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Abstract. We show that there is a residual subset of the set of C 1 diffeomorphisms 
on any compact manifold at which the map 

/ - * (number of chain components for / ) 

is continuous. As this number is apt to be infinite, we prove a localized version, 
which allows one to conclude that if / is in this residual set and X is an isolated 
chain component for / , then 

(i) there is a neighbourhood U of X which isolates it from the rest of the chain 
recurrent set of / , and 

(ii) all g sufficiently C 1 close to / have precisely one chain component in U, and 
these chain components approach X as g approaches / . 

(ii) is interpreted as a generic non-bifurcation result for this type of invariant set. 

0. Introduction 
A classical set of problems in the study of dynamical systems is concerned with 
understanding the structure of various invariant sets of a given system, and to 
describe how these sets change as one changes the system. This bifurcation problem 
is well understood in some instances. For example, the theorems of Kupka & 
Smale and Hartman & Grobman tell us that for each / in a residual subset of 
Diff(M) (r > 1), and each n a 1, f" has a finite number of fixed points, and that if 
g is C close enough t o / , (how close depends on n), then g" has exactly the same 
number of fixed points as f", and the fixed point set of g" approaches that of / " as 
g approaches / . See [6] or [8] for more details. 

The main result of the present paper is an analogue of this well-known result. 
The setting is a compact Riemannian manifold M, with metric d. We consider the 
chain recurrent set of a map / in Diff (M), r > 0 . (Diff0 (M) is the set of homeo-
morphisms of M to itself with the uniform metric d0; Diff1 (M) is the set of C 1 

diffeomorphisms on M with the uniform C 1 metric d\, and so on.) 
A point x in M is a-chain recurrent for / if for each /3 >a > 0 there is a /3-chain 

from x back to x, that is, a finite set of points 
J C O , x i,..., xp, with x = x 0 = X p , 

and 

d(f(Xi),xl+l)<p for « = 0 , 1 ,2 , . . . , p - l . 
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232 M. Hurley

We will sometimes represent such a chain by the notation

and say that this /3-chain goes from x0 to xp.
The chain recurrent set of /, CR(/), is the set of points in M that are a-chain

recurrent for all a > 0, (so chain recurrent and 0-chain recurrent mean the same
thing). There is a natural equivalence relation that is defined on CR (/) by calling
two points equivalent if for any /3 there is a periodic /3-chain containing both points.
More precisely, JC ~ y if for each /3 > 0 there is a /?-chain going from x to y and a
j8 -chain going from y to x. Each equivalence class is called a chain component. Let
N(f) denote the (possibly infinite) number of chain components of/.

The basic new result of this paper is part (b) of the following theorem. Recall
that a subset S of a topological space X is residual if S can be realized as a countable
intersection of open, dense subsets of X.

THEOREM A. There is a residual subset I of Diff1 (M) such that whenever f is an
element of I, then

(a) (Conley, Takens) f is a continuity point of CR(_);
(b) N(_) is continuous at f.

One interprets the continuity in part (a) of the theorem by viewing CR(_) as a
map from (Diff1 (M), dx) to (FM, dH), where d\ is the uniform C1 metric on
Diff1 (M), FM is the set of all closed non-void subsets of M, and dH is the Hausdorff
metric on FM,

dH(F,F') = inf{t>0\F'cB(F, t) andF^B(F', t)},

where

B(F,t) = {xeM\d(x,F)<t}.

The relevant facts are that (Diff1 (M), d\) is a Baire space [2], so that any residual
subset is dense; and that the metric topology makes (FM, dH) a compact metric
space [4]. A more detailed description is contained in [3]. The proof of (a) is
essentially due to C. Conley. His description of CR (/) in terms of the attractors
of / (see II.6 and II.7 of [1], especially 6.2.A on page 37) shows that the map
/-»CR (/) is upper semicontinuous; from this it is a standard argument to establish
(a). More details are contained in the discussion surrounding lemma 1, below. See
also [10, theorem 1], and corollary 3(a), below.

In part (b) of the theorem, the range of the map N( ) is {1, 2 , . . . , oo} viewed
as the usual one-point compactiflcation of the positive integers.

