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A note on the relative growth of products
of multiple partial quotients in the plane

Adam Brown-Sarre and Mumtaz Hussain

Abstract. Let r = [a1(r), a2(r), . . .] be the continued fraction expansion of a real number r ∈ R. The
growth properties of the products of consecutive partial quotients are tied up with the set admitting
improvements to Dirichlet’s theorem. Let (t1 , . . . , tm) ∈ Rm

+
, and let Ψ ∶ N→ (1,∞) be a function

such that Ψ(n) → ∞ as n →∞. We calculate the Hausdorff dimension of the set of all (x , y) ∈ [0, 1)2

such that

max{
m
∏
i=1

at i
n+i(x),

m
∏
i=1

at i
n+i(y)} ≥ Ψ(n)

is satisfied for all n ≥ 1.

1 Introduction

The theory of continued fractions is simple yet extremely useful in characterizing
irrational numbers. It is well known that every irrational x ∈ [0, 1) can be uniquely
expressed as a simple infinite continued fraction expansion of the form

x = [a1(x), a2(x), . . . , ],
where an(x) ∈ N, n ≥ 1, are known as the partial quotients of x . The theory of
continued fractions plays a pivotal role in giving quantitative information on how well
a real number can be approximated by rationals. The main connection is that the nth
convergents of a real number x are good rational approximates for x , summarized as

1
(2 + an+1(x))q2

n(x)
≤ ∣x − pn(x)

qn(x)
∣ ≤ 1

an+1(x)q2
n(x)

.

The nth convergent of x, pn(x)
qn(x) , is a rational number obtained by truncating

the continued fraction expansion of x at the nth term, that is, pn(x)
qn(x) ∶= [a1(x),

a2(x), . . . , an(x)]. This, in turn, gives an alternative form of the famous Jarník–
Besicovitch set; for any τ > 0,

{x ∈ [0, 1) ∶ an(x) ≥ qτ
n(x) for infinitely many n ∈ N} .
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Relative growth rate in the plane 545

The Hausdorff dimension, denoted by dimH, of this set is 2
2+τ (see [16] for more

details). There have been plenty of work regarding the metrical properties of the
growth of partial quotients, for instance, the classical Borel–Bernstein theorem states
that the Lebesgue measure of the set

{x ∈ [0, 1) ∶ an(x) ≥ Ψ(n) for infinitely many n ∈ N} ,

is either zero or full according to the convergence or divergence of the series
∑n 1/Ψ(n). For rapidly increasing functions, Ψ gives no information regarding the
size of this set other than that its Lebesgue measure zero. One of the most appropriate
tools to distinguish between Lebesgue zero sets is the notion of Hausdorff dimension.
Good [6] proved the Hausdorff dimension for the set {x ∈ [0, 1) ∶ an(x) → ∞ as
n →∞} to be 1/2. Later, Łuczak [14] extended Good’s result to the functions of the
type Ψ(n) = cbn

, where b, c > 1. The Hausdorff dimension for an arbitrary function
Ψ was comprehensively established by Wang and Wu in [16].

Since the nth convergents are the best approximations, the continued fractions
approach has proved to be extremely useful in analyzing the approximation properties
of real numbers by rational numbers. However, this “standard approach” is not appli-
cable in higher dimensions. There are various alternative tools proposed to replace
the continued fraction approach to tackle the higher-dimensional approximation
properties of real points by rational points. The dynamics on the space of lattices, for
example, has proved to be useful, but the efficacy of continued fractions is yet to be
matched. There have been many attempts to construct higher-dimensional analogue
of the Gauss map, so that it captures all the features of simultaneous approximation.
The theory is not well developed yet.

