BULL. AUSTRAL. MATH. SOC. 46e15, 46410

VOL. 32 (1985), 109-117

DISTANCES BETWEEN CONVEX SUBSETS
OF STATE SPACES

A.J. ELLIS

Let L be a closed linear space of continuous real-valued
functions, containing constants, on a compact Hausdorff space

1 . This paper gives some new criteria for a closed subset F
of  to be an [L-interpolation set, or more generally for LIE
to be uniformly closed or simplicial, in terms of distances
between certain compact convex subsets of the state space of L .
These criteria involve the facial structure of the state space
and hence are of a geometric nature. The results sharpen some

standard results of Glicksberg.

1. Introduction

The object of study will be a uniformly closed linear subspace L of
continuous real-valued functions on a compact Hausdorff space £ , such
that L contains the constant functions and separates the points of § .

We will denote by K the state space of L , so that
K=1{e €L* : |lofl =1 = (1)}

endowed with the w*-topology. There is a natural isometric isomorphism
between L and A(K) , the Banach space of all continuous real-valued
affine functions on K with the supremum norm, and a natural homeomorphic
embedding of @ into K (see Alfsen {1, II.2]).
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We shall see that if E 1is a closed subset of £ then the uniform-
closedness of the restriction space L|E is equivalent to properties
involving distances between certain convex subsets of X . Similarly, the

simplicial nature of LIE may also be interpreted by distance properties.

2. Closed restrictions
If A and B are non-empty subsets of L* we write
dL(A, B) = inf{llz-y|l : x € A, y € B} .
If there exists some f in L with f =21 on A, f<-1 on B then it
is clear that dL(A, B) =z 2/|ifll , and in fact that
dL(EB-A, co B) = 2/|Ifll . Here, for example, co A denotes the w*-closed

convex hull of A in XK . The following lemma gives a useful converse

result.

LEMMA. Let A and B be non-empty closed convex subsets of K such
that dL(A, B) =d >0 . Then there exists a function §f in L such that

fz1 on A, f=-1 on B and |fll < 6/d .
Proof. We write

Al = {z e L* : d (z, A) < d/z} , B, = [y e L* : d (y, B) =d/3} .

Then A1 and Bl are disjoint w?*-closed convex sets, and so there exist

some ¢g € L and constants o, B with o > B such that g =2 a on Al s

1A

g<B on B, . It follows that g2z a + (d/3Migll on 4,

1A

g B - (d/3)|lgll on B . We write

Ay = {z € Kk : g(x) =z ax(d/3)llgll} , B, = {y € X : g(y) = B-(d/3)gll} ,

so that A2 and B, are disjoint w*-closed convex sets. In fact we have

2
d, (4, By) = llgh™{or(d/3)lgl-(B-(d/3)llgh)} > 2d/3 .

Since L contains the constant functions we can find a function f

in L with

A2={xeK:f(x)zl}, B2={y€K:f(y)E—l}.
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In order to estimate [[f|| we take x €4,

fla)) - £ly) > If) end choose A, A’ € [0, 1] so that f(z,) =1,

h
yl € 32 such that

f(yz) = -1 , where

= - = ’ )7
x, Axl+(1x)yl, Y, Axl+(1>\)yl.

Since A > A’ we therefore have
()")")”f” < f((A_A,)(xl—yl)] = f(xg_yz) =2 >
while

20-2") 2 JO-2") (= -y, )| = lloyy, |l = 2d/3

Consequently it follows that ||fl] < 6/d as required.

If E is a closed subset of £ (or of K ) we will denote by M(E)
the family of all Radon measures on FE , and by MI(E) the subset of all

probability measures on E . Any measure U € M(E) may be considered also

as a member of M(2) (or of M(K) ). If u € M(R) then we write

sup{[w(F)] : £ €L, IIfll =1}

Ml

ine{fluevll : v € L)

1
where I  denotes the family of measures in M(R2) which annihilate L .

Similarly, for M € M(E) , we may define ”u”LIE .

If A, B are closed subsets of § then, since x € co 4 if and only

if there exists some u € MI(A) with resultant &« , we see that
d (o A, co B) = int{llu-vll, : u € #(4), v € M (B)}
L ? L - 1 ? 1 *
The closed set E will be called an L-interpolation set if
L|E = Ch(E) . Glicksberg [8] gave necessary and sufficient conditions for

E to be an L-interpolation set or for L|E Just to be uniformly closed;

namely

(i) E is an L-interpolation set if and only if there exists a

constant C = 1 such that |lu|E|| = Cllu|(Q\E)ll whenever

uwerL
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(ii) L|E 1is uniformly closed if and only if there exists a

constant € = 1 such that "uHLlE < CHuHL for all
u € M(E)
Using the above lemma we may re-formulate condition (i) as follows.