Theorem A more or less provides the kind of non-bifurcation result we spoke
of in the opening paragraph of this paper. If N(J is continuous and finite at /,
then diffeomorphisms that are C1 close to / have exactly the same number of chain
components as does /. In other words, one cannot break apart any of the chain
components of / by using a C1 perturbation. Unfortunately, the conclusion that
one can draw from the continuity of N() at / is much less informative if N(f)
is infinite. Of course, this would not be a problem if N(g) were finite for all g in
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a residual subset of Diff1 (M), but it is not known whether or not this is the case
(unless the dimension of M is small). Moreover, S. Newhouse has shown, [5J, that
any residual subset of Diff (M) must contain diffeomorphisms / with N(f) = oo
whenever both r and the dimension of M are at least 2. This fact motivates a
different approach to improving the conclusions that can be drawn when N(f) is
infinite. Instead of viewing the dynamics on all of M, we can consider only the
chain-recurrent behaviour that is contained in a specified subset Y of M. Specifically,
we say that an a -chain

is an (a, Y)-chain if each x, lies in the closure of Y. CR (/; Y) is then defined to
be the set of points x such that for each a > 0 there is an (a, Y)- chain from x back
to x,

x = xo-»*i-» • • •-*xp=x.

Just as in the original case, one can say that x and y in CR (/; Y) are equivalent
if for each a > 0 there is a periodic (a, F)-chain

xo-» • • -->Xp = x0 withx=x0 and y=jc, for some i.

An equivalence class under this relation will be called a Y-chain component of /.
Let N(f\ Y) denote the (again, possibly infinite) number of F-chain components
of/.

THEOREM B. There is a countable basis °U for the topology on M, and a residual
subset J of Diff1 (Af) with the property that whenever f is an element of J and U is
an element of °U, then

(a) / is a continuity point of CR(_; U);
(b) N(_; U) is continuous at f.

Note that by taking U = M in theorem B one obtains theorem A.

COROLLARY. Suppose f is in /, X is a chain component of f, and B is an open
neighbourhood of X with

clos(£)nCR(/) = X.

Then there is a neighbourhood G off in Diff1 (Af) such that each g in G has exactly
one chain component Xg contained in B, and no other chain component of g meets
clos(B).

The proof of theorem B relies on the affirmative answer to the following stabilization
question for invariant sets:

If U is open in M and contains an /-invariant set, can / be C approximated by
g such that any diffeomorphism sufficiently CT close to g has an invariant set
contained in £/?
We use the closing lemma [7] to obtain an affirmative answer to this question. This
is the reason we restrict ourselves to C1 diffeomorphisms in theorems A and B.
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As an application of the above results, we obtain the following theorem. To say
that A in M is a chain transitive attractor of / means that

(1) A is a chain component of/;
(2) A is an attractor of / ; that is, there is an open neighbourhood U of A with

/(clos (t/)) contained in U and

THEOREM C. There is a residual subset M of Diff1 (M) such that if f is in si, /„
converges to f in the Cx topology, and A is a chain transitive attractor of f, then there
are chain transitive attractors An of fn with An converging to A in the Hausdorff
topology. For large n there is only one An that is near A.

The C version of theorem C was stated in [3] (theorem A(c)). However, the proof
there contains an error. The CT version of theorem C for r greater than 1 is still
an unsettled question.

§ 1 contains the proof of theorem B as well as a study of the stabilization question
that is the key to that result. § 2 contains the application to attractors.

1. Proof of theorem B
We begin with three simple lemmas.

LEMMA 1. Suppose X\ andX2 are metric spaces, with X2 compact. Leth:X\^>FX2
be either upper or lower semicontinuous. Then the set of continuity points of h is a
residual subset of Xx.

This is [9, lemma 2.3]. The map h is lower semicontinuous at x in X\ if whenever
xn approaches x and y is in h {x), then there are points yn in h (xn) with yn converging
to y. h is upper semicontinuous at x if for any sequence xn -*x, if yn is in h(xn) and
yn->y, then y is in h(x). If g is a map from some topological space X\ into the
extended half-line 5 = [0, 00] (viewed as the one-point compactification of [0, 00)),
then g is lower (upper) semicontinuous at x in Xi if and only if the induced map

g*:X^FS givenby g*(z) = [0,g(z)]

is lower (upper) semicontinuous at x. This agrees with the usual definition of lower
(upper) semicontinuity for real-valued functions:

liminf g(z)>g(x) (limsupg(z)<g(x)).
z->x z^x

LEMMA 2. Fix fin Diff (Af) and a closed subset YofM. Define a map G : Y -»[0, 00)
by

G (x) = inf {a > 01 x lies on a periodic a-chain forf which
is contained in Y}.

