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G I R T H A N D I N D E P E N D E N C E R A T I O 

BY 

G L E N N H O P K I N S A N D W I L L I A M S T A T O N 

ABSTRACT. Lower bounds are given for the independence ratio 
in graphs satisfying certain girth and maximum degree requirements. 
In particular, the independence ratio of a graph with maximum 
degree A and girth at least six is at least (2A-1)/(A2 + 2A-1) . 
Sharper bounds are given for cubic graphs. 

Professor Erdôs [3] has shown that there exist graphs with very large girth 
and yet very small independence ratio. Such graphs must of course have very 
large maximum degree, for if the maximum degree is bounded above by p, then 
the independence ratio is bounded below by l/(p + l). As a consequence of 
Brooks' Theorem [2], the independence ratio is bounded below by 1/p if one 
assumes maximum degree p, no complete subgraphs on p + 1 vertices, and 
p > 3 . More recently, Albertson, Bollobas and Tucker [1], assuming no com­
plete subgraphs on p vertices have improved the inequality yielded by Brooks' 
Theorem to a strict inequality, except in two cases, which are demonstrated. 
Specializing to the case p = 3, Fajtlowicz [4] and Staton [6, 7] have determined 
constants larger than \ which serve as lower bounds for the independence ratio 
in cubic triangle-free graphs. Staton's constant, ^ , is shown to be best possible 
by an example of Fajtlowicz in which this ratio is achieved. 

In [5], Fajtlowicz showed that graphs with maximum degree p containing no 
complete subgraphs with q vertices have independence ratio at least 2/(p + q). 
When q = 3, this says that graphs with girth at least four have independence 
ratio at least 2/(p + 3). Taking this result as our point of departure, we 
investigate independence ratio in graphs with fixed lower bounds on girth and 
fixed upper bounds on the maximum degree. We concentrate primarily on 
cubic graphs. 

We will employ the ideas and notation introduced by Fajtlowicz in [4] and 
extended by him in [5]. In particular, if G is a finite graph, then a0 will be the 
size of a maximum independent subset of G, n will be the number of vertices 
of G, and the ratio ajn will be called the independence ratio of G. If J is a 
maximum independent vertex set in G, and if p is the maximum degree of G, 
then for l < i < p , Gi(I) = Gt will be the set of all vertices of G which are 

Received by the editors March 17, 1980 and in revised form, July 15, 1980. 
AMS (1980) Classification number: 05. 
Key Words: Girth, independent sets, cubic. 

179 

https://doi.org/10.4153/CMB-1982-024-9 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1982-024-9


180 G. HOPKINS AND W. STATON [June 

adjacent to exactly i vertices of I. The cardinality of Gt will be denoted 
ai = at(I). Note that the G/s are disjoint, so that £f=i at = n-a0. For 1 < i < p , 
Tt will be the set of all vertices in I adjacent to at least one vertex of Gt. Note 
that the T '̂s need not be disjoint. If X and Y are disjoint sets of vertices, then 
[X, Y] will denote the collection of edges with one end in X and one end in Y 

If G is cubic, then we have a 1 + a2 + «3 = ^ " % and counting the number of 
edges in [I, G-I], we get a 1 + 2a2 + 3a 3 = 3a0 . Eliminating a2 from these two 
equations, and solving for the independence ratio, we get 

n 5 5n 

an equation to which we will refer frequently. In [4], Fajtlowicz shows that if G 
contains no triangle, and if I is a maximum independent set, then each vertex 
in I \ has exactly one neighbor in G l5 so that |r\ | = av. This observation is easily 
proven, and we feel free to use it in what follows. 

LEMMA 1. If G has maximum degree p, then 

« o > _ 2 _ _ _ _ « j _ _ 
n p + 2 ft (p + 2) 

Proof. Counting vertices, we get a i + a 2 + - * " + ap = n-a0, and counting 
those edges with an end in I, we get a 1 + 2a 2 + ' * •+pap^pû:o- Doubling the 
equation and subtracting from the inequality yields 

(p + 2 ) a 0 - 2 n > - a 1 + a 3 + 2a 4 + - • - + (p -2 )a p . 