PROPOSITION. A closed set E is an L-interpolation set if and only

if there exists an € > O such that dL(; A, co B) 2 € whenever A and
B are disjoint closed subsets of E .

Proof. If E is an L-interpolation set then there exists an

extension constant C = 1 such that each f € CR(E) has an extension

g € L with |g| = CIfll - By Urysohn's Lemma we may take € = 2/C .

L
Conversely, take u € L and, given &8 > 0 , choose disjoint closed
+ - .
subsets A, B of E such that u (EM) < &8 , u (E\B) < § (where
u = u+ - W is the Jordan decomposition of U ). Using the hypothesis and

the lemma we may choose an f € L with f=1 on 4, f=<-1 on B and

ifll < 6/e . Therefore we have
|zl = 14l + WT[BI + 28
< { fdu + 26 = f fau + 28(1+If1)
JAuB E

Using the facts that I fdu = 0 and that 8 > 0 1is arbitrary we obtain
Q

lulEll = (6/)llu]|(Q\E)|] so that E is an L-interpolation set by condition
(1).

In the above proposition it is not sufficient to know only that
dL(ES-A, co B) > 0 (see McDonald [10, p. 4321).

We now consider analogous results for the situation when L|E is
uniformly closed, and for these we take a more geometric approach. We
replace L by A(K) and L|E by A(K)|F , where F = co E, and note that
LlE is uniformly closed if and only if A(K)IF = A(F) .

THEOREM 1. Let F be a closed convex subset of K . Then
A(K)|F = A(F) if and only if there exists an € > O such that

dA(K)(G, H) = edA(F)(G, H)
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whenever G and H are disjoint peak faces of F .

Proof. If A(K)|F = A(F) then there exists an extension constant
C 21 such that each f € A(F) has an extension g € 4(K) with
dgil = ¢lifll . consequently we may take € = 1/C .

Conversely, we will show that the hypothesis involving € implies
condition (ii) of Glicksberg. Let u € M(F) such that ”u”A(F) #0 , and
write V¥ € A(F)* such that Y(u) = J udd for u € A(F) . If we take
§ = (E/B)HUHA(F) then, by the Bishop-Phelps theorem [4], we may find some

9 € A(F)* and f € A(F) such that llfll =1, lell = ¢(f) ana
lo-yll < 6 . Let Vv € M(F) represent ¢ and satisfy [Vl = lloll . 1If we

write G = frl(l) , H= frl(—l) in F then G and H are (possibly
+ -
empty) pesk faces of F which respectively support V and V .

If either G or H 1is empty then we have

vl = 1) | = Iy = gy »

so that, since € =1 ,
()| = W) > le()]| - 8 = lloll - 8

191l - 28 = Bully 7y - 28 2 (3/4) sl

v

[

A\

Otherwise, since dA(F)(G’ H) = 2 , the hypothesis and the lemma enable us

to find w € A(K) such that Jwll =1, w=2€/3 on G and w = -£/3 on

H . Consequently we have

v

fwdu = f wdv + (Y-¢)(w|F)

(e/3) IV IV = 8 = (e/3) lloll - &
(e/3) Wl - 8(1+(e/3)) = (e/3)ully gy - 8(1+(e/3))

(e/6) Il oy

Hall g gy

v

v

v

In either case Glicksberg's condition (ii) clearly holds.

The direct analogue of the result of the proposition may now be
deduced.

COROLLARY 1. Let E be a closed subset of Q. Then L|E 1is

wuniformly closed if and only if there exists an € > 0 such that
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dL(Eg A, co B) = edLIE(E 4, co B) whenever A and B are disjoint
closed subsets of E .

Proof. The necessity of the condition follows easily by again using

the existence of an extension constant.

To prove the sufficiency we take F = co E and consider disjoint
closed faces G and H of F . Ifwevwrite A=GnQ, B=HnQ
then, since § contains the set of extreme points of X , we must have

G==cod , H= co B . The result now follows immediately from Theorem 1.
Now let A denote a uniformly closed linear subspace of CC(Q)

containing constants and separating points of 2 . Write S for the

state~space of A  endowed with the w*-topology, so that
S={p €A* : floll =1 =0o(1)} .

Then, if K=co(SU-4S) , the map O : A + A(K) defined by

(6f)(k) =rek(f) , f €A, k € XK, gives a real-linear homeomorphism of
A onto A(X) such that ||Of]] = lIfl = V2llof]l (see Asimow ana Ellis [2,
4.0]). Moreover re A is naturally isometrically isomorphic to A(K)|S .

