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Abstract

This paper develops a new framework for fusion that is designed for eliminating the

intermediate data structures involved in the composition of functions that have one ac-

cumulating parameter. The new fusion framework comprises two steps: algebraic fusion and

its subsequent improvement process. The key idea in our development is to regard functions

with an accumulating parameter as functions that operate over the monoid of data contexts.

Algebraic fusion composes each such function with a monoid homomorphism that is derived

from the definition of the consumer function to obtain a higher-order function that computes

over the monoid of endofunctions. The transformation result may be further refined by

an improvement process, which replaces the operation over the monoid of endofunctions

(i.e., function closures) with another monoid operation over a monoid structure other than

function closures.

Using our framework, one can formulate a particular solution to the fusion problem by

devising appropriate monoids and monoid homomorphisms. This provides a unified exposition

of a variety of fusion methods that have been developed so far in different formalisms.

Furthermore, the cleaner formulation makes it possible to argue about some delicate issues

on a firm mathematical basis. We demonstrate that algebraic fusion and improvement in

the world of complete pointed partial orders (CPOs) and continuous functions can correctly

fuse functions that operate on partial and infinite data structures. We also show that subtle

differences in termination behaviours of transformed programmes caused by certain different

fusion methods can be cleanly explained by corresponding improvement processes that have

different underlying monoid structures.

1 Introduction

Modular programming is a widely approved programming discipline and functional

programming languages support fine modularity by encouraging us to write a

programme as a combination of small functions. However, this fine modularity

comes with a cost: those small functions must be interfaced with intermediate data.

For instance, given a composition c ◦ p of two functions of type p, c : list → list, the

producer function p generates the intermediate list that is immediately consumed

by the consumer function c. Though necessary for the composition, the production
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of the intermediate list is usually inessential for the computation. Thus, we would

prefer to replace the composed function by an individual function that does not

produce any intermediate data.

Fusion is a family of programme-transformation techniques which transform a

given pair (p, c) of producer and consumer functions into an individual function that

performs the same computation as the composed function c ◦ p does. A substantial

amount of research has been done in the last few decades to develop fusion

techniques. Wadler (1990) presented a transformation method called deforestation,

which is an algorithmic instance of Burstall and Darlington’s generic unfold-fold

transformation strategy (Burstall & Darlington 1977). Another significant family of

solutions consists of calculational approaches, where programmes are transformed

by stepwise application of a set of equational laws on a few combinators (e.g. generic

recursion operators such as foldr on lists). Examples of such calculational methods

include the promotion theorem (Malcolm 1989), shortcut fusion (Gill et al., 1993)

and its generalizations (Takano & Meijer 1995; Gill 1996; Johann 2002; Ghani

et al., 2005).

1.1 Handling accumulating parameters in fusion transformation

These earlier developments of fusion techniques have been very successful, but

they do not work for a significant class of functions – functions with accumulating

parameters. An accumulating parameter of a recursive function is the function’s

argument on which temporary data is accumulated during recursion. The most

typical function with an accumulating parameter is the tail-recursive list reverse

function rev defined as follows:

rev [] x = x

rev (a :: l) x = rev l (a :: x)

where [] stands for the empty list and a :: x for the addition of an element a to the

head of a list x.

Accumulating parameters are commonly used in functional programming, but a

näıve application of the fold-unfold transformation strategy does not handle them

successfully. Let us consider the above reverse function composed with a map

function and suppose that the input is a non-empty list a1 :: l1 and the initial value

of the accumulating parameter is the empty list []. Then, we have an unfolding:

map f (rev (a1 :: l1) []) = map f (rev l1 [a1])

This does not give any chance of folding, and thus, we can only continue unfolding,

like map f (rev l1 [a1]), map f (rev l2 [a2, a1]), map f (rev l3 [a3, a2, a1]), etc.

This symptom is well known as ‘not reaching the accumulating parameter ’, where the

values accumulated in the parameter have no chance to be consumed by the outer

function application (Chin 1994).

We may instead apply calculational fusion methods such as shortcut fusion to

functions with accumulating parameters if we regard a function with an accumulating

parameter as a function returning a function closure. For example, the list reverse
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function rev can be regarded as a function that takes an input list and returns a func-

tion of type list → list. However, this means that the result of fusion is a higher-order

function, whose evaluation produces function closures instead of intermediate data.

Fusion of functions with accumulating parameters has received much attention

and several solutions have been proposed in different formalisms: the composition

method for attribute grammars (Ganzinger & Giegerich 1984), tree transducer

composition methods (Engelfriet & Vogler 1985; Voigtländer & Kühnemann, 2004)

and fusion methods for functional programmes (Sheard & Fegaras 1993; Kakehi

et al., 2001; Nishimura 2003; Voigtländer 2004; Nishimura 2004). Though built on

different formalisms, these developments have had strong influences on each other,

and thus, often employ similar transformation techniques. (See Section 1.3 for a more

detailed historical background and the relationship among these developments.)

These precursor methods brought significant advances in dealing with accumulat-

ing parameters, but their formulations are very syntactic. That is, each transformation

method is defined by a set of transformation rules that simply operate on the syntax

of programmes. Fusion of functions with accumulating parameters is generally a

complicated task, and thus, the syntactic formulation often prevents easy access

to the significant ideas behind the transformation techniques. For example, trans-

formation methods by Voigtländer (2004) and Nishimura (2003; 2004) make use

of a circular let construction, which is the central mechanism in their methods

to encode the computation of accumulating parameters in the target programme.

However, this encoding, at least at first sight, looks quite tricky. It requires a careful

reading of every transformation rule and a deep understanding of the behaviour of

circular let in order to figure out what global effect is intended by the transformation

system. Furthermore, the syntactic formulation makes it difficult to compare different

fusion methods in a formal setting. The aforementioned methods by Voigtländer

and Nishimura, for instance, seem to have very close transformation powers, but

establishing a formal statement for that would require a considerable amount of

rigorous arguments on their syntactic properties.

It seems that the source of complication is the syntax-oriented formulation of

the existing fusion methods. A more semantic investigation into the transformation

mechanism behind the syntactic formulation would be needed to better understand

the fusion principle, which would enable establishing formal properties, e.g. compari-

son of transformation powers between different methods. On a more technical side, a

more precise semantic analysis into the fusion principle would also contribute to the

establishment of the correctness of each fusion method, i.e. preservation of semantics

by programme transformation. This is a more delicate matter than one might expect.

For example, though Sheard and Fegaras (1993) composed the list reverse function

with itself into the identity function, this transformation is not necessarily correct,

depending on the semantic domain on which the functions operate. The reverse

function composed with itself works as the identity function only if lists of finite

size are considered. It behaves differently if the input is an infinite list: the identity

function returns the infinite list immediately, while the composition of the reverse

functions gets stuck, as the first application of the reverse function falls into an

infinite search for the last element of the infinite list.
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1.2 Algebraic fusion and its improvement

The fusion method proposed in this paper comprises a fusion transformation called

algebraic fusion and a strategy called improvement which is useful for refining and

reasoning about the result of algebraic fusion. The inputs of algebraic fusion are

(a) a producer, which is a recursive function with one accumulating parameter and

(b) a consumer, which is given as a catamorphism to an arbitrary set. In this paper,

we concentrate on the case where the number of accumulating parameters is one.

We discuss the merit and demerit of this decision at the end of this section.

The key objects in algebraic fusion are data contexts, which are formulated as

Σ-contexts in Section 2. Data contexts are data structures with holes, and are used to

represent the information accumulated by functions with an accumulating parameter.

For instance, function rev described in Section 1.1 accumulates the reverse of the

first argument on the second argument. We express this behaviour by the following

unary function revc : list → listc which returns list contexts:

revc [a1, . . . , an] = an :: · · · :: a1 :: [−]

The set of data contexts together with the hole and the substitution operation forms

a monoid, which we exploit for the formulation of the concept of functions with an

accumulating parameter.

Algebraic fusion alone is not always a perfect solution for the fusion problem of

functions with an accumulating parameter. When both producer and consumer have

an accumulating parameter, algebraic fusion transforms their composition into a

higher-order function. For example, algebraic fusion of rev : list → list → list with

itself results in the following higher-order function revrev : list → (list → list) →
(list → list).

revrev [] f = f

revrev (a :: l) f = revrev l (λw . f (a :: w))

which satisfies revrev t (rev u) s = rev (rev t u) s. Having higher-order function

types means that this function operates over function closures.

In the subsequent improvement phase, we shift the operation over function closures

to that over first-order objects. Our strategy is to find a data structure M, a recursive

function g : list → M and a function h : M → (list → list) → (list → list), so

that we can represent the computation of revrev via h, i.e. revrev = h ◦ g. This

is essentially the same as finding a factorization of the result of algebraic fusion.

Improvement provides a convenient method for solving this problem. For example,

with the aid of improvement, we can find a decomposition of revrev into the list

append function app and a simple function h that takes only constant time (so,

g = app and M = list → list). By a simple calculation, we can turn revrev into a

function that operates over list rather than list → list.

We present the aforementioned idea of algebraic fusion and improvement as a

general theory for the fusion of functions with one accumulating parameter. The

merits of our solution are addressed as follows.
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A meta-theory for different fusion techniques. The theory of algebraic fusion and

improvement does not represent a single concrete fusion method, but it rather

serves as a ‘meta-theory’ of various fusion methods. That is, we can obtain

different fusion methods by instantiating appropriate algebraic structures to the

theory. This makes it possible to give a uniform account of different fusion

methods on a common platform, and consequently, makes it easier to compare

these different methods. More significantly, it also contributes to showing the

essence of the intricate business of dealing with accumulating parameters, giving

rise to a better understanding of the transformation mechanism behind them. We

will demonstrate the strength of algebraic fusion and improvement by showing

that central techniques of certain existing fusion methods are instances of our

theory.

Distinction between delicate semantic differences. Our framework provides a theory

for the fusion of functions whose semantics is given by a denotational semantics.

This allows us to pinpoint the semantic differences that we discussed in Section 1.1.

The development of algebraic fusion is carried out within the elementary

universal algebra over the world of sets and functions (i.e. category Set). In

this setting, the correctness of algebraic fusion and improvement is shown by

an equation between two expressions about set-theoretic functions over total

and finite data structures. Next, we redevelop algebraic fusion and improvement

for functions over partial and infinite data structures. This is carried out by

switching the underlying semantic domain to the world of ω-complete pointed

partial orders and continuous functions (i.e. category ωCPPO). In this setting, the

correctness of improvement is characterized by an inequation unless a strictness

condition is satisfied. The inequation expresses that the improved programme is

more likely to terminate, and (informally) corresponds to the fact that some fusion

transformations change termination behaviour of functions before and after the

transformation. More details on this topic will be discussed in Sections 3 and 4.