Lü and Zhang [13] used the Continued Fraction algorithm to compute the Haus-
dorff dimension of a set of points in the plane with certain growth conditions on the
partial quotients in their continued fraction expansion. To be precise, they considered
the following set:

E = {(x , y) ∈ [0, 1)2 ∶ max{an(x), an(y)} → ∞ as n →∞},

and calculated its Hausdorff dimension to be 3
2 . As stated above, this set is a general-

ization to the plane of a classical result of Good [6].
Recently, it has been shown that the products of the consecutive partial quotients

are associated with the improvements to Dirichlet’s theorem (uniform approximation).
To be precise, building on a work of Davenport and Schmidt [4], Kleinbock and
Wadleigh [12] considered the set

D(ψ) ∶=
⎧⎪⎪⎨⎪⎪⎩

x ∈ R ∶
∃N such that the system ∣qx − p∣ < ψ(t), ∣q∣ < t

has a nontrivial integer solution for all t > N

⎫⎪⎪⎬⎪⎪⎭
,

calling it a set of ψ-Dirichlet improvable numbers, where ψ is a nonincreasing
function. A simple calculation shows the following simple yet extremely important
criterion:

x ∈ D(ψ) ⇐⇒ ∣qn−1x − pn−1∣ < ψ(qn) for all n ≫ 1.
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One of the consequences of this observation is the following inclusion of sets:

G(Φ) ⊂ Dc(ψ) ⊂ G(Φ/4),

where

G(Φ) ∶= {x ∈ [0, 1) ∶ an(x)an+1(x) > Φ(qn(x)) for infinitely many n ∈ N},

and Φ(t) ∶= tψ(t)
1−tψ(t) . We refer the reader to [1–3, 5, 7–9, 17] for the background and

the metrical results related to G(Φ).
In this article, we expand on the work of Lü and Zhang [13] by considering the

relative growth properties of the products of consecutive partial quotients whose
exponents are not necessarily units. Let Ψ ∶ N→ (1,∞) be a function such that
Ψ(n) → ∞ as n →∞. Let (t1 , . . . , tm) ∈ Rm

+ . Define the set

Λ(Ψ) ∶= {(x , y) ∈ [0, 1]2 ∶ max{
m
∏
i=1

at i
n+i(x),

m
∏
i=1

at i
n+i(y)} ≥ Ψ(n) for all n ≥ 1} .

We prove the following result.

Theorem 1.1 Let Ψ be a positive function. Then,

dimH(Λ(Ψ)) =
2 + τ
1 + τ

where log τ = lim sup
n→∞

log log Ψ(n)
n

.

2 Preliminaries

2.1 Hausdorff measure and dimension

Let s > 0, and let E ⊂ Rn . Then, for any ρ > 0, a countable collection {B i} of balls in
Rn with diameters diam(B i) ≤ ρ such that E ⊂ ⋃i B i is called a ρ-cover of E. Let

Hs
ρ(E) = inf∑

i
diam(B i)s ,

where the infimum is taken over all possible ρ-covers {B i} of E. Note that Hs
ρ(E)

increases as ρ decreases and so approaches a limit as ρ → 0. This limit could be zero
or infinity, or take a finite positive value. Accordingly, the s-Hausdorff measure Hs of
E is defined to be

Hs(E) = lim
ρ→0

Hs
ρ(E).

It is easily verified that the Hausdorff measure is monotonic, countably subadditive,
and Hs(∅) = 0. Thus, it is an outer measure on Rn .

For any subset E, one can verify that there exists a unique critical value of s at
which Hs(E) “jumps” from infinity to zero. The value taken by s at this discontinuity
is referred to as the Hausdorff dimension of E and is denoted by dimH E;

dimH E ∶= inf{s ∈ R+ ∶ Hs(E) = 0}.

When s = n, Hn coincides with standard Lebesgue measure on Rn .
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2.2 Continued fractions and Diophantine approximation

The Gauss transformation T ∶ [0, 1) → [0, 1) is defined as

T(0) ∶= 0, T(x) ∶= 1
x
(mod 1), for x ∈ (0, 1).