Then G is continuous.

Proof. Let y > 0 be given, and choose S < y small enough that whenever x, y are
in M and d(x, y)<8 then

d(f(x),f(y))<y.
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Now suppose that x, y are in Y and within S of each other, and that

x

is an a-chain for / in F. Then

and
d(f(xp),y)^d(f(xp),x) + d(x,y)<a+y.

Thus rf(x, y)<<5 implies that

G(y)<G(*) + y.

By the symmetry in the assumptions on x and y we conclude that

\G(x)-G(y)\<y

whenever d(x, y) <S, so G is continuous. •

Note that for V closed in M and G defined as in the lemma,

C R ( / ; r ) = G-1(0),

so the lemma shows that CR (/; Y) is closed in M. In addition, it shows that distinct
Y- chain components of / are bounded apart in the sense that if Xi and X2 are
disjoint V-chain components of / then for some a > 0 there is no periodic a-chain
for / that is both contained in Y and meets each of the sets Xi and X2.

LEMMA 3. Suppose /„ converges to f in the C° topology, yn -» y and zn->z in M, and
that for each n and each positive a there is an (a, Y)-chain for fn going from yn to
zn. Then for each positive a there is an (a, Y)-chain for f going from y to z.

Proof. Since (a, Y)-chains and (a, clos (Y))-chains are the same thing, we may as
well assume that Y is closed. Let a > 0 be given. Choose n large enough that

(i) do(f,fn)<a/3;
(ii) d(f(y),f(yn))<a/3;
(iii) d(y,yn)<a/3;
(iv) d(z,zn)<a/3.

By assumption there is an (a/3, K)-chain for/n that goes from yn to zn; denote it
by

yn =xo->x1-*- • --*xp=zn

(of course the x,'s depend on n, but we suppress this dependence from the notation).
Now (i)-(iv) combined with the triangle inequality show that

y->*i-»x2-»- • --*xp-i-*z

is a a -chain in Y for /. •

COROLLARY 3(a). The map / -»CR(/ ; Y) is upper semicontinuous at all f in
Diff (M), for any r > 0 and any subset Y of M.

COROLLARY 3(b). / / / , /„, y, yn, z, zn are as in lemma 3 and for each n, yn and zn

lie in a single Y-chain component offn, then y and z lie in a single Y-chain component
off.
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Proof. 3(a), in the case Y = M, is essentially (although not explicitly) contained in
[1]; see also [10] for a very closely related result. To prove 3(a) just use the lemma
with yn = zn for each n.

As for 3(b), the assumptions ensure that for each n and each positive a there
are (a; Y)- chains for /„ from yn to zn and from zn to yn. Applying the lemma twice
gives (a; Y)-chains for / from y to z and from z to y, which establishes 3(b). •

PROPOSITION 4. The set

<gr(y) = {/eDiffr (M)|CR(_; Y) is continuous at f)

is residual in Diff (M) for any subset Y of M, and r in {0, 1 , . . . , oo}.

Proof. Combine lemma 1 and corollary 3(a). •

Recall that N(f; Y) is the number of F-chain components of /.

PROPOSITION 5. Suppose f is in ^ r (F) . Then N(j, Y) is lower semicontinuous at f.

Proof. Let /„ approach / in Diff (M). Suppose first that N(f; Y) in finite, so that
we can list the F-chain components, Xu ... ,Xk. Since these sets are closed and
disjoint, we can find open sets G\,...,Gk (open in Y) such that Xj is contained
in Gj and the closures of the sets G, are pairwise disjoint. Since CR (/„; Y) is
assumed to approach CR (/; Y) in the HausdorfT topology, we can conclude that,
for large n, at least one Y- chain component of /„ meets each of the sets Gj. We
can then apply corollary 3(b) to see that for large enough n no Y- chain component
of /„ can meet more than one of the sets Gr Thus

lim inf N(fn; Y) > number of G,'s = k= N(f; Y).