Straightforward equational reasoning. For each particular instance of an intended fu-

sion transformation task, our fusion method gives a small set of calculational laws

that allow simple equational reasoning (occasionally involving a few inequations

when infinite and partial data structures are under consideration).

These (in)equational laws are not only useful for the derivation of a fusion

result but also are essential in establishing the correctness of each particular trans-

formation task. We will later show that the central technique behind the circular let

construction found in Voigtländer’s or Nishimura’s method mentioned above can

be formulated in our framework, so that it is amenable to equational reasoning,

using the standard fixpoint semantics. This establishes a simple correctness proof

of the technique and also reveals a new semantic perspective of it.

Being a meta-theory, algebraic fusion and improvement give neither immedi-

ate indications of automatic strategy for deriving transformation methods nor

any guarantee of improved efficiency. As our theory is primarily concerned with

semantic properties of transformed programme, it is not suitable for estimating

the computational cost of the transformed programme. This is in contrast to the
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previous solutions that are based on syntactic formulations in which the analysis

of computational cost is more manageable (see (Voigtländer 2007), for example).

However, we think that this is not necessarily a deficiency of our solution. We claim

that our solution has a definite advantage over the syntactically formulated ones in

establishing and analysing semantic properties of transformation. For instance, the

standard proof techniques of denotational semantics can be applied to establish the

correctness of the circular let construction technique.

We study the case where the number of accumulating parameters is one. This

simplifies the task of formulating the concept of functions with an accumulating

parameter, and more importantly, the simplification helps introducing a concise

formulation of such functions in terms of the theory of universal algebra and

monoids. The price to pay is that algebraic fusion can handle fewer producer

functions than some existing fusion methods (e.g. Voigtlander’s and Nishimura’s).

However, we believe that our semantic formulation is enough to capture the common

usage of an accumulating parameter.

1.3 Related work

The earliest attempts for ‘fusion’ of programmes with accumulating parameters are

traced back to 1980s. Ganzinger and Giegerich (1984) proposed a composition

method for attribute grammars. Engelfriet and Vogler (1985) developed a com-

position method for tree transducers (corresponding to the case where consumer

functions have no accumulating parameters). Later Kühnemann (1998) proposed

an improved method that can compose two macro tree transducers (corresponding

to functions that have accumulating parameters) subject to certain restrictions.

This method was further extended by Voigtländer and Kühnemann to allow more

transducers to be composed (Voigtländer & Kühnemann, 2004). Attribute grammars

and tree transducers are close cousins and both include mechanisms for computing

with accumulating parameters (Fülöp & Vogler 1998). Both formalisms are based on

formal language theory and provide a general platform for fusion transformation,

but their formulations look complicated for non-specialists, and this makes their

core techniques not easily accessible by a wider audience.

Kakehi et al. (2001) proposed a fusion law for a list-processing combinator called

dmap. This combinator satisfies a quite simple calculational rule, which works

elegantly for a less general but important class of functions. Voigtländer (2004)

presented a fusion method, called lazy composition, that incorporates the macro

tree transducer composition technique presented in (Voigtländer & Kühnemann,

2004) into the functional setting. He makes use of circular let to eliminate multiple

traversals of the input data. The second author (Nishimura 2003; Nishimura 2004)

applied the attribute grammar composition technique to obtain a fusion result as a

first-order programme from a higher-order intermediate transformation result that

is obtained by shortcut fusion. He also makes use of circular let in his higher-order

removal technique. However, his higher-order removal method sticks to certain

particular syntactic forms of programme, which makes it difficult to capture its

essence.
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The solution proposed in this paper gives a cleaner presentation of the second

author’s transformation on the higher-order programmes representing the interme-

diate programme transformation result. Pushing the intricacies related to circularity

construction into a suitable monoid structure, we can derive transformation laws in

a strikingly simple way.

Here, we point out that the computational structure that is employed in the

development of our general fusion law coincides with other formalisms. The

computational diagram in Figure 3 of Section 5 looks very similar to those found

in the literature on the composition techniques of attribute grammars and tree

transducers (say, Figure 11 in (Giegerich 1988)). Interestingly, similar diagrams also

appear in the definition of the composition of morphisms in Abramsky’s geometry-

of-interaction construction (Abramsky 1996) and Joyal et al.’s Int-construction (Joyal

et al.1996). Though out of the scope of the present paper, it would be interesting to

study a deeper connection between these different formalisms.

Shortcut fusion by Gill et al. (1993) is one of the most successful fusion methods

in practice, because of its conceptual simplicity: a single fusion law for programme

calculation is derived from the parametricity principle (Wadler 1989; Ma & Reynolds

1991). Shortcut fusion has been refined and extended in many directions. Takano

et al. generalized it to arbitrary algebraic data types (Takano & Meijer 1995).

Svenningsson (2002) proposed to make use of a dual of the shortcut fusion rule

in order to eliminate accumulating parameters, but his method can only deal

with accumulating parameters in consumer functions. Gill (1996) introduced a

combinator called augment to accommodate shortcut fusion with the list append

function. Johann generalized the augment combinator to arbitrary algebraic data

types (Johann 2002) and proved its correctness. Ghani et al. analysed the underlying

mathematical structure of the augment combinator, and proposed a more general

scheme called monadic augment (Ghani et al., 2005; Ghani et al.2006).

Algebraic fusion proposed in the present paper looks similar to shortcut fusion,

but is built on different theoretical foundation, namely, the theory of monoids and

universal algebra. Built on different concepts, algebraic fusion and shortcut fusion

are thus closely related, but have many subtle differences as well. See Section 2.5 for

a detailed discussion of this topic.

Ohori and Sasano recently proposed lightweight fusion in (Ohori & Sasano

2007), for the purpose of providing to a practical compiler a built-in fusion engine

that can fuse a wide range of typical recursive function definitions with a low

additional compiler overhead. In the paper, it is demonstrated that their method

can fuse a certain class of functions that have extra parameters. However, as

their fusion method is a particular instance of Burstall and Darlington’s unfold-

fold transformation strategy, it also suffers from the problem of ‘not reaching the

accumulating parameter’ in dealing with accumulating parameters, as we have seen

in Section 1.1.

Hu et al. (1999) proposed a method to derive a function with an accumulating

parameter from an ordinary recursive function over a first-order data type. They took

a different formulation of the concept of function with an accumulating parameter

from ours; they used higher-order catamorphisms, i.e. initial algebra morphisms
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induced by algebras whose carrier sets are function spaces. While this formulation

makes their methods very flexible, it captures some functions that do not use

the second parameter as an accumulating parameter. For example, functions that

actually reduce the size of the second parameter are included in their formulation.

We exclude such functions from our consideration by employing data contexts as a

representation of functions over data structures.

Some fusion techniques (such as (Johann 2002) and (Nishimura 2003)) base their

correctness argument on the observational equivalence of programmes. Our fusion

method is built on denotational semantics, and hence, it does not immediately

imply correctness up to observational equivalence. Establishing the connection to

the observational equivalence property requires a more precise semantic argument,

which we leave for future investigation.

1.4 Outline

The rest of the paper is organized as follows. In Section 2, we give a formal definition

of algebraic fusion and shows its correctness. The relationship with shortcut fusion

and its derivatives is also mentioned. In Section 3, we introduce the concept of im-

provement. We demonstrate that the fusion law of Kakehi et al.’s dmap combinator

can be derived by algebraic fusion and improvement. Section 4 exploits a more

sophisticated monoid supporting partial and infinite data structures and shows that

algebraic fusion and improvement can achieve the same programme transformation

as the second author’s previous work. Finally, Section 7 concludes the paper.

1.5 Notations

We use Σ,Δ for ranging over single-sorted first-order signatures. By o ∈ Σ(n), we

mean that o is an n-ary operator in Σ. A Σ-algebra is a pair (D, {δo}o∈Σ) of a carrier

set D and a family δ of functions indexed by operators in Σ such that δo ∈ Dn → D

for each o ∈ Σ(n). A Σ-algebra homomorphism from a Σ-algebra (D, δ) to another Σ-

algebra (E, ε) is a function h ∈ D → E such that h(δo(d1, . . . , dn)) = εo(h(d1), . . . , h(dn))

holds for any operator o ∈ Σ(n) and d1, . . . , dn ∈ D. The pair of the set TΣ of closed

Σ-terms and the family ι of functions defined by

ιo(t1, . . . , tn) = o(t1, . . . , tn) (o ∈ Σ(n), t1, . . . , tn ∈ TΣ)

is called initial Σ-algebra, which satisfies the following universal property: for any Σ-

algebra (D, δ), there exists a unique Σ-algebra homomorphism (a.k.a. catamorphism)

from (TΣ, ι) to (D, δ). We will write this homomorphism by �δ� ∈ TΣ → D.

We fix a finite set A (ranged over by a) for the elements of lists. We frequently

use the following signatures throughout this paper:

nat = {Z0, S1} tree = {L0, N2} list = {[]0} ∪ {a :: (−)1 | a ∈ A}

A monoid is a tuple (M, e ∈ M,� ∈ M2 → M) of a carrier set M, a unit e and

multiplication operator � such that they obey the following axioms:

e � x = x x � e = x (x � y) � z = x � (y � z) (1)
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A monoid homomorphism h from M = (M, e, �) to N = (N, ε, ∗) is a function

h ∈ M → N obeying the following axioms:

h(e) = ε h(x � y) = h(x) ∗ h(y) (2)

We write h : M → N to mean that h is a monoid homomorphism from M to N.

2 Algebraic fusion

In Section 1, we saw that classical fusion strategies such as fold-unfold transforma-

tion do not work well with producer functions with an accumulating parameter. We

generalize this problem as follows.

We consider the following two functions:

prod ∈ TΔ → TΣ → TΣ cons ∈ TΣ → D

and assume that prod uses the second parameter as an accumulating parameter,

like x in the definition of rev. The fusion problem that we tackle is to remove the

intermediate Σ-terms passed from prod to cons in the computation of the following

expression:

cons (prod x y)

The fusion process highly depends on how the concept of functions with an

accumulating parameter is formulated. Therefore, we first discuss two character-

istic features of such functions: sequential accumulation and no inspection of the

accumulating parameter,1 and adopt them as an assumption that classify functions

with an accumulating parameter. We then formulate the assumptions by means of

polynomial algebras over the monoid of Σ-contexts. We believe that our formulation

covers most functions with an accumulating parameter in common use.

2.1 Σ-contexts

Definition 2.1

For a signature Σ, by Σ+ we mean the signature extended with a nullary operator [−]

denoting a hole (without loss of generality, we assume that [−] �∈ Σ(0)). A Σ-context

k is simply a Σ+-term. We write CΣ for the set of Σ-contexts instead of TΣ+ .

