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1. All operators considered in this paper are bounded operators on a Hilbert space. In
case A and B are self-adjoint, certain conditions on A, B and their difference

H =A-B, (1)

assuring the unitary equivalence of A and B,

B = U*AU (2)

have recently been obtained by Rosenblum [6] and Kato [2]. The present paper will consider
the problem of investigating consequences of an assumed relation of type (2) for some unitary
U together with an additional hypothesis that the difference H of (1) be non-negative, so that

H = A-B^O (3)

First, it is easy to see that if only (2) and (3) are assumed, thereby allowing H = 0,
relation (2) can hold for A arbitrary with U = I (identity) and B = A. If H = 0 in (3) is
not allowed, however (an impossible assumption in the finite dimensional case, incidentally,
since then the trace of H is zero and hence H = 0), it will be shown, among other things, that
any unitary operator U for which (2) and (3) hold must have a spectrum with a positive mea-
sure (as a consequence of (i) of Theorem 2 below). Moreover A (hence B) cannot differ from a
completely continuous operator by a constant multiple of the identity (Theorem 1). In case
0 is not in the point spectrum of H, then U is even absolutely continuous (see (iv) of Theorem
2). In § 4, applications to semi-normal operators will be given.

Let U be any unitary operator with the spectral resolution

(4,

Let {e<A»}, 0 < An < 277, denote the point spectrum (if any) of U and put

EC(X) =E(\)- 2 {2?(An + 0)-E(An-0)}.
A,,<A

Then the Ec (A) are projections and one can write

U =
where the integral (if present) represents the continuous component of U. In case this com-

ponent is present and if (Ec (X)x, y) is absolutely continuous for all x, y, that is, if dEc (A) = 0
J z

for every zero set Z, then this component will be called absolutely continuous. The operator
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U itself will be called absolutely continuous if it has no point spectrum and if its continuous
component is absolutely continuous.

Since A -U*AU can be expressed as U(U*A)-(U*A)U, the commutator of U and U*A,
relations (2) and (3), that is,

0 < # = A-U*AU, (5)
imply, as was shown in [3], that

H f E(X) = 0 , (6)
J z

where Z denotes an arbitrary zero set.

2. Relation (6) will be used to prove

THEOREM 1. Suppose that the self-adjoint operators A and B satisfy (2) and (3) and let
8 = 8 (A) denote the difference of the maximum and minimum points of the essential spectrum of
A. Then

\\B\\<B; (7)
in particular, if A differs from a completely continuous operator by a constant multiple of the iden-
tity, then H = 0.

Here, || G || is defined by || G \\ — sup || Cx ||, where || x || = 1, and the essential spectrum
of C is the set of cluster points, including points of the point spectrum of infinite multiplicity,
of the spectrum of G. Incidentally, since, as was remarked above, H ^ 0 can hold for finite
matrices only if H = 0, it can always be supposed that the basic Hilbert space is infinite
dimensional, in which case any self-adjoint operator necessarily has a non-empty essential
spectrum.

Proof of Theorem 1. Let Ao denote the maximum point in the essential spectrum of A and
denote the eigenvalues of A (if any) greater than Ao by Ax > A2 > ... . If â  is any eigenfunc-
tion of U*AU belonging to Ax then, by (5),

0 < {Hxv xx) = (Axv xj - \(xv xx) < 0
and so {Axv xt) = X1(x1,x1). Hence 0 = (XJ-A^Xj^ = (X1I-A)x1 and so â  is aneigenfunc-
tion of A belonging to Ar Since Ax belongs to the spectra of A and U*AU with the
same (finite) multiplicity, it follows that the eigenfunctions of A and TJ*AU belonging
to Ax are identical. On treating successively A2, A3, ... in a similar manner, it follows that the
eigenfunctions of A and U*A U for each of the numbers An are identical.