For x ∈ [0, 1) ∖Q with continued fraction expansion x = [a1 , a2 , . . . ], as in Section,
we have an(x) = [1/T n−1(x)] for each n ≥ 1. Recall the sequences pn ∶= pn(x), qn ∶=
qn(x) has the recursive relation

pn+1 = an+1 pn + pn−1 , qn+1 = an+1qn + qn−1 , n ≥ 0.(2.1)

Thus, pn , qn are determined by the partial quotients a1 , . . . , an which we may write
pn = pn(a1 , . . . , an), qn = qn(a1 , . . . , an). When it is clear which partial quotients are
involved, we denote them by pn , qn for simplicity.

For any integer vector (a1 , . . . , an) ∈ Nn with n ≥ 1, write

In ∶= In(a1 , . . . , an) ∶= {x ∈ [0, 1) ∶ a1(x) = a1 , . . . , an(x) = an}

for the corresponding “cylinder of order n,” i.e., the set of all real numbers in [0, 1)
whose continued fraction expansions begin with (a1 , . . . , an).

We will frequently use the following well-known properties of continued fraction
expansions. They are explained in the standard texts [10, 11].

Proposition 2.1 For any positive integers a1 , . . . , an , let pn = pn(a1 , . . . , an) and
qn = qn(a1 , . . . , an) be defined recursively by (2.1). Then,

In =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

[ pn
qn

, pn+pn−1
qn+qn−1

) if n is even,

( pn+pn−1
qn+qn−1

, pn
qn
] if n is odd.

Thus, its length is given by

1
2q2

n
≤ ∣In ∣ =

1
qn(qn + qn−1)

≤ 1
q2

n
≤ (

n
∏
i=1

a i)
−2

,

since

pn−1qn − pn qn−1 = (−1)n , for all n ≥ 1.

The following result is due to Łuczak [14].

Lemma 2.2 (Łuczak [14]) For any b, c > 1, the sets

{x ∈ [0, 1) ∶ an(x) ≥ cbn
for infinitely many n ∈ N} ,

{x ∈ [0, 1) ∶ an(x) ≥ cbn
for all n ≥ 1}

have the same Hausdorff dimension 1
b+1 .
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Lemma 2.3 (Good [6])

dimH {x ∈ [0, 1] ∶ an(x) → ∞ as n →∞} = 1/2.

The following lemma proved by Marstrand [15] is well known.

Lemma 2.4 For any measurable sets A and B,

dimH(A× B) ≥ dimH A+ dimH B.

3 Proof of Theorem 1.1

To prove Theorem 1.1, we first prove the following proposition for the set

Λ ∶= {(x , y) ∈ [0, 1]2 ∶ max{
m
∏
i=1

at i
n+i(x),

m
∏
i=1

at i
n+i(y)} →∞ as n →∞} .

Proposition 3.1

dimH(Λ) = 3/2.

Proof. It is trivial that

Λ ⊃ {x ∈ [0, 1] ∶
m
∏
i=1

at i
n+i(x) → ∞ as n →∞}× [0, 1)

⊃ {x ∈ [0, 1] ∶ at1
n+1(x) → ∞ as n →∞}× [0, 1).

From Lemmas 2.3 and 2.4, it follows that dimH Λ ≥ 3/2. For the upper bound, we
proceed as follows. Let M ∈ R be fixed. It is clear that

Λ ⊆
∞

⋃
N=1
{(x , y) ∈ [0, 1]2 ∶ max{

m
∏
i=1

at i
n+i(x),

m
∏
i=1

at i
n+i(y)} ≥ M for all n ≥ N}

and the Hausdorff dimension of every set on the right-hand side is the same.
Therefore, we only need to consider one of the sets,

Λ(M) ∶= {(x , y) ∈ [0, 1]2 ∶ max{
m
∏
i=1

at i
n+i(x),

m
∏
i=1

at i
n+i(y)} ≥ M for all n ≥ 1} .