Σ-contexts are simply Σ-terms which may contain some holes, such as

S(S([−])) ∈ Cnat N(L,N([−], [−])) ∈ Ctree a :: a′ :: [] ∈ Clist (3)

We equip CΣ with a monoid structure given by the hole [−] and the substitution

operation − · −, which is recursively defined by

[−] · k = k

(o(k1, . . . , kn)) · k = o(k1 · k, . . . , kn · k)

1 The latter restriction corresponds to that in every state of a macro tree transducer (Engelfriet & Vogler
1985), we can not inspect the arguments of the state except the recursion argument.
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It is easy to check that [−] and − · − obey the axioms (1) of monoids, hence the

following is a reasonable definition.

Definition 2.2

The monoid CΣ of Σ-contexts is the triple (CΣ, [−],− · −)

Next, we introduce the monoid of endofunctions over a set D.

Definition 2.3

The function space monoid D ⇒ D over a set D is the triple (D → D, idD,− ◦ −)

Each Σ-context k gives an endofunction λt . k[t] ∈ TΣ → TΣ, where k[t] is the

Σ-term obtained by filling all holes in k with t. For instance, Σ-contexts in (3) give

the following functions:

λx . S(S(x)) ∈ Tnat → Tnat, λx . N(L,N(x, x)) ∈ Ttree → Ttree

λx . a :: a′ :: [] ∈ Tlist → Tlist

The above correspondence between Σ-contexts and functions is summarized as a

function fillΣ ∈ CΣ → TΣ → TΣ defined by:

fillΣ k = λt . k[t]

The subscript of fill may be omitted when it is clear from context. The function

fill is injective, so we can think of CΣ as a part of the function space TΣ → TΣ.

Furthermore, fillΣ respects the monoid structures of CΣ and TΣ ⇒ TΣ, i.e.

fillΣ([−]) = idTΣ
, fillΣ(k · k′) = fillΣ(k) ◦ fillΣ(k′)

Therefore, fillΣ is a monoid homomorphism from CΣ to TΣ ⇒ TΣ.

2.2 Assumptions on functions with an accumulating parameter

We discuss the assumption that we make on functions with an accumulating

parameter.

There should be no objection to the function rev and the following function count

using the second argument as an accumulating parameter.

count L x = S x

count (N (l, r)) x = S (count l (count r x))

This function adds the number of leaves in the first argument to the second argument.

On the other hand, what kinds of functions do not use the second argument as

an accumulating parameter? The first example is the following function repl:

repl L x = x

repl (N (l, r)) x = N (repl l x, repl r x)

which replaces all the leaves in the first argument with the second argument. In

this paper, we exclude repl from consideration, because there is no accumulation of

information from the second argument, and the flow of information accumulation
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is discontinuous, i.e. the result of a recursive call is not passed to another recursive

call as an accumulating parameter (unlike rev or count).

The second example is the following function rem:

rem [] x = x

rem (a :: l) (b :: l′) = rem l l′

rem (a :: l) [] = rem l []

This function removes the first n elements from the list in the second argument,

where n is the length of the list in the first argument (when it is longer than

the second argument, rem simply returns []). This function contradicts the idea of

accumulation, as it removes information on the second argument. In general, pattern

matching on the second argument allows us to write functions that reduce the size

of the second argument.

In order to exclude such functions, we introduce two assumptions on the notion

of functions with an accumulating parameter.

The first assumption is that functions with an accumulating parameter sequentially

accumulate information on their second argument. We express this assumption in

the following way: such a function f ∈ TΔ → TΣ → TΣ computes the value of a

Δ-term o(t1, . . . , tn) by

f (o (t1, . . . , tn)) = g1 ◦ (f ti1 ) ◦ g2 ◦ · · · ◦ gl ◦ (f til ) ◦ gl+1 (4)

where i1, . . . , il ∈ {1, . . . , n} are indices of subterms and g1, . . . , gl+1 ∈ TΣ → TΣ are

functions which accumulate information on their argument.

The second assumption is that functions with an accumulating parameter do not

inspect the contents of the accumulating parameter. This assumption requires that

each function gi in (4) can only accumulate some information on its argument,

but not inspect it. We express this requirement by the existence of a Σ-context ki
(1 � i � l + 1) such that

gi = fill ki

We summarize the above two assumptions. We regard f ∈ TΔ → TΣ → TΣ as a

function with an accumulating parameter if it satisfies the following condition:

(C-prod-s) f ∈ TΔ → TΣ → TΣ is a recursive function defined by

f (o (t1, . . . , tn)) = (fill k1) ◦ (f ti1 ) ◦ (fill k2) ◦ · · · ◦ (fill kl) ◦ (f til ) ◦ (fill kl+1) (5)

where o ∈ Δ(n), i1, . . . , il ∈ {1, . . . , n} are indices of subterms and k1, · · · , kl+1 ∈ CΣ

are Σ-contexts representing accumulation of information.

Functions repl and rem are excluded from consideration as they do not satisfy

(C-prod-s).

We note that there are some functions that use the second argument as an

accumulating parameter but fail to satisfy (C-prod-s). An example of such function

is repl′ defined by

repl′ L x = x

repl′ (N (l, r)) x = N (repl′ l L, repl′ r (N (L, x))
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Although in the second line each recursive call of repl′ does not take the result of

the other call as an argument, it is reasonable to recognize repl′ as a function with

an accumulating parameter.

Therefore, there is a room for discussion about whether (C-prod-s) is the definitive

formulation of functions with an accumulating parameter. However, the producer

functions appearing in typical fusion problems of functions with an accumulating

parameter satisfy (C-prod-s), and, more importantly, (C-prod-s) has a concise

mathematical reformulation in terms of polynomial algebras over monoids. Therefore,

we stop pursuing the concept of accumulating parameters here, and proceed to the

development of algebraic fusion. In the next section, we give a reformulation of

(C-prod-s).

2.3 Polynomial Σ-algebras over monoids

First, we observe that the following recursive function f′ ∈ TΔ → CΣ:

f′ (o (t1, . . . , tn)) = k1 · (f′ ti1 ) · k2 · · · · · kl · (f′ til ) · kl+1 (o ∈ Δ(n)) (6)

where k1, . . . , kl+1 ∈ CΣ are Σ-contexts taken from (5), satisfies

fill ◦ f′ = f (7)

since fill is a monoid homomorphism. With (7) in mind, we transform (C-prod-s) to

the following equivalent condition (C-prod-s’):

(C-prod-s’) f ∈ TΔ → TΣ → TΣ is a function such that f = fill ◦ f′ for some

recursive function f′ ∈ TΔ → CΣ defined by (6).

Next, we introduce polynomials over a monoid, which generalize the pattern of the

right-hand side of (6) for arbitrary monoids.

Definition 2.4

Let M = (M, e, �) be a monoid. An n-variable polynomial P over M is a formal

expression

P [X1, . . . , Xn] = c1 � Xi1 � c2 � Xi2 � · · · � Xil � cl+1

where n, l are natural numbers, c1, . . . , cl+1 are elements in M called coefficients and

1 � i1, . . . , il � n are indices of the formal parameter variables. For readability, we

suppress writing units e in the body of a polynomial.2

For example,

Reva::−[X] = X · (a :: [−]) (over Clist)

CountN[X1, X2] = (S [−]) · X1 · X2 (over Cnat)

are polynomials over monoids.

Each polynomial over a monoid denotes a function over the carrier set of the

monoid.

2 By defining suitable unit and multiplication operator, one can turn the set of polynomials over M to
the monoid that satisfies a similar universal property owned by polynomial rings – this is the reason
for the name ‘polynomial’.
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Definition 2.5

Let P be an n-variable polynomial over M = (M, e, �). We define a function

fun(P ) ∈ Mn → M by

fun(P ) (x1, . . . , xn) = P [x1/X1, . . . , xn/Xn]

We further transform (C-prod-s’) to the following equivalent condition (C-prod-s”)

by means of polynomials over monoids.

(C-prod-s”) f ∈ TΔ → TΣ → TΣ is a function such that f = fill ◦ f′ for some

recursive function f′ ∈ TΔ → CΣ defined by

f′ (o (t1, . . . , tn)) = fun(Po)(f
′ t1, . . . , f

′ tn)

where o ∈ Δ(n) and Po is an n-variable polynomial over CΣ.

We notice that f′ is nothing but the initial Δ-algebra homomorphism determined by

the following Δ-algebra:

(CΣ, {fun(Po)}o∈Δ).

The essential information of this algebra is, of course, the family {Po}o∈Δ of

polynomials indexed by operators in Δ. This observation leads us to the notion

of polynomial algebras over monoids.

Definition 2.6

A polynomial Σ-algebra over a monoid M = (M, e, �) is a family P of polynomials

indexed by operators in Σ such that for each o ∈ Σ(n), Po is an n-variable polynomial

over M. A polynomial Σ-algebra P over M induces a Σ-algebra (M, {fun(Po)}o∈Σ),

which we also refer to as P .

An example of a polynomial list-algebra over Clist is the family

Rev = {Rev[] = [−],Reva::−[X] = X · (a :: [−])} (8)

This polynomial algebra induces the initial list-algebra homomorphism �Rev� ∈
Tlist → Clist, which has the following recursive definition:

�Rev� [] = [−]

�Rev� (a :: l) = �Rev� l · (a :: [−])

This function satisfies

�Rev� [a1, . . . , an] = an :: . . . :: a1 :: [−] (9)

Another example of a polynomial tree-algebra over Cnat is

Count = {CountL = S [−],

CountN[X1, X2] = (S [−]) · X1 · X2}

The initial tree-algebra homomorphism �Count� ∈ Ttree → Cnat has the following

recursive definition:

�Count� L = S [−]

�Count� (N (l, r)) = (S [−]) · �Count� l · �Count� r
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By the notion of polynomial algebras over monoids, we finally obtain a concise

formulation (which is equivalent to (C-prod-s) and its variants) of the assumption

on functions with an accumulating parameter.

(C-prod) f ∈ TΔ → TΣ → TΣ is a function such that f = fill ◦ �Prod� for some

polynomial Δ-algebra Prod over CΣ.

It is easy to observe that rev = fill ◦ �Rev� and count = fill ◦ �Count�. Hence, rev

and count satisfy (C-prod).

We next introduce the concept of images of polynomial algebras along monoid

homomorphisms.

Definition 2.7

Let M = (M, e, �),N = (N, ε, ∗) be monoids, h : M → N be a monoid homomor-

phism and P be the following n-variable polynomial over M:

P [X1, . . . , Xn] = c1 � Xi1 � c2 � Xi2 � · · · � Xil � cl+1.

We define an n-variable polynomial h(P ) over N by

h(P )[X1, . . . , Xn] = h(c1) ∗ Xi1 ∗ h(c2) ∗ Xi2 ∗ · · · ∗ Xil ∗ h(cl+1)

We call this polynomial the image of P by h.

