda_{2}^{2}=0
\end{array}\right.
$$

From $2 \lambda_{1} \lambda_{2}=-2 \lambda_{2}^{2}-\lambda_{4}^{2}<0$, we deduce that $\lambda_{2}<0$; From $2 \lambda_{1}^{2}+5 \lambda_{1} \lambda_{2}+2 \lambda_{2}^{2}=0$, it then follows that either $\lambda_{1}=-2 \lambda_{2}$ or $\lambda_{1}=-\frac{1}{2} \lambda_{2}$. If $\lambda_{1}=-\frac{1}{2} \lambda_{2}$, then we obtain $\lambda_{2}^{2}+$ $\lambda_{4}^{2}=0$. It is a contradiction. Hence $\lambda_{1}=-2 \lambda_{2}$. After a straightforward calculation one has

$$
\begin{equation*}
\lambda_{1}=\frac{\sqrt{2 C}}{3}, \quad \lambda_{2}=-\frac{\sqrt{2 C}}{6}, \quad \lambda_{3}=0, \quad \lambda_{4}^{2}=\frac{C}{9} \tag{4.5}
\end{equation*}
$$

Case 4: $\lambda_{2} \neq 0, \lambda_{3} \neq 0, \lambda_{4}=0$.
In this case, (4.2) becomes

$$
\left\{\begin{array}{l}
4 \lambda_{1}^{2}+6 \lambda_{2}^{2}+6 \lambda_{1} \lambda_{2}+4 \lambda_{3}^{2}=C \\
2 \lambda_{1} \lambda_{2}+2 \lambda_{2}^{2}+\lambda_{3}^{2}=0 \\
\lambda_{1}^{2}+\lambda_{1} \lambda_{2}-2 \lambda_{2}^{2}=0
\end{array}\right.
$$

From $2 \lambda_{1} \lambda_{2}=-2 \lambda_{2}^{2}-\lambda_{3}^{2}$, we see that $\lambda_{2}<0$; From $\lambda_{1}^{2}+\lambda_{1} \lambda_{2}-2 \lambda_{2}^{2}=0$, it follows that $\lambda_{1}=\lambda_{2}$ or $\lambda_{1}=-2 \lambda_{2}$. Since $\lambda_{1}>0$ and $\lambda_{2}<0$, we deduce $\lambda_{1}=-2 \lambda_{2}$. Then we obtain

$$
\begin{equation*}
\lambda_{1}=\frac{\sqrt{2 C}}{3}, \quad \lambda_{2}=-\frac{\sqrt{2 C}}{6}, \quad \lambda_{3}^{2}=\frac{C}{9}, \quad \lambda_{4}=0 \tag{4.6}
\end{equation*}
$$

Case 5: $\lambda_{2} \neq 0, \lambda_{3} \neq 0, \lambda_{4} \neq 0$.
In this case, (4.2) becomes

$$
\left\{\begin{array}{l}
4 \lambda_{1}^{2}+6 \lambda_{2}^{2}+6 \lambda_{1} \lambda_{2}+4 \lambda_{3}^{2}+4 \lambda_{4}^{2}=C \\
2 \lambda_{1} \lambda_{2}+2 \lambda_{2}^{2}+\lambda_{3}^{2}+\lambda_{4}^{2}=0 \\
\lambda_{1}^{2}+\lambda_{1} \lambda_{2}-2 \lambda_{2}^{2}=0 \\
2 \lambda_{1}^{2}+5 \lambda_{1} \lambda_{2}+2 \lambda_{2}^{2}=0
\end{array}\right.
$$

From $2 \lambda_{1} \lambda_{2}=-2 \lambda_{2}^{2}-\lambda_{3}^{2}-\lambda_{4}^{2}$, we know that $\lambda_{2}<0$; Since $\lambda_{1}^{2}+\lambda_{1} \lambda_{2}-2 \lambda_{2}^{2}=0$, we deduce that $\lambda_{1}=\lambda_{2}$ or $\lambda_{1}=-2 \lambda_{2}$. Since $\lambda_{1}>0$ and $\lambda_{2}<0$, we find $\lambda_{1}=-2 \lambda_{2}$. Then we obtain

$$
\begin{equation*}
\lambda_{1}=\frac{\sqrt{2 C}}{3}, \quad \lambda_{2}=-\frac{\sqrt{2 C}}{6}, \quad \lambda_{3}^{2}+\lambda_{4}^{2}=\frac{C}{9} . \tag{4.7}
\end{equation*}
$$