It follows that 

<*o _ 2 ttj Ig = 2 ( f c -2 )q k 

n p + 2 ft (p + 2) ft (p + 2) 

the last summand of which is nonnegative. • 

LEMMA 2. If G has maximum degree p, no 3-cycle, and no 5-cycle, then, for 
k > 2 , each vertex in Gk has at least one neighbor in I —IV 

Proof. Suppose that v is a vertex in Gk and that xl9 x2, • . . , xk are the 
neighbors of v which lie in I. If each xt is in Tl9 then there are vertices 
yi» y2> • • • ? y*c m G^ such that *i is adjacent to yt for 1 < i < fc. Since G has no 
3-cycle, no yt is adjacent to v, and, since G has no 5-cycle, no two of the y4's 
are adjacent. Since the only vertices in I adjacent to the yf's are the V s , the set 

( ! - {* ! , x 2 , . . . , xk}) U{i;, yl9 y 2 , . . . , yk} 

is an independent set larger than I. This contradiction shows that at least one of 
the neighbors of v in I must fail to be in IY • 
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THEOREM 3. If G has maximum degree p, no 3-cycle, and no 5-cycle, then 

a0_ 2 p - l 

rc~p2 + 2 p - r 

Proof, By Lemma 2, each vertex in G 2 UG 3 U • • • U Gp has at least one 
neighbor in I - I V Since each vertex in I — T1 has degree at most p, it follows 
that 

l/-r1i^a2+a3+"'+ap 

p 

But \l-T1\ = a0-a1, and a2 + a 3 + * * *+ «p = n-a0-a1. Thus 

n— a0 — «! P + l w 
« o - « i ^ , or a ! < - a 0 7-

p p - 1 p - 1 
Invoking Lemma 1, we get 

p + l n 

t^o^JZ P " 1 P - 1 
n ~ p + 2 n(p + 2) 

which implies 
a0_ 2 p - l 

n p 2 + 2 p - l * 

We note that the ratio (2p - l ) / (p 2 + 2 p - l ) is larger than the 2/(p + 3) 
obtained by Fajtlowicz for triangle free graphs. For p = 3, Theorem 3 gives an 
independence ratio of at least ^ . We note that in [7], it was shown that the ^ 
ratio may be gotten even under the milder assumption of no triangles. 
However, specializing to cubic graphs, we now obtain a bound larger than ^ . 

LEMMA 4. If G is cubic and contains no 3-cycle, and if I is a maximum 
independent set with the property that a3(I) is maximum, then \T1 — T3 |< 

|r1nr3|. 
Proof. Let v be a vertex in I \ - T 3 , and let x be its neighbor in Gx. We claim 

that x has no neighbor in G2. For if y is a neighbor of x and y e G2, then 
/ = (I-{v}) U {x} is a maximum independent set. But G3(J) = G3(I) U {y}, which 
contradicts the maximality of a3(I). Thus x has no neighbor in G2, so it has two 
neighbors in Gx, say y and z. Now y and z have neighbors yx and zx 

respectively in I \ . If both yx and zx were in Yx — Y^ then the set K = 
(I~ {yi> zi})U{y> z} would be a maximum independent set with G3(K) = 
G3(I) U{JC}, which would contradict the maximality of a3(I). Thus, at least one 
of y-L and zx is in I \ n r 3 . In this manner we may associate with the vertex v of 
r1! —T3 a vertex of I \ n r 3 . Any such association will be one-to-one as may be 
verified readily. It follows that \T1 - T 3 | < | I \ n T3|. • 

https://doi.org/10.4153/CMB-1982-024-9 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1982-024-9


182 G. HOPKINS AND W. STATON [June 

COROLLARY 5. If G is cubic and contains no 3-cycle, and if I is a maximum 
independent set with a3(I) maximum, then 

i) a i < 6 a 3 ; Fajtlowicz [4] 
ii) if G has no 5-cycle, a1^4a3. 

Proof, i) clearly l^ni^Sc^, and ai = |r1-r3| + |r1nr3|. 
ii) By Lemma 2, each vertex in G3 has at least one neighbor in I-Tx, and 

thus at most two neighbors in I \ n r 3 . Hence | r l n r 3 | < 2 a 3 . • 

LEMMA 6. If G is cubic and contains no 3-cycle and no 5-cycle, then 
ax<\a2 + a3. 