Lemma 2.8

Let M,N be monoids, h : M → N be a monoid homomorphism and P be an

n-variable polynomial over M. Then, we have

fun(h(P )) (h m1, . . . , h mn) = h (fun(P ) (m1, . . . , mn))

Proof

By the axioms (2) of homomorphism. �

This simple lemma implies an important property of polynomial Σ-algebras. In

general, given a Σ-algebra (D, δ) and a function f ∈ D → E, there is no generic way

to obtain a Σ-algebra (E, ε) so that f becomes a Σ-algebra homomorphism from

(D, δ) to (E, ε). However, this is possible if δ is a polynomial algebra and f is a

monoid homomorphism; for ε, we take the image of P by h.

Definition 2.9

Let M,N be monoids, h : M → N be a monoid homomorphism and P be

a polynomial Σ-algebra over M. The image of P by h (denoted by h(P )) is the

following polynomial Σ-algebra over N:

{h(Po)}o∈Σ

The following proposition is a variant of the promotion theorem (Malcolm 1989),

and plays an essential role in this paper.

Proposition 2.10

For any monoid M,N, monoid homomorphism h : M → N and polynomial

Σ-algebra P over M, h is a Σ-algebra homomorphism from P to h(P ). Therefore

h ◦ �P� = �h(P )�
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Proof

Follows from Lemma 2.8. �

2.4 Algebraic fusion

We now return to the original problem. The aim of algebraic fusion is to fuse a

producer function and a consumer function:

prod ∈ TΔ → TΣ → TΣ cons ∈ TΣ → D

where prod uses the second argument as an accumulating parameter. As discussed

before, we express this assumption by the following condition (C-prod):

(C-prod) There exists a polynomial Δ-algebra Prod over CΣ such that prod =

fill ◦ �Prod�.

We also impose the following condition on the consumer:

(C-cons) cons = �δ� for some Σ-algebra (D, δ)

This is a common requirement in the study of fusion transformations. In other

words, cons is a recursive function defined by

cons (o (t1, . . . , tn)) = δo (cons t1, . . . , cons tn) (o ∈ Σ(n)).

We note that any function satisfying (C-prod) also satisfies (C-cons), since

prod = fill ◦ �Prod� = �fill(Prod)�

by Proposition 2.10.

2.4.1 The idea of algebraic fusion

We first explain the idea of algebraic fusion by a simple example. The target

expression of the fusion problem is

mapf (rev x y) (10)

where mapf ∈ Tlist → Tlist is the map function defined by

mapf [] = []

mapf (a :: l) = f a :: (mapf l)

Functions rev and mapf satisfy (C-prod) and (C-cons), respectively.

We analyse the computation of (10) with the case where x is instantiated with a

three-element list x3 = [a1, a2, a3]. First, the computation of subexpression rev x3 y

appends the reverse of x3 to y. Since rev satisfies (C-prod), this computation can

be decomposed into two steps: (a) calculation of a list-context representing the

accumulation and (b) the execution of the accumulation by filling the hole of the
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context with y.

rev x3 y

= fill (�Rev� x3) y by (C-prod)

= fill (a3 :: a2 :: a1 :: [−]) y by (9)

= a3 :: a2 :: a1 :: y

We name the underlined list-context k3. Next, function mapf consumes the above

list and yields the result r3 of the computation of mapf (rev x3 y):

r3 = (f a3) :: (f a2) :: (f a1) :: mapf y

The goal of algebraic fusion is to refine the above computation steps so that we

can compute r3 directly from x3. We observe that:

1. The part of r3 which depends on x3 is the first three elements. We separate

this part by introducing a new function φ3:

φ3 = λw . (f a3) :: (f a2) :: (f a1) :: w

With this, we have r3 = φ3 (mapf y).

2. If we can compute φ3 directly from x3, then the goal is achieved because the

computation of φ3 (mapf y) directly gives r3 without creating the intermediate

list a3 :: a2 :: a1 :: y. So, we reduce the fusion problem to the quest of a

function computing φ3 from x3.

In fact, we can calculate φ3 from k3 by the following function mapf ∈ Clist →
Tlist → Tlist, which extends the domain and codomain of mapf to Clist and

Tlist → Tlist, respectively:

mapf [−] w = w

mapf [] w = []

mapf (a :: l) w = f a :: (mapf l w)

This function is derived by adding to the recursive definition of mapf (a) an

extra argument w to each line of mapf and (b) an extra line that handles

the case where the first argument is a hole (the first line). The argument w is

simply passed to each recursive call of mapf , and is returned when the first

argument is a hole.

Function mapf satisfies

φ3 = mapf k3 = mapf (�Rev� x3) (11)

3. The extension mapf is not merely a function, but also a monoid homomor-

phism from Clist to Tlist ⇒ Tlist. The equality

mapf [−] = id

is obvious. We can also show the following equality by induction on the

structure of k1:

mapf (k1 · k2) = (mapf k1) ◦ (mapf k2)
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Hence, we can refine the computation of the right-hand side of (11) by

Proposition 2.10:

φ3 = mapf (�Rev� x3) = �mapf(Rev)� x3

From this, �mapf(Rev)� ∈ Tlist → Tlist → Tlist is a good candidate for the function

which calculates φ3 directly from x3. The recursive definition of �mapf(Rev)� is

�mapf(Rev)� [] x = x

�mapf(Rev)� (a :: l) x = �mapf(Rev)� l (f a :: x)

and we see that this function performs the list reversal and mapping of f at the

same time. Furthermore, it is easy to show that for any x, y ∈ Tlist,

�mapf(Rev)� x (mapf y) = mapf (rev x y) (12)

So, we take �mapf(Rev)� as the answer of the fusion problem.

2.4.2 Algebraic fusion

Algebraic fusion is a straightforward generalization of the fusion steps described

above. Let prod ∈ TΔ → TΣ → TΣ and cons ∈ TΣ → D be functions satisfying

(C-prod) and (C-cons), respectively.

The first step of algebraic fusion is to extend the domain and codomain of cons

from TΣ and D to CΣ and D → D, respectively. This is done by adding two things

to the recursive definition of cons: (a) an extra argument w and (b) a line which

handles the case where the argument is a hole. This extension yields the following

recursive function cons ∈ CΣ → D → D:

cons [−] w = w

cons (o (k1, . . . , kn)) w = δo (cons k1 w, . . . , cons kn w) (o ∈ Σ(n))

The extra argument w is distributed to each recursive call of cons (for o ∈ Σ(0), w

is simply discarded), and is returned only when the argument is the hole.

This extension can also be described as follows: from the Σ-algebra (D, δ)

determining the consumer, we construct a Σ+-algebra (D → D, δ); its algebra

structure δo is defined by

δ[−] = idD

δo(f1, . . . , fn) = λx ∈ D . δo(f1(x), . . . , fn(x)) (o ∈ Σ(n))

Then, cons is exactly the initial Σ+-algebra homomorphism �δ� : CΣ → D → D.

The extension cons satisfies the following two properties that are essential to

algebraic fusion.

Proposition 2.11

For any cons ∈ TΣ → D satisfying (C-cons),

1. the function cons ∈ CΣ → D → D constructed as above is a monoid

homomorphism from CΣ to D ⇒ D, and

2. for any k ∈ CΣ and t ∈ TΣ, we have cons k (cons t) = cons (fill k t).
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Proof

(1) and (2) Easy induction on the structure of Σ-contexts. �

Next, we take the image of the polynomial Δ-algebra Prod mentioned in (C-prod)

by cons. The image is a polynomial Δ-algebra cons(Prod) over D ⇒ D. Then, the

result of the algebraic fusion of prod and cons is defined by the initial Δ-algebra

homomorphism

�cons(Prod)� ∈ TΔ → D → D

The following theorem, which generalizes (12), shows the correctness of algebraic

fusion.

Theorem 2.12

For any t ∈ TΔ and u ∈ TΣ, we have

�cons(Prod)� t (cons u) = cons (prod t u)

Proof

Let t ∈ TΔ and u ∈ TΣ. Then,

�cons(Prod)� t (cons u)

= cons (�Prod� t) (cons u) by Proposition 2.10

= cons ((fill ◦ �Prod�) t u) by Proposition 2.11-2

= cons (prod t u) by (C-prod)

�

2.5 Relationship with shortcut fusion

In this section, we informally compare algebraic fusion and a variant of shortcut

fusion (Gill et al., 1993) through a fusion problem where intermediate data structures

passed from producers to consumers are tree-terms.

We discuss the variant of shortcut fusion in a call-by-name functional language

with parametric polymorphism (such as Haskell), and allow ourselves to use

Reynolds’ parametricity principle. We fix k : τ → τ → τ and z : τ for some type τ, and

write cata : ∀α.(α → α → α) → α → tree → α for the polymorphic catamorphism

constructor for tree-terms (we identify the signature tree and the algebraic data type

corresponding to tree). We consider the following minor extension of the shortcut

fusion for tree-terms using the combinator build′ : (∀α.(α → α → α) → α → α →
α) → tree → tree defined by

build′ g y = g (N) L y

where (N) is the curried version of the data constructor N in tree. This combinator

allows us to write functions with an extra argument, including those with an

accumulating parameter. For instance, function repl′ in Section 2.2 can be expressed

as repl′ = build′ ◦ f, where f is the following recursive function:

f L p q x = x

f (N (l, r)) p q x = p (f l p q q) (f r p q (p q x))
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By Reynolds’ parametricity principle (Wadler 1989; Ma & Reynolds 1991), for

every g : ∀α.(α → α → α) → α → α → α, the following equality holds:

g k z (cata k z y) = cata k z (build′ g y)

From this, we obtain build′/cata fusion: for any producer prod : ρ → tree → tree

and consumer cons : tree → τ satisfying

(B-prod) ∃f.prod = build′ ◦ f and

(B-cons) cons = cata k z

respectively, we have

f x k z (cons h) = cons (prod x h) (13)

The key observation that relates build′/cata fusion and algebraic fusion is that

the type

∀α.(α → α → α) → α → α → α

of the first argument of build′ can be identified with the set of tree-contexts, because

this type has a canonical initial tree+-algebra structure by the parametricity principle

(see (Plotkin & Abadi 1993) for a general exposition). Furthermore, the computation

of build′ coincides with that of filltree. This observation leads us to the following

relationship between build′/cata fusion and algebraic fusion:

build′/cata fusion Algebraic fusion

(B-prod) · · · (C-prod)

(B-cons) · · · (C-cons)

Fusion law (13) · · · Theorem 2.12

The difference between build′/cata fusion and algebraic fusion is that condition

(B-prod) is much weaker than condition (C-prod), i.e. build′/cata fusion accepts

more producers than algebraic fusion (e.g. function repl and repl′ in Section 2.2). In

algebraic fusion, producers are supposed to perform primitive recursion over tree-

terms and calculate values in the way given by polynomial tree-algebras. On the

other hand, build′/cata fusion has no such constraints on producers, and the domain

of producers can be of any type. The major source of this difference stems from

the technical foundation on which each fusion transformation is built. Algebraic

fusion is formulated in the world of sets and functions using the universal property

of initial algebras (Proposition 2.10), while build′/cata-fusion is formulated in a

second-order logic for a polymorphic programming language with the parametricity

principle.