Now suppose that N{f; Y) is infinite. By arguing as above for arbitrary finite
collections of F-chain components of /, we can show that lim inf N(fn; Y) is also
infinite. •

In what follows it will become necessary to restrict the possible subsets Y that we
will consider. Accordingly, we fix a certain countable basis % for the topology on
M. We require that °U contains enough open sets so that any two disjoint, closed
subsets of M can be separated by elements U, U' of %L with

clos(£/)nclos(£/') = 0 .

We also require that each element of °U be an open subset of M whose topological
boundary is a smooth codimension-one submanifold of M. Obtaining such a basis
is no problem, since a compact manifold is always second countable, and obtaining
the smoothness condition involves only some elementary arguments in differential
topology (see, e.g. [2, exercise 1, p. 55]). This smoothness condition will facilitate
certain technical arguments, and it does not interfere with the applications we have
in mind (specifically, the corollary to theorem B, and theorem C).

Define ^r to be the intersection of all the sets ^riU) for U in °U. By proposition
4 and the fact that °U is countable, "£,. is a residual subset of DifT (M).
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THEOREM 6. There is a residual subset J of Diff1 (Af) with the property that whenever
f is in J and U is in %, then

(a) f is a continuity point of CR( ; U);
(b) N(_; U) is continuous at f.

Proposition 5 and lemma 1 combine to give a residual subset / of "#i at which the
restriction of N(_; U) to ^ i is continuous for each U in °U. Since a residual
subset of a residual set is residual, / is residual in Diff1 (M). We need to show that
the unrestricted map N(_; U) is continuous at any / in /. If N(f; U) is infinite,
this is equivalent to the lower semicontinuity of proposition 5, so we may assume
that /„ approaches / in Diff1 (Af) with

<x>>N(fn;U)>N(f;U) for all n,

and look for a contradiction. By assumption on/, there is a 5 > 0 such that di(f, g)<8
and g in <€i imply that N(g; U) is equal to N(f; U), so to get a contradiction it
will suffice to show that we can perturb any /„ to a map gn in <€x with

This is a type of stabilization problem; it may be phrased in a stronger way as follows.

Stabilization question. If X is a [/-chain component for /, is there an open set G
in DifF (A/), containing / in its closure, such that every g in G has at least one
{/-chain component?

By using the closing lemma [7], we can give an affirmative answer in the case r = 1.

CLOSING LEMMA (Pugh). Suppose that {/" (x) |-oo < « <oo} is a recurrent orbit for
a C1 diffeomorphism f, that V is an open set containing the closure of this orbit, and
that 8 > 0. Then there is a diffeomorphism g, C -8-close to f, with a hyperbolic
periodic orbit in V.

Proof. The proof is contained in [7], although the statement that the periodic orbit
lies in V is not explicitly made there. The argument in [7] proceeds by choosing
a finite segment of the recurrent orbit, and then making perturbations in a small
neighbourhood, W, of this orbit segment. The closed orbit that is produced consists
of two segments, the first contained in W, and the second being a segment of the
original recurrent orbit. Hence one only has to ensure that W is contained in V.
For further details and for the definitions of 'hyperbolic' and 'recurrent', see [7]
or [8]. •

LEMMA 7. Let U be an element of °U, f be in Diff1 (Af), and suppose N(f; U) > 1.
Then there is an open set Win Diff1 (Af) with f in the closure of WandN(g;U)>\
for all g in W.

Proof. N(f; U) s 1 implies that CR (/; U) is a non-void invariant set in the closure
of U, so that clos (U) contains a recurrent orbit {/"(*)}. The smoothness conditions
on U in °U ensure that there is a smooth diffeomorphism h, enclose to the identity,
with /i(clos ({/)) contained in U. If we let y = h(x) then y is a recurrent point of
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the diffeomorphism

and the closure of the go- orbit of y lies in U. By the closing lemma, we can find
g C1-close to go such that g has a hyperbolic periodic orbit contained in U. By the
local stability of hyperbolic orbits (see [6] for example), there is an open neighbour-
hood W(g) of g such that each map in W{g) also has a periodic orbit in U. Let
W be the union of W(gn) for a sequence gn converging to/ . •

Because the perturbations involved in the proof of lemma 7 are local (that is, they
can be required to be the identity away from U, we obtain as an immediate corollary:

PROPOSITION 8. Let 8 > 0 be given, and suppose thatX\,..., X^ are distinct U-chain
components of h (U in °U), with each Xj contained in an open set Uj in °li, Ujc U,
with the closures of the various U/'s pairwise disjoint. Then there is a g in <€\ with
di(h,g)<8, CR(g; Uj) non-void for each j , andN(g; U)>k.