Let /*! < /x2 < ... denote the eigenvalues of A (if any) less than the least point nQ of the
essential spectrum of A. If y1 is an eigenfunction of A belonging to fiv then one has

0 < (Hyv 2/j) = M2/i> 2/i) -(U*AUyv yJ^Q;
hence (V*AUyv i/x) = /^(j/i, Vi), and so yx must be an eigenfunction of U*AU belonging to
Hv As before, it follows that the eigenfunctions of A and UA*U belonging to eigenvalues /xn

less than /x0 are identical.
I t is now easy to complete the proof of the theorem. For if x is any element of Hilbert

space, it can be written as a; = z+w, where z is the projection of x on the space spanned by
the eigenfunctions of A belonging to eigenvalues outside the interval /x0 < A < Ao and w is in
the orthogonal complement. Clearly Hz = 0 and hence

(Hx,x) = (Hw,w) = (Aw, w)-(U*AUw,w)^(\0-N)\\w W^^-^WxW*.
Relation (7) follows and the proof of Theorem 1 is complete.
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3. THEOREM 2. Suppose that the self-adjoint operators A and B satisfy (2) and (3) and
let N denote the multiplicity of the eigenvalue 0 of H (0 < N < oo). Then : (i) If H # 0, and

if U has the spectral resolution (4), then dE(X) < I for every zero set Z. (ii) The point spectrum
J z

of U has no more than N values (counting multiplicities), (iii) / / N < oo, then the continuous
component of U is absolutely continuous, (iv) If N = 0, then U is absolutely continuous, (v) If
N = 0, the maximum and minimum points of the spectrum of A cannot belong to the point
spectrum of A (and hence must belong to the essential spectrum of A).

Proof of Theorem 2. Assertion (i) is an immediate consequence of (6) ; cf. [3]. Let x
be an eigenfunction of U ; then, by (5), one has

0 < (Hx, x) = (Ax, x) - (Ax, x) = 0 ;

hence 0 = H*x = Hx. This proves (ii). In order to prove (iii) note that, by (ii), U has at
most a finite number of points in its point spectrum and so its continuous component is present.
But if this component were not absolutely continuous, there would exist a zero set Z and an

element x such that dEc (X)x ^ 0. Clearly Z can be written as Z = 2Z n where Zv Z2, • • •

denotes an infinite sequence of non-overlapping zero sets for which xn = dEc(X)x ¥= 0.
J zn

Thus the xn are orthogonal and, by (6), each is an eigenfunction of H belonging to 0. Thus
N = oo, a contradiction, and (iii) is proved. Assertion (iv) is a consequence of (ii) and (iii).
Assertion (v) follows from (5). For if the maximum point XM of the spectrum of A were in the
point spectrum of A, hence of U*AU, then for a corresponding eigenfunction x of U*AU one
would have

0 < (Hx, x) = (Ax, x) - XM(x, x) ^ 0,

a contradiction. Similarly the minimum point Am cannot be in the point spectrum and the
proof of (v) is complete.

I t can be remarked that if 0 is not in the point spectrum of H, then the proof of Theorem 1
is an immediate consequence of (v) of Theorem 2. For obviously

(Hx, x) = (Ax, x)-(V*AUx, x) < (XM -Am)|| x ||2.

4. Applications to semi-normal operators. Let D be an arbitrary (bounded) operator
and consider

H=DD*-D*D (8)

If H is semi-definite (in which case, only H ^ 0 will be supposed), D is called semi-normal.
In case D is non-singular, it has a polar decomposition D = PU where P is positive self-
adjoint and U is unitary. Then DD* = P2, D*D = U*P2U and (8) can be written as
H = P2 - U*P2U, so that P2 can be identified with the A considered above. Of course, it is
quite possible that D*D = U* (DD*) U holds for some unitary U even if D is singular.

It was shown in [4] that the spectra of the real and imaginary parts of a semi-normal, but
not normal, operator D (in fact, the spectra of \(e~ieD +eieD*) for 8 arbitrary and real) are
of positive measure. In case D is non-singular with the polar decomposition D = PU then,
as a consequence of (i) of Theorem 2, it follows that U also has a spectrum of positive measure.
However, a similar claim cannot be made for the positive operator P . In fact, as is shown by
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Theorem 3 below and the example following, P must have at least two points in its essential
spectrum, and may possibly have only (these) two points in its spectrum.

As a corollary of Theorem 1, one has

THEOREM3. IfH defined by (8) satisfies H > Q,andifDD* andD*Dareunitarilyequivalent,
then (7) holds, where S = B(DD*) is the difference of the maximum and minimum points of the
essential spectrum of DD*. Thus, if in addition, H i= 0, then 8(DD*) > 0 and DD* (hence
D*D) cannot differ from a completely continuous operator by a multiple of the identity.