Both build′/cata fusion and algebraic fusion are driven by essentially the same

fusion law; fusion law (13) corresponds to the equation in Theorem 2.12. Therefore,

algebraic fusion performs the same fusion transformation as build′/cata-fusion,

but accepts fewer producers than build′/cata-fusion. However, there is a merit in

considering fusion of a restricted class of producers. The programme structure of

producers is preserved by algebraic fusion in an explicit form, which makes the

subsequent manipulation process easier. In the next section, we propose the concept
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of improvement, which is useful for reasoning about and transforming results of

algebraic fusion.

3 Improving algebraic fusion

Algebraic fusion does not impose any restriction on the codomain of consumers, so

it can be a function space D → D′. When such consumers are supplied to algebraic

fusion, it results in higher-order functions of type TΔ → (D → D′) → (D → D′).

Below we see an example of this situation.

Example 3.1

Function rev satisfies both (C-prod) and (C-cons). Hence, we can apply algebraic

fusion to fuse rev with itself. We first extend rev to a monoid homomorphism

rev : Clist → (Tlist → Tlist) ⇒ (Tlist → Tlist).

rev [−] w x = w x

rev (a :: l) w x = rev l w (a :: x)

rev [] w x = x

We then take the image of the polynomial list-algebra Rev by rev, and obtain the

following polynomial list-algebra rev(Rev) over (Tlist → Tlist) ⇒ (Tlist → Tlist):

rev(Rev) = {rev(Rev[]) = idTlist→Tlist

rev(Reva::−)[X] = X ◦ (λwx . w(a :: x))}

Hence, the result of the algebraic fusion of rev with itself is �rev(Rev)� ∈ Tlist →
(Tlist → Tlist) → (Tlist → Tlist). Below we write this function revrev for short. The

recursive definition of revrev, with the second argument being explicit, is

revrev [] w = w

revrev (a :: l) w = revrev l (λx . w (a :: x))

and from Theorem 2.12, revrev satisfies

revrev t (rev u) s = rev (rev t u) s (14)

Although revrev does not create intermediate lists passed between rev and itself,

it is not a satisfactory result because revrev is a higher-order function that creates a

closure for each recursive call of itself. Can we represent the computation of revrev

by means of some other data structures, say M? We capture this question as a

decomposition (factorization) problem of revrev into two functions f, h such that

h ◦ f = revrev.

M

h

��
Tlist

f ��

revrev
�� (Tlist → Tlist) ⇒ (Tlist → Tlist)

(15)

In general, finding a nontrivial decomposition is difficult, particularly if we do

not use any structure of revrev and its (co)domain. We propose a decomposition

strategy, called improvement, that exploits the underlying structures of algebraic
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fusion. Suppose that we find a monoid M = (M, e, �) and a monoid homomorphism

h : M → (Tlist → Tlist) ⇒ (Tlist → Tlist) such that the single coefficient λwx . w (a :: x)

in rev(Rev) can be given by some kc ∈ M via h, i.e.

h(kc) = λwx . w (a :: x)

Then, by replacing the coefficient and multiplication symbol ◦ in rev(Rev) with kc
and �, respectively, we obtain the following polynomial algebra P over M:

P = {P[] = e, Pa::−[X] = X � kc}

This clearly satisfies

h(P ) = rev(Rev)

hence, from Proposition 2.10, we obtain a decomposition:

�h(P )� = h ◦ �P� = revrev

Generalizing this pattern, we introduce the concept of improvement.

Definition 3.2

An improvement of the result of algebraic fusion of prod ∈ TΔ → TΣ → TΣ satisfying

(C-prod) and cons ∈ TΣ → D satisfying (C-cons) is a triple of:

• a monoid M = (M, e, �),

• a monoid homomorphism h : M → D ⇒ D, and

• a polynomial Δ-algebra P over M such that h(P ) = cons(Prod),

where cons and Prod are the monoid homomorphism and polynomial algebra

defined in Section 2.4.

We note that there always exist two trivial improvements: (i) M = CΣ, h = cons, P =

Prod and (ii) M = D ⇒ D, h = idD, P = cons(Prod).

Finding an improvement takes the following steps.

1. We first guess a monoid M and a monoid homomorphism h : M → D ⇒ D

that seem suitable for improvement. This choice requires some heuristics, and

depends on the specific fusion problems.

2. For every coefficient c ∈ D → D in the polynomial algebra cons(Prod), we find

an element ĉ ∈ M such that h(ĉ) = c. If we can not find such an element in M

for some coefficient c, then we go back to step 1 and try another monoid.

3. Suppose that the component of the polynomial algebra cons(Prod) at o ∈ Σ(n)

is the following:

cons(Prodo)[X1, . . . , Xn] = c1 ◦ Xi1 ◦ c2 ◦ Xi2 ◦ · · · ◦ cl ◦ Xil ◦ cl+1

where c1, . . . , cl+1 ∈ D → D and 1 � i1, . . . , il � n (c.f. Definition 2.4). We then

define the following n-variable polynomial Po over M:

Po[X1, . . . , Xn] = ĉ1 � Xi1 � ĉ2 � Xi2 � · · · � ĉl � Xil � ĉl+1

By gathering Po, we obtain a polynomial Δ-algebra P over M such that

h(P ) = cons(Prod)
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To summarize, when we restrict the decomposition problem (15) to the case where

M is a monoid and h is a monoid homomorphism, the problem is reduced to finding

appropriate elements in M that give coefficients in cons(Prod) via h.

We note that there seems to be no universal method to find a monoid and monoid

homomorphism that guarantee the improvement of efficiency or readability of any

result of algebraic fusion.

We devote the rest of this paper for demonstrating the strength and flexibility

of improvement. We begin with a small example of improvement, then gradually

increase the size and complexity, using sophisticated monoids and monoid homo-

morphisms. We cover several examples of improvement that give alternative accounts

of existing (post-) fusion transformations.

The first example is an improvement of revrev.

Example 3.3

(Continued from Example 3.1) We improve revrev with the following parameters.

Monoid We take the opposite monoid (Tlist ⇒ Tlist)
op of Tlist ⇒ Tlist, that is, the

monoid (Tlist → Tlist, idTlist
, •) where the multiplication • is defined by

f • g = g ◦ f.

Monoid homomorphism We take h = λfg . g ◦ f. This is a monoid homomorphism

since

h idTlist
= λg . g = idTlist→Tlist

(h f ◦ h f′) g = g ◦ f′ ◦ f = g ◦ (f • f′) = h (f • f′) g

Polynomial algebra We take the following polynomial list-algebra P over (Tlist ⇒
Tlist)

op:

P = {P[] = idTlist

Pa::−[X] = X • (λx . a :: x)}

This satisfies h(P ) = rev(Rev) since the single coefficient in P is mapped to the

one in rev(Rev), i.e.

h (λx . a :: x) = λwx . w (a :: x)

These data give an improvement �P� ∈ Tlist → Tlist → Tlist of revrev via h, and it

satisfies

revrev = �h(P )� = h ◦ �P�. (16)

We notice that the recursive definition of �P�, with the second argument being

explicit, coincides with that of the list concatenation function app:

�P� [] x = x

�P� (a :: l) x = ((�P� l) • (λx . a :: x)) x

= a :: (�P� l x)
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Therefore, we simply write app for �P� below. From Theorem 2.12, we obtain a law

about rev and app:

rev (rev s t) u

= revrev s (rev t) u by (14)

= h (app s) (rev t) u by (16)

= rev t (app s u) by definition of h

Taking the opposite monoid is crucial in the improvement of revrev. If we take

the ordinary function space monoid Tlist ⇒ Tlist and the monoid homomorphism

h′ : (Tlist ⇒ Tlist) → (Tlist → Tlist) ⇒ (Tlist → Tlist) defined by h′ = λfg . f ◦ g, we

can not find a polynomial algebra P ′ that gives an improvement. This is because

the single coefficient λwx . w (a :: x) can not be represented by h′, i.e. there is no

f ∈ Tlist → Tlist such that

λgx . f (g x) = λwx . w (a :: x).

3.1 Algebraic fusion of Kakehi et al.’s Dmap with itself

We next see a bigger example of algebraic fusion and improvement. In (Kakehi

et al., 2001), Kakehi et al. studied a combinator called dmap (dm for short),

which abstracts a common pattern shared by list-manipulating functions with an

accumulating parameter. For functions f, g ∈ A → A,3 dmg
f ∈ Tlist → Tlist → Tlist is

recursively defined by

dmg
f [] = λx . x

dmg
f (a :: l) = λx . (f a) :: (dmg

f l ((g a) :: x))

Kakehi showed that the following fusion law holds:

dmg′

f′ (dmg
f l l′) = (dmf′◦g

f′◦f l) ◦ (dmg′

f′ l
′) ◦ (dmg′◦f

g′◦g l) (17)

where f, g, f′, g′ ∈ A → A are functions.

In this section, we demonstrate that the above law can also be derived using

algebraic fusion and improvement. By carefully choosing a monoid in improvement

process, we derive (17) without using explicit induction over l or l′.

Algebraic fusion of dmap and dmap. We first apply algebraic fusion to dmg
f as a

producer and dmg′

f′ as a consumer. It is easy to check that dmg′

f′ satisfies (C-cons).

To see that dmg
f satisfies (C-prod), we first transform the definition of dmg

f using

3 In this article, the domain and range of f, g are fixed to A because we only consider the list of elements
in A (see Section 1.5). In general, f, g can be any function in A → B, and the discussion in this section
is not affected by this generalization.
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function composition and fill:

dmg
f [] = λx . x

= fill [−]

dmg
f (a :: l) = λx . (f a) :: (dmg

f l ((g a) :: x))

= (λx . (f a) :: x) ◦ (dmg
f l) ◦ (λx . (g a) :: x)

= (fill ((f a) :: [−])) ◦ (dmg
f l) ◦ (fill ((g a) :: [−]))

This definition matches with the condition (C-prod-s), and the following polynomial

list-algebra Dmg
f over Clist gives dmg

f:

Dmg
f = {(Dmg

f)[] = [−],

(Dmg
f)a::−[X] = ((f a) :: [−]) · X · ((g a) :: [−])}

We proceed to apply algebraic fusion. We extend dmg′

f′ to a monoid homomor-

phism dm
g′

f′ : Clist → (Tlist → Tlist) ⇒ (Tlist → Tlist):

dm
g′

f′ [−] w = w

dm
g′

f′ [] w = λx . x

dm
g′

f′ (a :: l) w = λx . (f′ a) :: (dm
g′

f′ l w ((g′ a) :: x))

then calculate the image of Dmg
f by dm

g′

f′:

dm
g′

f′ (Dmg
f) = {dm

g′

f′ ((Dmg
f)[]) = idTlist→Tlist

dm
g′

f′ ((Dmg
f)a::−)[X] = α(f′, g′, f a) ◦ X ◦ α(f′, g′, g a)}

where α(f, g, a) is the coefficient defined by

α(f, g, a) = dm
g

f(a :: [−]) = λwx . (f a) :: (w ((g a) :: x))

The result of the algebraic fusion of dmg
f and dmg′

f′ is thus the initial list-algebra

homomorphism �dm
g′

f′(Dmg
f)� ∈ Tlist → (Tlist → Tlist) → (Tlist → Tlist), but we do

not display its recursive definition here.