Firstly, we consider Case 3, Case 4 and Case 5. Let $a_{1}=\lambda_{1}, a_{2}=\lambda_{2}$ and $a_{3}=-\left(\lambda_{1}+\right.$ λ_{2}), from (2.7) and Gauss equations (2.11), we have

$$
\begin{aligned}
& R_{1 j k l}=-\left(\delta_{1 k} \delta_{j l}-\delta_{1 /} \delta_{j k}\right)-\sum_{r}\left(h_{1 k}^{r^{*}} h_{j l}^{r^{*}}-h_{1 l}^{r^{*}} r_{j k}^{r^{*}}\right) \\
& =-\left(\delta_{1 k} \delta_{j l}-\delta_{1 l} \delta_{j k}\right)-\sum_{r}\left(a_{k} \delta_{k r} h_{j l}^{*^{*}}-a_{l} \delta_{l r} h_{j k}^{r^{*}}\right) \\
& =-\left(\delta_{1 k} \delta_{j l}-\delta_{1 l} \delta_{j k}\right)-\left(a_{k} h_{j l}^{k^{*}}-a_{l} h_{j k}^{l^{*}}\right) \\
& =-\left(\delta_{1 k} \delta_{j l}-\delta_{1 l} \delta_{j k}\right)-\left(a_{k}-a_{l}\right) h_{j k}^{l_{k}^{*}}, \\
& R_{1 j 1 l}=-\left(\delta_{11} \delta_{j l}-\delta_{1 l} \delta_{j 1}\right)-\left(a_{1}-a_{l}\right) h_{j 1}^{l^{*}}, \\
& R_{1212}=-1-\left(a_{1}-a_{2}\right) h_{21}^{2^{*}}=-1-\left(\lambda_{1}-\lambda_{2}\right) \lambda_{2}=-1+3 \lambda_{2}^{2}=-\left(1-\frac{C}{6}\right), \\
& R_{1313}=-1-\left(a_{1}-a_{3}\right) h_{31}^{3^{*}}=-1+\left(2 \lambda_{1}+\lambda_{2}\right)\left(\lambda_{1}+\lambda_{2}\right)=-1+3 \lambda_{2}^{2}=-\left(1-\frac{C}{6}\right) \text {, } \\
& R_{1223}=-\left(\delta_{12} \delta_{23}-\delta_{13} \delta_{22}\right)-\left(a_{2}-a_{3}\right) h_{22}^{3^{*}}=-\left(\lambda_{1}+2 \lambda_{2}\right) \lambda_{4}=0, \\
& R_{1323}=-\left(\delta_{12} \delta_{33}-\delta_{13} \delta_{23}\right)-\left(a_{2}-a_{3}\right) h_{32}^{3^{*}}=\left(\lambda_{1}+2 \lambda_{2}\right) \lambda_{3}=0, \\
& R_{2323}=-1-\sum_{r}\left(h_{22}^{r_{2}^{*}} h_{33}^{r^{*}}-h_{23}^{r^{*}} h_{23}^{*^{*}}\right) \\
& =-1-\left[\lambda_{2}\left(-\lambda_{1}-\lambda_{2}\right)-2\left(\lambda_{3}^{2}+\lambda_{4}^{2}\right)\right] \\
& =-1-\left(\lambda_{2}^{2}-\frac{2 C}{9}\right)=-\left(1-\frac{C}{6}\right) \text {. }
\end{aligned}
$$

Hence we have

$$
R_{i j k l}=-\left(1-\frac{C}{6}\right)\left(\delta_{i k} \delta_{j l}-\delta_{i l} \delta_{j k}\right)
$$

That is, M is a submanifold with constant sectional curvature c. In [7], Ejiri proved that if M is a submanifold with constant sectional curvature c, then $c=1$ (and M is totally geodesic) or $c=\frac{1}{16}$. In these cases, $C \neq 0$ (and M is not totally geodesic). We deduce that $c=\frac{1}{16}$. It follows that $1-\frac{C}{6}=\frac{1}{16}$. Therefore $C=S=\frac{45}{8}$.