Let (x , y) be an element in Λ(M). Then, for any integer N and any 1 ≤ n ≤ N ,
either∏m

i=1 at i
n+i(x) ≥ M or∏m

i=1 at i
n+i(y) ≥ M. For this reason, either

#{1 ≤ n ≤ N ∶
m
∏
i=1

at i
n+i(x) ≥ M} ≥ [N

2
]

or

#{1 ≤ n ≤ N ∶
m
∏
i=1

at i
n+i(y) ≥ M} ≥ [N

2
] ,
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where the notation [x] denotes the largest integer not greater than x. Thus, if we write

ΛN(M) ∶= {x ∈ [0, 1] ∶ #{1 ≤ n ≤ N ∶
m
∏
i=1

at i
n+i(x) ≥ M} ≥ [N

2
]} ,

then it is straightforward to see that

ΛM ⊆
∞

⋂
N=1
(ΛN(M) × [0, 1))⋃([0, 1) × ΛN(M)).

Next, we find a cover for ΛN(M) × [0, 1). The cover for [0, 1) × ΛN(M)) can be
estimated similarly.

Let l = [ N
2 ] and A be all the possible choices ω = {n1 < n2 < ⋯ < n l}, then the

cardinality ofA is bounded from above by 2N . Denote the integers in [2, N] ∖ ω by ωc .
For any n ≥ 1, set

Dn(ω) ∶=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(a1 , . . . , an , . . . an+m) ∈ Nn+m ∶

m
∏
i=1

at i
r+i(x) ≥ M for r ∈ ω

m
∏
i=1

at i
r+i(y) ≥ M for r ∈ ωc

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
.

By the definition of ΛN(M), we see that

ΛN(M) × [0, 1) ⊆ ⋃
ω∈A
{x ∈ [0, 1) ∶

m
∏
i=1

at i
r+i(x) ≥ M for r ∈ ω} × [0, 1)

= ⋃
ω∈A

⋃
(a1 , . . . ,aN+m)∈DN(ω)

IN+m(a1 , . . . , aN+m) × [0, 1).

For each (a1 , . . . , aN+m) ∈ DN(ω), the set IN+m(a1 , . . . , aN+m) × [0, 1) can be cov-
ered by

IN+m(a1 , . . . , aN+m)−1

many cubes of side length ∣IN+m(a1 , . . . , aN+m)∣. Furthermore, for each
(a1 , . . . , aN+m) ∈ DN(ω),

m
∏
i=1

at i
r+i(x) ≥ M for each r ∈ {n1 , . . . , n l}. Then we have

mtmax

N+m
∑
k=1

log ak ≥ [
N
2
] log M .(3.1)

Define a family of probability measures {μh}h>1 on the unit interval [0, 1]. For each
h > 1 and any (a1 , . . . , aN+m) ∈ Nn+m , define

μ l(In+m) = e
−(N+m)P(h)−h

N+m
∑
k=1

log ak
,

where P(h) = log∑∞j=1
1
jh < ∞.

Fix s > 3
2 and let h = s − 1

2 > 1. Choose M sufficiently large such that

(s − 3
2
) log M

2mtmax
≥ 2p(h) + log 2.(3.2)
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Then the s-dimensional Hausdorff measure of this cover can be estimated as

H
s(Λ(M)) ≪ lim inf

n→∞
∑

ω∈A
∑

(a1 , . . . ,aN+m)∈DN(ω)
∣IN+m(a1 , . . . , aN+m)∣

−1∣IN+m(a1 , . . . , aN+m)∣
s

≤ lim inf
n→∞

∑
ω∈A

∑
(a1 , . . . ,aN+m)∈DN(ω)

N+m
∏
k=1
(ak)

−2(s−1)

≤ lim inf
n→∞

∑
ω∈A

∑
(a1 , . . . ,aN+m)∈DN(ω)

e
−2(s−1)

N+m
∑
k=1

log ak

≤ lim inf
n→∞

2−N ∑
ω∈A

∑
(a1 , . . . ,aN+m)∈DN(ω)

e
−(s− 3

2 )
N+m
∑
k=1

log ak−(s− 1
2 )

N+m
∑
k=1

log ak+N log 2

(3.1),(3.2)
≤ lim inf

n→∞
2−N ∑

ω∈A
∑

(a1 , . . . ,aN+m)∈DN(ω)
e
−(N+m)p(h)−h

N+m
∑
k=1

log ak

≪ lim inf
n→∞

∑
(a1 , . . . ,aN+m)∈NN+m

e
−(N+m)p(h)−h

N+m
∑
k=1

log ak
= 1.