Improvement. We improve the above result of algebraic fusion with the following

data.

Monoid We take the product monoid (Tlist ⇒ Tlist) × (Tlist ⇒ Tlist)
op whose

multiplication will be denoted by �. Explicitly, � is defined as follows:

(f, g) � (f′, g′) = (f ◦ f′, g • g′) = (f ◦ f′, g′ ◦ g)

The first and second projection functions π1, π2 from this product monoid are

monoid homomorphisms.

Monoid homomorphism We take the function h ∈ (Tlist → Tlist) × (Tlist → Tlist) →
(Tlist → Tlist) → (Tlist → Tlist) defined by

h (p, q) = λw . (p ◦ w ◦ q)

One can easily verify that this is a monoid homomorphism from (Tlist ⇒ Tlist) ×
(Tlist ⇒ Tlist)

op to (Tlist → Tlist) ⇒ (Tlist → Tlist).

https://doi.org/10.1017/S095679680800693X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680800693X


Algebraic fusion and its improvement 805

Polynomial algebra Any coefficient of the form α(f, g, a) can be given by h and the

following element A(f, g, a) ∈ (Tlist → Tlist)× (Tlist → Tlist) in the product monoid:

A(f, g, a) = (λx . (f a) :: x, λx . (g a) :: x)

i.e. h (A(f, g, a)) = α(f, g, a). Therefore, the following polynomial list-algebra DM

over (Tlist ⇒ Tlist) × (Tlist ⇒ Tlist)
op:

DM = {DM[] = (idTlist
, idTlist

)

DMa::−[X] = A(f′, g′, f a) � X � A(f′, g′, g a)}

satisfies

dm
g′

f′(Dmg
f) = h(DM)

From this, we obtain an improvement �DM� ∈ Tlist → (Tlist → Tlist) × (Tlist → Tlist)

of the result of algebraic fusion of dmg
f and dmg′

f′ , and it satisfies

�
dm

g′

f′ (Dmg
f)
�

= �h(DM)� = h ◦ �DM� (18)

Decomposition of the improvement. We calculate the images of DM by π1 and π2.

π1(DM[]) = idTlist

π1(DMa::−)[X] = (λx . (f′ (f a)) :: x) ◦ X ◦ (λx . (f′ (g a)) :: x)

π2(DM[]) = idTlist

π2(DMa::−)[X] = (λx . (g′ (f a)) :: x) • X • (λx . (g′ (g a)) :: x)

By expanding the recursive definition of �π1(DM)� and �π2(DM)�, we obtain

�π1(DM)� = dmf′◦g
f′◦f �π2(DM)� = dmg′◦f

g′◦g

Furthermore, for any l ∈ Tlist, we have

(dmf′◦g
f′◦f l, dmg′◦f

g′◦g l)

= (�π1(DM)� l, �π2(DM)� l)

= (π1(�DM� l), π2(�DM� l)) by Proposition 2.10

= �DM� l (19)

From this, we derive the law of dmap:

dmg′

f′ (dmg
f l l′)

=
�
dm

g′

f′ (Dmg
f)
�
l (dmg′

f′ l
′) by Theorem 2.12

= h (�DM� l) (dmg′

f′ l
′) by (18)

= h (dmf′◦g
f′◦f l, dmg′◦f

g′◦g l) (dmg′

f′ l
′) by (19)

= (dmf′◦g
f′◦f l) ◦ (dmg′

f′ l
′) ◦ (dmg′◦f

g′◦g l) by definition of h

4 Algebraic fusion and improvement for partial and infinite data structures

To extend the development in the previous sections to partial and infinite data

structures, we replace sets and functions with ω-complete pointed partial orders
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(CPO for short) and continuous functions. For CPOs D,E, by [D → E] ([D →⊥ E]),

we mean the CPO of (strict) continuous functions. The concept of continuous

Σ-algebras is fairly standard; see, for example, (Goguen et al., 1977).

Definition 4.1

A continuous Σ-algebra is a pair (D, δ) of a CPO D and a family δ of continuous

functions indexed by operators in Σ such that δo ∈ [Dn → D] for each o ∈ Σ(n).

A (strict) continuous Σ-algebra homomorphism f ∈ (D, δ) → (D′, δ′) is a (strict)

continuous function f ∈ [D → D′] satisfying

f(δo(x1, . . . , xn)) = δ′
o(f(x1), . . . , f(xn)) (x1, . . . , xn ∈ D)

for each o ∈ Σ(n).

It is well known that we can construct an initial object T∞
Σ = (T∞

Σ , in∞) in the

category of continuous Σ-algebras and strict continuous Σ-algebra homomorphisms

(see, e.g. (Goguen et al., 1977)). This construction yields a CPO T∞
Σ consisting of

partial and infinite Σ-terms, including total ones. For example, T∞
nat is the CPO of

lazy natural numbers whose Hasse diagram is illustrated as follows:

S(S(Z))
��� S(S(· · · ))

S(Z)
��� S(S(⊥))

����

Z
���

� S(⊥)

���
��

⊥
Below we assume TΣ ⊆ T∞

Σ without loss of generality. We identify each operator

in Σ and the corresponding continuous term constructor over T∞
Σ . For a contin-

uous Σ-algebra (D, δ), we write �δ� for the unique strict continuous Σ-algebra

homomorphism from T∞
Σ to (D, δ).

The universal property of the initial object asserts that for each strict continuous

Σ-algebra homomorphism h ∈ (D, δ) → (D′, δ′), we have h ◦ �δ� = �δ′�. However,

it should be weakened to an inequality if h is a (not necessarily strict) continuous

Σ-algebra homomorphism.

Proposition 4.2

Let h ∈ (D, δ) → (D′, δ′) be a continuous Σ-algebra homomorphism. Then,

1. �δ′� � h ◦ �δ�,
2. for any t ∈ TΣ, we have �δ′� t = h (�δ� t), and

3. �δ′� = h ◦ �δ� if and only if h is strict.

Next, we introduce the concept of continuous monoids, which are simply monoid

objects in the category of CPOs and continuous functions.

Definition 4.3

A continuous monoid is a monoid D = (D, e, �) where D is a CPO and the

multiplication is a continuous function − � − ∈ [D × D → D]. A (strict) continuous

monoid homomorphism h : (D, e, �) → (E, ε, ∗) is a (strict) continuous function

h ∈ [D → E] satisfying the laws of monoid homomorphisms.
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For a CPO D, by [D ⇒ D], we mean the continuous monoid ([D → D], idD,− ◦ −)

of the continuous endofunctions over D.

The definition of monoid polynomials, polynomial Σ-algebras and images of

polynomial algebras remains the same. A polynomial Σ-algebra Q over a continuous

monoid D now determines a continuous Σ-algebra, since each n-variable polynomial

over D determines an n-ary continuous function. A (strict) continuous monoid

homomorphism h : D → E is then a (strict) continuous Σ-algebra homomorphism

from Q to h(Q) (c.f. Proposition 2.10).

We write C∞
Σ for the carrier CPO of the continuous Σ+-algebra T∞

Σ+ . The

substitution operator − · − ∈ [(C∞
Σ )2 → C∞

Σ ] is continuous, and the triple (C∞
Σ , [−],

− · −) forms the continuous monoid C∞
Σ of Σ-contexts. The action of filling a Σ-

context with a Σ-term is a strict continuous monoid homomorphism fill∞Σ : C∞
Σ →

[T∞
Σ ⇒ T∞

Σ ]. The subscript of fill∞Σ may be omitted when it is clear from context.

We introduce the algebraic fusion for partial and infinite data structures. Let

prod ∈ [T∞
Δ →⊥ [T∞

Σ → T∞
Σ ]] cons ∈ [T∞

Σ →⊥ D]

be continuous functions satisfying the following conditions:

(C-prod’) There exists a polynomial Δ-algebra Prod over C∞
Σ such that prod =

fill∞ ◦ �Prod� (hence, prod should be strict with respect to the first argument).

(C-cons’) There exists a continuous Σ-algebra (D, δ) such that cons = �δ� (hence,

cons should be strict).

Similar to the algebraic fusion for total and finite data structures, we first extend the

domain and codomain of the consumer function to C∞
Σ and [D → D], respectively.

This extension yields a strict continuous monoid homomorphism cons : C∞
Σ →

[D ⇒ D] satisfying

cons k (cons t) = cons (fill∞ k t)

for any k ∈ C∞
Σ and t ∈ T∞

Δ (c.f. Proposition 2.11).

We then calculate the image of Prod by cons and obtain the following strict

continuous Δ-algebra homomorphism:

�cons(Prod)� ∈ [T∞
Δ →⊥ [D → D]]

We call this the result of algebraic fusion of prod and cons.

Theorem 4.4

For any x ∈ T∞
Δ and y ∈ T∞

Σ , we have

�cons(Prod)� x (cons y) = cons (prod x y).

Proof

Since cons is strict, we have cons ◦ �Prod� = �cons(Prod)� by Proposition 4.2-3.

Therefore, we can prove this theorem in the same way as the equational reasoning

in the proof of Theorem 2.12. �

The concept of improvement is affected by the transition from the world of sets

and functions to that of CPOs and continuous functions. Suppose that we find

a continuous monoid M, a polynomial Δ-algebra P over M and a continuous
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monoid homomorphism h : M → [D ⇒ D] such that h(P ) = cons(Prod). From

Proposition 4.2, we have

1. �cons(Prod)� = �h(P )� � h ◦ �P�,
2. for any t ∈ TΔ, we have �cons(Prod)� t = h (�P� t), and

3. �cons(Prod)� = h ◦ �P� if and only if h is strict.

Unlike the improvement in Section 3, we now have the equality �cons(Prod)� = h ◦
�P� if and only if h is strict; in general, we merely have the inequality �cons(Prod)� �
h ◦ �P�, which means that h ◦ �P� is more likely to terminate than the result of the

algebraic fusion. To examine this phenomenon in detail, we revisit the example of

algebraic fusion of rev with itself.