Proof. Note that I \ may be split into three disjoint classes: A consisting of 
vertices with a Gx neighbor and two G2 neighbors; JB consisting of vertices 
with a Gi neighbor, a G2 neighbor, and a G3 neighbor; and C consisting of 
vertices with a Gx neighbor and two G3 neighbors. Thus lAl + lBl + l C ^ a x . 
Consider the edge set [ I \ , G2]. The number of edges in [Tl9 G2] is 2|A| + |B|, 
and, by Lemma 2, this number is not bigger than a2. Thus 2|A| + | B | < a 2 . The 
number of edges in [Tl9 G3] is |B| + 2|C|, and, again by Lemma 2, this number 
is not bigger than 2a3 . So |B| + 2 |C |<2a 3 . Adding the two inequalities yields 
2|A| + 2|B| + 2 | C | < a 2 + 2a3 , or a 1 < | a 2 + a3. • 

THEOREM 7. If G is cubic and contains no 3-cycle and no 5-cycle, then 

Proof. Recall that ajn =j — (a1 — a3)l5n. If I is a maximum independent set 
with a3(I) maximum, we have a ! < 4 a 3 , and so ajn>| —3a3/5n. And, since 
a 1 < | a 2 + a 3 = 5(a2 + 2a3) = | ( 4 a 0 - n ) , we have 

a 0 ^ 2 ï(4a0-n)-a3 OL0 5 a3 

n 5 5n n 14 In 

Consider two cases: 
(i) if a 3 / n > ^ , then a 0 M ^ w + 7(è) = 52; and 

(ii) if a 3 / n < è , then a<Jn^-%a) = £. 
Thus, in any case, a 0 /n>5§. 

THEOREM 8. If G is cubic and contains no 3-cycle, no 5-cycle, and no 
1-cycle, then a0M — 53-

Proof. Let I be a maximum independent set with a3(I) maximal. We 
partition I into seven subsets as follows: 

A: vertices with two neighbors in G2, and one in Gx; 
B: vertices with one neighbor in Gl9 one in G2, one in G3; 
C: vertices with one neighbor in G1? two in G3; 
D: vertices with three neighbors in G2; 
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E: vertices with two neighbors in G2, one in G3; 
F : vertices with two neighbors in G3, one in G2; 
H: vertices with three neighbors in G3. 

We let a, b, c, d, e, /, and h be the respective cardinalities of these sets. Thus, 

(1) a + b-hc + d + e + / + h = a0 

(2) a + b + c = « ! 
(3) 2a + b + 3d + 2 e + / = 2a2 

(4) b+2c + e + 2 / + 3h = 3a3. 
Now, let v be a vertex in D. All three of the neighbors of v are in G2; call 
them x, y, and z. We claim that not more than one of these may have a 
neighbor in I \ . For, suppose that x has a neighbor xx in I \ , and that y has a 
neighbor yx in I \ . Let x2 and y2 be the respective Gx neighbors of xx and yx. 
See Fig. 1. 

The set J = (I-{v, xl9 yi})U{x, x2, y, y2} is an independent set larger than I, 
which is a contradiction. Therefore, each vertex in D has at least two G2 

neighbors with no T1 neighbors. A similar argument shows that each vertex in 
E has at least one G2 neighbor with no I \ neighbor. Consider the edge set 
[ I \ , G2], which has exactly 2a + b edges. From Lemma 2, we know that each 
vertex in G2 is incident with at most one edge in [ I \ , G2]. But some vertices in 
G2 contribute no edges at all to [Tl9 G2]. In particular, there are at least 
|(2d + c) vertices in G2 which do not contribute to [ I \ , G2]. Thus 2a + b < 
<*2-2(2d + e), or 4 a + 2 b + 2d + e < 2 a 2 , and, invoking equation (3), 

4a + 2b + 2d + e < 2 a + fc + 3d + 2 e + / 

or 2a + fc<d + e + / . But note that a0-a1 = d + e+f+h. Hence 2a + fo^ 
a 0 - « i . From the proof of Lemma 6, we have 6 + 2c < 2 a 3 . Hence, adding, we 
obtain 

2a + 2b + 2c < a0 - «i + 2a3, 

or 2 a 1 ^ a 0 — a!4-2a3, 

* 1 

Figure 1 
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or a1<^a0 + 3
la3. 

Recalling that a0/n =i-(a1-a3)/5n, we get 

n 5 5ft 

or 

1 6 a 0 _ 2 q3 

15 ft ~ 5 15ft' 

or 

(5) ^ . ^ . V ; n 8 16n 

Recall that in the proof of Theorem 7, we obtained 

(6) ^ _ ^ 2 . 
n 5 5n 

Consider two cases: 
(i) if a3ln>&, we use (5) to get a0/n^§ + £ ( e ) = J i = i§; 

(ii) if a 3 / f t < ê , w e u s e (6) to get a 0 M > § - f ( è ) = i§§ = §§. 
Thus, in any case, a0/ft>§§. • 

We turn our attention at this point to cubic graphs with large girth. If Uj is 
the greatest lower bound for independence ratios of cubic graphs with girth at 
least j , then one may ask for lim^oo Uj. We will show this limit is at least jg. 