It is easy to show that the inequality (7) occurring in Theorems 1 and 3 may become an
equality and that A may have only two points in its spectrum. One need only choose A = (aw)
and B = (bij), where i, j = 0, ± 1 , ±2, ... , to be doubly infinite matrices for which au = 1 if
i = 0, 1, 2, ... and ait = 0 otherwise, and bH = 1 if i = 1, 2, ... and b(j = 0 otherwise. Then
the spectra of both A and B consist of 0 and 1, each of infinite multiplicity. Consequently
B = U*A U for a unitary U and moreover A - B = H = (hif), where h00 = 1 and hi} = 0
otherwise. Clearly || H \\ = 1 and 8(^4) = 1 -0 = 1, where 8(^4) is defined in Theorem 1.
The particular matrices A, B thus constructed are singular. However, it is clear that they
can be replaced by, say, the non-singular positive matrices A +1 and B +1.

Furthermore, whenever (2) and (3) hold with an operator A ^ 0 (as, for example, in the
preceding paragraph) one can take the unique non-negative self-adjoint square root P of A
and form the operator D = PU. Then

H = A-B = A-U*AU = DD* -D*D,

so that D is semi-normal. I t should be noted however that D need not be non-singular.

THEOREM 4. IfH of (8) satisfies H ^ 0 and H j= 0, if DD* differs from a completely con-
tinuous operator by a multiple of the identity and if z = | z | eie satisfies \ z \ < || H || /8, where
8 = 8 (D (6)) denotes the difference of the maximum and minimum points of the essential spectrum of
D(8) = e~ieD + e'eD*, then DZD* and D*DZ, where Dz = D-zI, cannot be unitarily equivalent.

Proof of Theorem 4. First, note that (8) holds if D is replaced by Dz so that

H = DeD*-Dz*Dz.

Now if DZD* and D*DZ are unitarily equivalent, then, by Theorem 3, || H \\ < h(DcD*).
Since

DZD* = DD* +1 z |27 - zD - zD*

and since, by hypothesis, DD* = tl + C, where G is completely continuous, it follows from
Weyl's theorem [7] that the essential spectrum of DZD* is identical with that of

(\z\2+t)I-zD-zD*.

But the essential spectrum of this operator is simply tha t of -zD- zD* = -\z\ D(8) displaced
by the amount | z |2 +t and the proof of Theorem 4 is now complete.

A corollary of Theorem 4 is

THEOREM 5. / / H of (8) satisfies H > 0 and H ¥= 0, if DD* differs from a completely
continuous operator by a multiple of the identity and t / | z | < £ | | . f f | | / | | D | | , then z is in the
spectrum of D.

Proof of Theorem 5. Since not only the essential spectrum but even the spectrum of any
self-adjoint operator G is contained in an interval of length 2 || G ||, it follows that
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Hence, i f | z | < | | | J f f | | / | | D | | , then DZDZ* and D*DZ are not unitarily equivalent and so z
must surely be in the spectrum of D. The sign < occurring in the theorem, rather than just
< , follows from the fact that the spectrum is a closed set.

If V is an isometric but not unitary operator, so that H = V*V - VV* ^ 0, H # 0 ,
where V*V = / , Theorem 5 implies (with D = V*) that the disk \z \ < £ is in the spectrum
of V* (hence of V). Actually it is easy to show that the entire disk \z\ ^ 1 is in the spectrum ;
cf. [4, p. 1650].

5. Remarks. I t will remain undecided whether the hypothesis \ z \ < ; J | | . f f | | / | | D | |
in Theorem 5 can, as in the isometric non-unitary case, be weakened t o | z | < | | j f f | | / | | X ) | | .
An analogous situation exists for the real part \{D +D*) of a semi-normal operator for which
it is known [4] that, if H > 0 in (8),

|| # | | < 2 | | D | | s (9)

where s denotes the measure of the spectrum of \(D + D*) = J, and for which it is undecided
whether \\ H \\ < 11| £> || s can also be claimed. (In the isometric operator example men-
tioned one has || H \\ - \ \\ D \\ s ; cf. [4, p. 1651].)

Actually the inequality \\H\\ < 4 || D || s, rather than (9), was stated in [4] but it is clear
from the proof as given in [3] and applied to the case at hand, that the refinement (9) holds.

In fact, it follows from (8) that \H — DJ - JD. Hence, if J = A dE (A), then, proceeding as

in [3], one obtains

hAEHAE =AED f (A-A0)dE- f (X-X0)dEDAE,
J A J A

where A denotes a real interval and Ao is any point of A. If Ao is chosen to be the mid-point of
A, the argument of [3] then yields the desired inequality (9). I t can be remarked here that
the 4 in both Theorem 2 and Corollary 3 of [4] can be replaced by 2.
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