If A and B are subsets of § we may write dreA(E—o— A, ;B) for

dA(K)|S(c° A, co B) and if we define

dylco A4, co B) = inf{lle-yll : = € co 4, y € co B}

then we have
—_ _ - —_ — - — —_
dA(co A, co B) = dA(K)(co A, co B) = \/Z—dA(co A, co B) .
Following this discussion it is now easy to derive from Corollary 1 a
condition equivalent to re A being uniformly closed. 1In particular in

the case when A is a uniform algebra on § this condition, together with

the Hoffman-Wermer theorem [9], gives the following result.
COROLLARY 2. Let A be a uniform algebra on Q . Then A = C(Q)

if and only if there exists € > 0 such that
dA(EB- A, co B) = edreA(E 4, co B) whenever A and B are disjoint

subsets of § which are peak sets for re A .

It would be of interest to know whether in Corollary 2 peak sets for
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re A may be replaced by peak sets for re A . In this context the result
of Briem [5] is relevant. However the closed convex hulls are essential in
Corollary 2 since, by using the exponential function on A , it is easy to

show the existence of an € > 0 such that dA(A, B) = edreA(A, B) when-

ever A and B are disjoint closed subsets of @ and A is any uniform

algebra on Q .

We note that if we strengthen the hypothesis of Theorem 1 by assuming
the existence of an € > 0 such that dA(K)(G’ H) 2 ¢ whenever G and H

are disjoint peak faces of F +then we can not conclude that F 1is a Bauer

simplex (that is, that A(K)|(F n Q) = Cr(F n Q) where Q denotes in this

case the closure of the set of extreme points of X ]. Indeed if F is
any finite-dimensional polytope then the strengthened hypothesis clearly
holds. We now consider a further strengthening of the hypothesis which

will imply that F is a simplex.

THEOREM 2. Let F be a closed convex subset of K . Then F 1is a
simplex such that A(K)|F = A(F) <if and only if there exists an € > 0
such that dA(K)(EE'A, co B) = € whenever A and B are disjoint closed

extremal subsets of F .

Proof. If F is a simplex and if A, B are disjoint closed extremal
subsets of F then a result of Effros [6, Theorem 3.31 shows that co 4
and co B are disjoint closed faces of F . Therefore we have

dA(F)(ES'A’ co B) = 2 . If we assume further that A(X)|F = A(F) then the

existence of an extension constant C leads to the required € = 2/C .

Conversely, suppose that € > O exists such that dA )(G, H) 2 ¢

(x
whenever G and H are disjoint closed extremal subsets of F . Applying
Theorem 1 in the special case where G and H are closed faces of F
gives A(K)|F = A(F) . Suppose that there exists a non-zero boundary
measure M on F annihilating A(F) . If M=y’ -y denotes the
Jordan decomposition of (the Baire-restriction of) U then we can find
disjoint Baire sets D and E which respectively support u+ and M .
3iven 6 > 0 the result of Teleman [11, corollary to Theorem 1] (see also
3atty [3, Proposition 5]) shows that there exist disjoint closed extremal
sets Ac D and B S E such that u+(D\A) <6 and p (E\B) < §

https://doi.org/10.1017/50004972700009771 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700009771

116 A.J. Ellis

Applying the hypothesis to A and B , the lemma gives f € A(K)
such that JIfll 1, Ffz¢€/6 on 4, f=<-e¢/6 on B . Consequently we

obtain
0=ffdu=ffdu"-ffdu‘+f fdu
IF A B JF\(4uB)
= (e/6) (I ll+llu"[I-28) - 28 > 0,

for 6 > 0 sufficiently small. This contradiction proves that F is a

simplex.

In the case where F is metrisable the result of Theorem 2 may be
simplified by using compact subsets of extreme points of F in place of
compact extremal subsets of F . In the non-metrisable case the example
(7, Theorem 1] shows that this simplified hypothesis fails to imply that F
is a simplex. The result of Teleman on which Theorem 2 depends uses his

theory of metrisable reductions for compact convex sets.

We note that in Theorem 2 the result is unchanged if we replace € by
2 . 1In order to obtain an interpolation result we must strengthen the
hypothesis to include sets other than extremal subsets. For this purpose

we revert to our original space L with state space K .

COROLLARY 3. A closed set E is an L-interpolation set if and only

1f there exists an € > 0 such that dL(EE'A, co B) = € whenever the

disjoint sets closed sets A and B are either singletons in E or

closed extremal subsets of co E .

Proof. It follows directly from Theorem 2 that LIE is a simplex
space. To complete the proof we need to show that each x € £ is an

extreme point of co E so that co E is a Bauer simplex.

If x € E is not extreme then the maximal measure U representing x
has zero mass at &« , and hence, given ¢ > 0 , we may find a closed
extremal subset B of co E such that W(B) > 1 - § . By the lemma there
exists some f € L such that flx) =21, fly) =-1 for y € B and
[Ifl < 6/e . But then we have

fdu + [ fdu

lEf(x)=deu=f
E\B

B
< —(1-6) + 668/¢ .
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Since 6 > 0 was arbitrary we obtain the desired contradiction.
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