Proof of theorem 6. Part (a) of the theorem follows from proposition 4 and the fact
that °U is countable, so we turn our attention to the proof of (b). / in / implies
that for all g in a neighbourhood of / in ̂ i

N(g;U)=N{f;U) (*)

(recall that we can assume that N(f; U) in finite). Since / is contained in ^ i , for
all h in a C1 neighbourhood of/

N(h;U)>N(f;U). (**)

If one could find h arbitrarily close to / with strict inequality in (**), proposition
8 would allow one to find g in <<?i, arbitrarily close to/ , with

N(g;U)>N(h;U)>N(f;U).

This would contradict (*), and so the theorem is established. D

Using theorem 6 and the upper semicontinuity of CR(_), it is not hard to see that
if X is an isolated chain component of / in / and g is C1 close to /, then the single
local chain component counted by N(g; U) (here U in °U is an open set that
separates X from the rest of CR (/)) is in fact a full chain component of g. In other
words, if U is in °U and

CR (f)nU = CR (/)nclos (U)

is a single chain component of /, then

CR(g;U) = CR(g)nU

is a single chain component of g for all g C close to /.

2. Proof of theorem C
Recall that the definition of 'chain transitive attractor' was given in the introduction.

THEOREM 9. There is a residual subset si of Diffx (M) such that for any f in si and
any sequence /„ which converges to f in the C1 topology, and any chain transitive
attractor A off, there are attractors An of fn with An converging to A in the Hausdorff
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topology. Moreover, for all large n there is a unique choice of An, and it will be chain
transitive for /„.

The uniqueness in the statement of the theorem is to be interpreted as follows.
There are neighbourhoods V of A and W of f such that whenever /„ is in W, then
An can be chosen so that An is in V. There is only one such choice, and it is a
chain transitive attractor. Since An converges to A, this choice must be made for all
large n.

LEMMA 10. Suppose g is in Diff1 (M) and that Ax and A2 are attractors of g with
Ai # A2- Then A\ u A2 contains at least two chain components of g.

Proof. Recall that the a -limit set of x under g

a(x)= 0 clos{g'(x)|/<m},
m<0

is closed, non-empty, and g-invariant. It is easy to see that a{x) is also chain
transitive ([1, II.4 and II.6.2]). It follows that any compact, non-void, g-invariant
set contains at least one chain component. Consequently we need only show that
Ax # A2 forces the existence of two disjoint, compact, non-empty, g-invariant sets
in the union of Ai and A2. If At and A2 are disjoint this is immediate, so assume
that

By [1, 11.5.3^]^A3 is also an attractor of g. Let x be in A^-A3 and consider
a(x). Since Ax is compact and g-invariant, a(x) is closed, non-empty, g-invariant,
and in A i. Since A 3 is an attractor, it is not hard to show that a (x) n A 3 is non-empty
if and only if x is in A3 (see [1, II.5.1.A]). Since we are assuming that x is not in
A3, we must conclude that a(x) is contained in A i - A 3 . Hence a{x) and A3 are
the disjoint, non-empty, compact, g-invariant sets we require. •

Proof of theorem 9. By [3, 7.15], there is a residual subset T of Diff1 (M) satisfying
all but the uniqueness part of theorem 9. Let si be the intersection of T with the
residual set / of theorem 6. Since A is a chain transitive attractor of /, we can find
U in <% with N(f; U) = 1, so N(g; U) = 1 for all g C1 close to/ . Thus, if g is near
/, then g has exactly one attractor in U, for if there were more than one, then the
lemma shows that g would also have more than one chain component in U. Let
Ag denote this uniquely denned attractor of g. Since Ag is an attractor none of
whose proper subsets is an attractor, Ag is chain transitive (this follows from Conley's
characterization of CR (g) in terms of the attractors of g; see [1, 6.2.A, p. 37]). •
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