Example 4.5

In the continuous setting, the reverse function rev is interpreted as a continuous

function rev∞ ∈ [T∞
list →⊥ [T∞

list → T∞
list]] that satisfies (C-prod’) and (C-cons’). By

applying algebraic fusion to rev∞ and rev∞ in the same way as in Example 3.1, we

obtain revrev∞ ∈ [T∞
list →⊥ [[T∞

list → T∞
list] → [T∞

list → T∞
list]]], which satisfies

revrev∞ t (rev∞ u) = rev∞ (rev∞ t u)

by Theorem 4.4.

Similar to Example 3.3, we can improve revrev∞ by

• the continuous monoid [T∞
list ⇒ T∞

list]
op,

• the continuous monoid homomorphism h∞ : [T∞
list ⇒ T∞

list]
op → [[T∞

list →
T∞

list] ⇒ [T∞
list → T∞

list]] defined by h∞ = λfg . g ◦ f, and

• the polynomial list-algebra P∞ over [T∞
list ⇒ T∞

list]
op, which is the same as P

in Example 3.3 except that P ’s single coefficient λx . a :: x ∈ Tlist → Tlist is

replaced with the continuous function λx . a :: x ∈ [Tlist → Tlist].

However, here a subtlety about termination behaviour slips in; the continuous

monoid homomorphism h∞ is not strict because

h∞(⊥) = λg . g ◦ ⊥ �= ⊥

Hence, from Proposition 4.2, we merely have the following inequality:

revrev∞ t � h∞ (�P∞� t)

and the inequality becomes an equality only for total and finite lists t ∈ Tlist. As

we have seen in Example 3.3, �P∞� coincides with the continuous list-concatenation

function app∞. From Theorem 4.4, we obtain:

rev∞ (rev∞ t s) u = revrev∞ t (rev∞ s) u

� h∞ (app∞ t) (rev∞ s) u

= rev∞ s (app∞ t u)

and the inequality becomes an equality for t ∈ Tlist. This indicates that the

improvement does not have the same termination behaviour as revrev∞ for partial

and infinite lists. This correctly captures the actual differences between rev (rev t s) u

and rev s (app t u) in call-by-name languages with lazy lists.
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Fig. 1. Diagram for (f, g) ∈ D�.

Example 4.6

In the continuous setting, the recursive definition of dmg
f in Section 3.1 gives a

continuous function dmg
f ∈ [T∞

list →⊥ [T∞
list → T∞

list]]. We can safely replace monoids

and monoid homomorphisms used in the derivation process of (17) with continuous

counterparts, because monoid homomorphisms h, π1, π2 used in the process are all

strict. Hence, the fusion law (17) holds for partial and infinite lists as well.

5 A semantic higher-order removal

The motivation for introducing the concept of improvement in Section 3 was

that when both a producer and a consumer have an accumulating parameter, their

algebraic fusion (hence, shortcut fusion) yields a higher-order function. This problem

has already been recognized as a folklore problem, and the second author tackled it

in (Nishimura 2003; Nishimura 2004). He introduced a programme transformation,

called higher-order removal, that reduces the order of computation. His transforma-

tion is designed for a call-by-name functional language, and transforms a result of

shortcut fusion:

f : τ → (σ → σ) → (σ → σ)

satisfying certain syntactic conditions to a function of the following type:

f′ : τ → (σ × σ) → (σ × σ)

which essentially performs the same computation as f.

Here, we give a similar programme transformation in a simple and clean way using

the concept of improvement with appropriate monoids and monoid homomorphisms.

Let D be a CPO. We introduce two continuous monoids D�, D∞ and two strict

continuous monoid homomorphisms αD : D� → D∞, βD : D∞ → [[D → D] ⇒ [D →
D]] (the subscript of α, β may be omitted) that play a central role in the semantic

representation of higher-order removal given below.

1. The first continuous monoid is D� = ([D → D] × [D2 → D], (idD, π2),@),

where the multiplication (f, g) @ (f′, g′) is defined by

(f, g) @ (f′, g′) = (f′ ◦ f, λ(x, y) . g (x, g′ (f x, y)))

To give an intuitive understanding of this monoid, we give a graphical

presentation of elements of D� by circuits processing bidirectional (say,

inbound and outbound) information flow. We draw the circuit corresponding

to (f, g) ∈ D�, as shown in Figure 1. It processes inbound and outbound

information by f and g, respectively. This circuit has an asymmetry in that g

https://doi.org/10.1017/S095679680800693X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680800693X


810 S. Katsumata and S. Nishimura

can refer to the input of f. Under this graphical presentation, the input–output

relation of (f, g) @ (f′, g′) can be captured by the following series circuit:

Fig. 2. Diagram for (f, g) @ (f′, g′).

2. The second continuous monoid is D∞ = ([D2 → D2], idD2 ,∞) whose multipli-

cation f ∞ g is defined by:

f ∞ g(x, y) = let (( , q), (r, )) = Y (λ((p, ), ( , s)) . (f (x, s), g (p, y))) in (r, q)

where Y ∈ [[(D2)2 → (D2)2] → (D2)2] is the least fixed point operator. If we

are allowed to use recursive let expressions (see Appendix A for the formal

definition), an alternative definition of f ∞ g is

f ∞ g(x, y) = let (p, q) = f (x, s) ; (r, s) = g (p, y) in (r, q)

A graphical presentation of this monoid is the following: an element of this

monoid is a processing box with two input terminals on the left and two

output terminals on the right. The multiplication of two elements in this

monoid corresponds to the wiring of two processing boxes as follows:

Fig. 3. Diagram for f ∞ g.

The lower output of the left box is connected to the lower input of the right

box, while the upper output of the right box is feedbacked to the upper input

of the left box.

3. Two strict continuous monoid homomorphisms α : D� → D∞ and β : D∞ →
[[D → D] ⇒ [D → D]] are defined by

α (f, g) = λ(x, y) . (f x, g (x, y))

β f = λwx . let (p, q) = f (x, w p) in q

(see Appendix A for the verification of α and β being monoid homomor-

phisms). Below we give the behaviour of α and β in terms of the action on

circuit diagrams.

• Monoid homomorphism α flips over g in Figure 1 and regards the entire

circuit as a processing box with two input terminals on the left and two

output terminals on the right.
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Fig. 4. Action of β(f).

• Monoid homomorphism β constructs from f ∈ [D2 → D2] an action which

maps the one-input one-output processing box w drawn on the left in

Figure 4 to the one-input one-output circuit described on the right in

Figure 4.

We note that the composition β ◦ α behaves as follows:

β (α (f, g)) = λwx . g (x, w (f x)) (20)

Definition 5.1

Let f ∈ [T∞
Σ →⊥ [[D → D] → [D → D]]] be a result of algebraic fusion such that f

can be improved with the monoid D�, the strict continuous monoid homomorphism

β ◦α and a polynomial Σ-algebra P over D�. Then, we call �α(P )� ∈ [T∞
Σ →⊥ [D2 →

D2]] the higher-order removal of f.

There is an equivalent but more syntactic description of higher-order removal.

Suppose that a result f of algebraic fusion has the following recursive definition for

each o ∈ Δ(n):

f(o(t1, . . . , tn)) = (λwx . g1 (x, w (f1 x))) ◦ f ti1 ◦ (λwx . g2 (x, w (f2 x))) ◦
· · · ◦ f til ◦ (λwx . gl+1 (x, w (fl+1 x)))

where l is a natural number, 1 � i1, . . . , il � n are indices of subterms and

f1, . . . , fl+1 ∈ [D → D] and g1, . . . , gl+1 ∈ [D2 → D] are continuous functions.

That f can be written in this form is equivalent to the improvability of f with

some polynomial algebra P over D�. Then, the higher-order removal of f is a strict

continuous function f′ ∈ [T∞
Σ →⊥ [D2 → D2]] defined by

f′(o(t1, . . . , tn))(x, y) =let (q1, s1) = (f1 x, g1 (x, r1)) ;

(p2, r1) = f′ ti1 (q1, s2) ;

· · ·
(qj , sj) = (fj pj , gj (pj , rj)) ;

(pj+1, rj) = f′ tij (qj , sj+1) ;

· · ·
(repeat the above pattern till j = l)

(ql+1, sl+1) = (fl+1 pl+1, gl+1 (pl+1, y)) in

(ql+1, s1)

(21)

This f′ is exactly the recursive definition of �α(P )� in Definition 5.1.

We show that higher-order removal retains the computational content of the

original programme, and it can be recovered via β. Since β is a strict monoid homo-

morphism, the following theorem is an immediate consequence of Proposition 4.2.
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Theorem 5.2

Let f ∈ [T∞
Σ →⊥ [[D → D] → [D → D]]] be a result of an algebraic fusion such

that f can be improved with the monoid D�, the strict monoid homomorphism β ◦α
and a polynomial Σ-algebra P over D�.

Then, the higher-order removal �α(P )� ∈ [T∞
Σ →⊥ [D2 → D2]] of f satisfies

f = β ◦ �α(P )�.

As we discussed in Section 1.2, algebraic fusion can handle fewer producer

functions than the modern syntactic fusion transformations using recursive let

bindings, such as lazy composition and Nishimura’s higher-order removal. However,

within the restricted class of producers, algebraic fusion plus the semantic higher-

order removal can achieve the same transformation as these precursors. Below we

see an example of such transformation.

We instantiate the set A of elements of lists with {0, . . . , 9,+}. We also assume the

existence of a continuous function showsk ∈ [T∞
list → T∞

list] which adds the numeric

representation of a natural number k in front of a given list. Furthermore, we

introduce a new signature term:

term = {Num0
k | k ∈ N} ∪ {Add2}

We consider the fusion of the following functions asc ∈ [T∞
term →⊥ [T∞

term →
T∞

term]] and unp ∈ [T∞
term →⊥ [T∞

list → T∞
list]], which were introduced as a running

example of lazy composition by Voigtländer (2004).

asc Numk y = Add (y,Numk)

asc (Add (t, u)) y = asc t (asc u y)

unp Numk y = showsk y

unp (Add (t, u)) y = unp t (′+′ :: unp u y)

Voigtländer applied his lazy composition method to asc (as a producer) and unp

(as a consumer) to obtain the following function ascunp (function ascunp′′ in p. 131

(Voigtländer 2004); the order of outputs is swapped):

ascunp Numk (x, y) = (′+′ :: showsk x, y)

ascunp (Add (t, u)) (x, y) = let (p, q) = ascunp t (x, s) ;

(r, s) = ascunp u (p, y)

in (r, q)

He then applied a post-fusion transformation, called tuple elimination, and derived

the following simpler function ascunp′ (function ascunp′′′′ in p.132 (Voigtländer

2004)):

ascunp′ Numk x = ′+′ :: showsk x

ascunp′ (Add (t, u)) x = ascunp′ u (ascunp′ t x)

In Section 5.2 of (Voigtländer 2004), he also pointed out that ascunp′ shows different

termination behaviour from ascunp when partial or infinite lists are supplied.