Secondly, we consider Case 1:
In this case, we have

$$
\begin{array}{lll}
h\left(e_{1}, e_{1}\right)=\frac{\sqrt{C}}{2} J e_{1}, & h\left(e_{3}, e_{3}\right)=-\frac{\sqrt{C}}{2} J e_{1}, & h\left(e_{1}, e_{2}\right)=0 \tag{4.8}\\
h\left(e_{1}, e_{3}\right)=-\frac{\sqrt{C}}{2} J e_{3}, h\left(e_{2}, e_{3}\right)=0, & h\left(e_{2}, e_{2}\right)=0
\end{array}
$$

We see from Remark 2.2 that $\delta_{M}=2$. It follows from Lemma 2.3 that M is congruent with φ_{1} or φ_{2}.

Thirdly, we consider Case 2. Applying the similar argument as in Case 1, we can obtain that φ is also congruent with φ_{1} or φ_{2}. Theorem 4.1 is proved.

Corollary 4.1. The values for the norm square of the second fundamental form S of Lagrangian Willmore submanifold with $S=$ constant in $\left(S^{6}(1), J\right)$ are $0,4, \frac{45}{8}, \frac{20}{3}$.

REFERENCES

1. B. Y. Chen, Some pinching and classification theorems for minimal submanifolds, Arch. Math. (Basel) $\mathbf{6 0}$ (1993), 568-578.
2. B. Y. Chen, F. Dillen, L. Verstraelen and L. Vrancken, Two equivariant totally real immersions into the nearly Kaehler 6 -sphere and their characterization, Japan. J. Math. (N.S.) 21 (1995), 207-222.
3. S. S. Chern, M. do Carmo and S. Kobayashi, Minimal submanifolds of a sphere with second fundamental form of constant length, in Functional analysis and related fields (SpringerVerlag, 1970), 59-75.
4. R. Deszcz, F. Dillen, L. Verstraelen and L. Vrancken, Quasi-Einstein totally real submanifolds of the nearly Kaehler 6-sphere, Tohoku Math. J. 51 (1999), 461-178.
5. F. Dillen, L. Verstraelen and L. Vrancken, Classification of totally real 3-dimensional submanifolds of S^{6} (1) with $K \geq \frac{1}{16}$, J. Math. Soc. Japan 42 (1990), 565-584.
6. F. Dillen and L. Vrancken, Totally real submanifolds in $S^{6}(1)$ satisfying Chen's equality, Trans. Amer. Math. Soc. 348 (1996), 1633-1646.
7. N. Ejiri, Totally real submanifolds in a 6-sphere, Proc. Amer. Math. Soc. 83 (1981), 759-763.
8. Z. Guo, H. Li and C. P. Wang, The second variation formula for Willmore submanifolds in S^{n}, Results Math. 40 (2001), 205-225.
9. R. Harvey and H. B. Lawson, Calibrated geometries, Acta Math. 148 (1982), 47-157.
10. Z. J. Hu and H. Li, Willmore submanifolds in a Riemannian manifold, Contemporary geometry and related topics, World Sci. Publishing, River Edge, NJ, 2004, 251-275.
11. H. Li, Willmore submanifolds in a spheres, Math. Res. Lett. 9 (2002), 771-790.
12. H. Li, The Ricci curvature of totally real 3-dimensional submanifolds of the nearly Kaehler 6-sphere, Bull. Belg. Math. Soc. Simon Stevin 3 (1996), 193-199.
13. K. Mashimo, Homogeneous totally real submanifolds of $S^{6}(1)$, Tsukuba J. Math. 9 (1985), 185-202.
14. L. Vrancken, Special Lagrangian submanifolds of the nearly Kaehler 6-sphere, Glasgow Math. J. 45 (2003), 415-426.
15. L. Vrancken, Locally symmetric submanifolds of the nearly kaehler S^{6}, Algebras Groups Geom. 5 (1988), 369-394.