LEMMA 9. If G is cubic and has girth bigger than 4fc + l , then 

ai^—^ + f + c - a . 
k 

Proof. Let / be an edge in [Tu G2]. Let v be the end vertex of / in I \ , and 
let w1 be the end vertex of / in G2. Let u be the neighbor of v in Gx. Now let 
yx T̂  v be the other neighbor of wt in I. By Lemma 2, yx is not in I \ , so yx is in 
D U E U F . So either yx has another neighbor vv27^ wx in G2, or yx is in F. If yx 

is in F, we stop. If yx is not in F, we consider w2 and its neighbor y 2 ^ yx in I. 
Imitating the proof of Lemma 2, one may show that y2 is not in T1. So again, 
either y2 is in F, or y2 has a neighbor w3 j= w2 in G2. Continuing in this manner, 
we obtain, after at most k steps, either a vertex z in F or a sequence wl5 

vv 2 , . . . , wk of vertices in G2. Hence, to each of the 2a + b edges in [ I \ , G2], we 
may assign either a vertex z in F or a sequence w l 5 . . . , vvk of distinct vertices 
in G2. 

Suppose that, beginning with / in [r l 5 G2] we obtain v, wl5 w 2 , . . . , wi? z, 
with Z G F , each w in G2. And, beginning with another edge /' in [r l 5 G2] 
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suppose that we obtain v', wi, w 2 , . . . , w-, z', with z' in F, and each w' in G2. 
If z = z', then wt = w{, since z and z' have only one edge into G2. Hence 
yi_1 = yj_1. Let f be the smallest integer such that yt = y^ for some m. The 
vertices u, w l 5 . . . , wt, w^, w ^ _ 1 ? . . . , wi, w' are independent, since the girth is 
at least 4fc + 2. Then let J = (I-{v, yl9..., yt = y'm9 y'm-l9...9 yi, t>7)U{u, 
w 1 ? . . . , wt, w^, w ^ - ! , . . . , wi, w'} is an independent set larger than I. This 
contradiction shows that z^z'. In a similar manner, one may show that if 
beginning with / we obtain w1? w 2 , . . . , wk in G2, and if beginning with /' we 
obtain wi, w2, . . . ,Wk in G2, then the sets {wx, w 2 , . . . , wk} and 
{wi, w 2 , . . . , Wk} are disjoint. It follows that [Tu G2] has no more than (l/fc)a2 + 
/ edges. Hence 2a + fr < ( l / k ) a 2 + / . Adding c to both sides of this inequality 
yields 2a + b + c = a1 + a<(\lk)a2+f + c. • 

THEOREM 10. There exists a sequence {ek} of positive numbers converging to 
zero such that if G is a cubic graph with girth bigger than 4fc + 1, then the 
independence ratio ajn>^—ek. 

Proof. By Lemma 9, a 1 + a < ( l / k ) a 2 + / + c. Adding b + c to both sides 
yields 

(7) 2 a 1 < - a 2 + 5 + 2c+/ . 
k 

Equation (4) from the proof of Theorem 8 says 3a3 = b + 2c + e + 2f + 3h, so 
3 a 3 - / ^ f e + 2c+ / . Substituting this inequality into (7) yields 

(8) 2 a 1 < - a 2 + 3 a 3 - / . 
k 

Now, from the proof of Lemma 6, we take the inequality fc + 2 c < 2 a 3 , and 
substitute it into (7), yielding 

(9) 2 a 1 < ^ a 2 + 2a3 + /. 

Adding (8) and (9), and dividing by four gives 

(10) a i ~ 2 f c a 2 + 4 a 3 ' 

Recall that a0/n=^-(a1-a3)l5n. Substituting (10) into this equation we get 

a o > 2 1 _ 1_ 
n~5 lOnk"2 20n ^ 

Let ek = l/18fc. Since a2/n < 1, we have 

(11) 00*1-1—1.21. 
K ' n 5 10k 20 n 
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Recall from the proof of Theorem 8 that we have 

n 8 16 n 

Consider two cases. If a 3 / n > § - 8 / 9 k , then (5) yields 

n ~ 8 + 1 6 \ 9 9 k / ~ 8 + 72 18fc 

__7_ 1__Z_ 
" 1 8 18fc~18 £k' 

If a 3 / n < | - 8 / 9 f c , then (11) yields 

«o>2 1 W?_JL\ 
w ~ 5 lOfc 20 \9 9k/ 

_2_J_ 1_ 8 7 
" 5 90 10k + 180k " 18 £k' 
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