We aim to derive the same results using algebraic fusion and improvement. We

first apply algebraic fusion to asc and unp.
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To see that the producer asc satisfies (C-prod’), we transform the definition of

asc using the function composition and fill∞.

asc Numk = λy . Add (y,Numk)

= fill∞(Add ([−], Numk))

asc (Add (t, u)) = λy . asc t (asc u y)

= (asc t) ◦ (asc u)

From this, the following polynomial term-algebra Asc over C∞
term satisfies asc =

�Asc� (c.f. (C-prod-s)):

Asc = {AscNumk
= Add ([−], Numk),

AscAdd[X,Y ] = X · Y }

The consumer unp satisfies (C-cons’) since it is a recursive function over T∞
term.

So, we extend unp to a strict continuous monoid homomorphism unp : C∞
term →

[[T∞
list → T∞

list] ⇒ [T∞
list → T∞

list]] as follows:

unp [−] w x = w x

unp Numk w x = showsk x

unp (Add (t, u)) w x = unp t w (′+′ :: unp u w x)

The image of Asc by unp is

unp(Asc) = {unp(AscNumk
) = λwx . w (′+′ :: showsk x)

unp(AscAdd)[X,Y ] = X ◦ Y }

and the result of the algebraic fusion is �unp(Asc)� ∈ [T∞
term →⊥ [[T∞

list → T∞
list] →

[T∞
list → T∞

list]]]. We display its recursive definition below:

�unp(Asc)� Numk = λwx . w (′+′ :: showsk x)

�unp(Asc)� (Add (t, u)) = �unp(Asc)� t ◦ �unp(Asc)� u

We next derive ascunp and ascunp′ by improvement using appropriate monoids.

For deriving ascunp, we apply the semantic higher-order removal (Definition 5.1).

We observe that the above result can be improved by

• the continuous monoid (T∞
list)

�,

• the strict continuous monoid homomorphism

βT∞
list

◦ αT∞
list

: (T∞
list)

� → [[T∞
list → T∞

list] ⇒ [T∞
list → T∞

list]]

and

• the following polynomial term-algebra Q over (T∞
list)

�:

Q = {QNumk
= (λx . ′+′ :: showsk x, π2)

QAdd[X,Y ] = X @ Y }

The single coefficient in QNumk
is obtained by finding continuous functions f, g

satisfying

β ◦ α(f, g) = λwx . g (x, w (f x)) = λwx . w (′+′ :: showsk x)

A solution is f = λx . ′+′ :: showsk x and g = π2.
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Hence, we find the higher-order removal of �unp(Asc)�. By Definition 5.1, it is

�α(Q)� ∈ [T∞
term →⊥ [(T∞

list)
2 → (T∞

list)
2]], where the image α(Q) is

α(Q) = {α(QNumk
) = λ(x, y) . (′+′ :: showsk x, y)

α(QAdd)[X,Y ] = X ∞ Y }

By expanding the recursive definition of �α(Q)�, we conclude �α(Q)� = ascunp.

We can also directly derive ascunp from the syntactic formulation of higher-order

removal (see Equation (21)). From Theorem 5.2, ascunp satisfies

unp (asc x y)

= �unp(Asc)� x (unp y) by Theorem 4.4

= β (ascunp x) (unp y) by Theorem 5.2

= λz . let (p, q) = (ascunp x) (z, unp y p) in q by Definition of β

Next, we derive ascunp′. We observe that the algebraic fusion result �unp(Asc)�
of asc and unp can be improved by

• the continuous monoid [T∞
list ⇒ T∞

list]
op,

• the non-strict continuous monoid homomorphism h∞ : [T∞
list ⇒ T∞

list]
op →

[[T∞
list → T∞

list] ⇒ [T∞
list → T∞

list]] defined by h∞ = λfg . g ◦ f (c.f. Example 4.5),

and
• the following polynomial term-algebra R over [T∞

list ⇒ T∞
list]

op:

R = {RNumk
= λx . ′+′ :: showsk x

RAdd[X,Y ] = X • Y }

Again, the single coefficient at RNumk
is obtained by finding a continuous

function f satisfying

h∞(f) = λg . g ◦ f = λwx . w (′+′ :: showsk x).

A solution is f = λx . ′+′ :: showsk x.

From these data, we get an improvement �R� ∈ [T∞
term →⊥ [T∞

list → T∞
list]] of

�unp(Asc)�. The recursive definition of �R� coincides with that of ascunp′. Since

the monoid homomorphism h∞ is non-strict, we have the following inequation:

unp (asc x y)

= �unp(Asc)� x (unp y) by Theorem 4.4

� h∞ (ascunp′ x) (unp y) by Proposition 4.2-1

= (unp y) ◦ (ascunp′ x) by Definition of h∞

This inequation correctly captures the change of the termination behaviour, which

is discussed in Section 5.2 of (Voigtländer 2004).

Finally, we point out a relationship between the above two improvements. There

is a non-strict continuous monoid homomorphism j : [T∞
list ⇒ T∞

list]
op → (T∞

list)
�

defined by

j(f) = (f, π2)

and we have Q = j(R).
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6 Summary of continuous monoids used in improvement

We present a diagram which summarizes continuous monoids and continuous

monoid homomorphisms that appeared in this paper.

[D ⇒ D]op

j

��
(idD,−)

��

h∞

��
[D ⇒ D] × [D ⇒ D]op k �� D�

αD �� D∞ βD �� [[D ⇒ D] ⇒ [D ⇒ D]]

[D ⇒ D]

(−,idD)

��

• In the above diagram, k is a strict continuous monoid homomorphism defined

by k(f, g) = (g, λ(x, y) . f(y)). The monoid homomorphism j : [D ⇒ D]op →
D� in the previous section is actually the composite k ◦ (idD,−).

• The non-strict continuous monoid homomorphism h∞ is used to improve

the result of algebraic fusion of rev∞ with itself in Example 4.5. We have

h∞ = βD ◦ αD ◦ j.

• The continuous monoid homomorphisms αD and βD are used in the semantic

higher-order removal in Section 5.

• The composite βD ◦ αD ◦ k is equal to (the continuous version of) the monoid

homomorphism h used in the improvement of the result of algebraic fusion of

dmap with itself in Section 3.1 (see also Example 4.6).

• There is a non-strict continuous monoid homomorphism (−, idD) : [D ⇒ D] →
[D ⇒ D] × [D ⇒ D]op, and the composite βD ◦ αD ◦ k ◦ (−, idD) is equal to

the continuous monoid homomorphism f �→ λg . f ◦ g. This is strict and can

be used to improve the result of algebraic fusion of the list append function

app∞ (see Example 4.5) with itself. The improvement tells us the associativity

of app∞.

7 Conclusion

We have developed a new fusion method called algebraic fusion, and its subsequent

improvement process, as a general solution to the problem of fusing a producer

function and a consumer function which have one accumulating parameter. Built

on top of the elementary theory of universal algebra and monoids, our solution

provides a simple but flexible framework that gives a clean account of existing

fusion methods, and also, establishes semantic justification for those methods that

previously relied on delicate arguments.

As handling accumulating parameters in fusion transformation is a fairly compli-

cated task, we believe that semantic abstractions of the fusion process, such as the

algebraic presentation given in this paper, are a quite effective tool for analysing the

existing fusion methods and even devising new ones. The precursor fusion techniques,

which we have summarized in the Introduction, provide powerful solutions, but are

not easily adapted for further extensions and improvements, as they are so densely

formulated in their own syntactic realm. We hope that the algebraic exposition in
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this paper contributes to a deeper understanding of different fusion techniques and

that it leads to the development of new techniques.
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A Proof of α and β being monoid homomorphisms

Definition A.1

Let D1, . . . , Dn, D be CPOs and fi ∈ [D1 × · · · × Dn → Di] (1 � i � n) and g ∈
[D1×· · ·×Dn → D] be continuous functions. We also assume that values fi(x1, . . . , xn)

and g(x1, . . . , xn) can be expressed by mathematical expressions Mi and N using

xi ∈ Di (1 � i � n). By recursive let expression

let x1 = M1 ; . . . ; xn = Mn in N

we mean the following element in D:

g

(
Y

(
λv ∈

n∏
i=1

Di . (f1(v), . . . , fn(v))

))

where Y ∈ [[
∏n

i=1 Di →
∏n

i=1 Di] →
∏n

i=1 Di] is the least fixpoint operator.

We also allow tuple patterns to appear in the binding, like

let (x, y) = M ; z = L in N

We regard this as an abbreviation of

let v = M[π1(v)/x, π2(v)/y] ; z = L[π1(v)/x, π2(v)/y] in N[π1(v)/x, π2(v)/y]

where π1, π2 are projections from a product CPO.

There are some equations that hold for recursive let expressions:

(let V in L) = (let π(V ) in L)

(let (x, y) = (M1,M2) ; V in L) = (let x = M1 ; y = M2 ; V in L)

(let x = f(· · · , let V in M, · · · ) ; W in L) = (let x = f(· · · ,M, · · · ) ; V ;

W in L)

(let x = M ; V in L) = (let V [M/x] in L[M/x])

(x �∈ FV (M))
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where V and W are meta-variables denoting (possibly empty) sequences of variable

bindings x1 = M1 ; · · · ; xn = Mn. In the first equation, π(V ) is a permutation of

the variable bindings in V . In the last equation, V [M/x] is the binding obtained by

substituting M for every occurrence of x in V .

Below we prove that the continuous functions αD and βD defined in Section 5

are monoid homomorphisms. It is obvious that αD(idD, π2) = idD2 and βD(idD2 ) =

id[D→D].

αD(f, g) ∞ αD(f′, g′)(x, y)

= let (p, q) = (f x, g(x, s)) ; (r, s) = (f′ p, g′(p, y)) in (r, q)

= let p = f x ; q = g(x, s) ; r = f′ p ; s = g′(p, y) in (r, q)

= (f′ (f x), g(x, g′(f x, y)))

= αD((f, g) @ (f′, g′))(x, y)

βD(f ∞ g) h x

= let (p, q) = (let (p′, q′) = f(x, s) ; (r, s) = g(p′, h p) in (r, q′)) in q

= let (p′, q′) = f(x, s) ; (r, s) = g(p′, h p) ; (p, q) = (r, q′) in q

= let (p′, q′) = f(x, s) ; (r, s) = g(p′, h r) in q′

= let (p′, q′) = f(x, βD g h p′) in q′

= ((βD f) ◦ (βD g)) h x
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