In some of the estimates, every term has been evaluated over ∏m
i=1 at i

r+i(x) ≥ M,
for r ∈ ω, and tmax =max{t1 , t2 , . . . , tm}.

Thus, by the definition of Hausdorff measure, dimH Λ(M) ≤ 3/2 and consequently
dimH Λ ≤ 3/2. ∎

To complete the proof of Theorem 1.1, we consider three cases for τ.

3.1 1 < τ < ∞.

Let 1 < c < τ. By the definition of τ, there exist infinitely many n in an infinite subset
Ω ⊂ N such that

log log Ψ(n)
n

≥ log c, i.e., Ψ(n) ≥ ecn
∀n ∈ Ω.

Thus, for every n ∈ Ω, either
m
∏
i=1

at i
n+i(x) ≥ ecn

or
m
∏
i=1

at i
n+i(y) ≥ ecn

. Then, for at least

one index 1 ≤ i ≤ m, we have either at i
n+i(x) ≥ e cn

m or at i
n+i(x) ≥ e cn

m . Hence,

Λ(Ψ) ⊆
m
⋃
i=1
(Λ1 × [0, 1])⋃

m
⋃
i=1
([0, 1] × Λ2),

where

Λ1 ∶= {x ∈ [0, 1] ∶ at i
n+i(x) ≥ e

cn
m for i.m. n ∈ N} ,

and

Λ2 ∶= {y ∈ [0, 1] ∶ at i
n+i(y) ≥ e

cn
m for i.m. n ∈ N} .
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Therefore, by Lemma 2.2, we have

dimH(Λ(Ψ)) ≤ 1 + lim
c→τ

1
1 + c

= 1 + 1
1 + τ

.

The lower bound is given by a similar argument as above. For this, fix c > τ, then
Ψ(n) ≤ ecn

holds for all n ≥ n0. Therefore, we have the inclusion

Λ(Ψ) ⊇ {x ∈ [0, 1] ∶
m
∏
i=1

at i
n+i(x) ≥ ecn

for all n ≥ n0} × [0, 1]

⊇ {x ∈ [0, 1] ∶ at1
n+1(x) ≥ ecn

for all n ≥ n0} × [0, 1].

Hence, by Lemmas 2.2 and 2.4, we get that

dimH(Λ(Ψ)) ≥ 1 + lim
c→τ

1
1 + c

= 1 + 1
1 + τ

.

3.1.1 τ = ∞.

This case readily follows from the upper bound argument above, that is,

Λ(Ψ) ≤ 1 + lim
τ→∞

1
τ + 1

= 1.

3.1.2 τ = 1.

In this case, for any ε > 0, there exists n0 ∈ N such that for all n ≥ n0, we have Ψ(n) ≤
e(1+ε)n

. Then,

Λ(Ψ) ⊃ {x ∈ [0, 1) ∶
m
∏
i=1

at i
n+i ≥ Ψ(n) for all n ≥ n0} × [0, 1]

⊃ {x ∈ [0, 1) ∶ at1
n+1(x) ≥ e(1+ε)n

for all n ≥ n0} × [0, 1).

Hence, by using Lemmas 2.2 and 2.4, we have

dimH Λ(Ψ) ≥ lim
ε→0

1
1 + 1 + ε

+ 1 = 3
2

.

The upper bound follows from Proposition 3.1 as Λ(Ψ) ⊆ Λ. ∎
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