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1. Introduction

An algebra L is said to have property PC if all its congruences are principal. This
notion was introduced by Blyth and Varlet in [3]. There the authors characterize the
distributive lattices and the Stone, the de Morgan and the Heyting algebras that
have PC.

In [2], Beazer characterizes the quasi-modular p-algebras that have PC and solves the
same problem for some special classes of distributive double p-algebras, using purely
algebraic tools.

In this paper we use Priestley's duality to characterize, via their dual space, all the
distributive double p-algebras that have PC. As a consequence we obtain not only the
characterization for double Stone algebras established by the author in [9] and by
Beazer in [2], but also the characterizations stated in [2] for some special classes of
distributive double p-algebras.

In order to obtain such results, we start by determining the subsets of the dual space
of a distributive double p-algebra that represent principal congruences and also
"translate" some properties on the dual space into properties of the algebra and vice
versa.

2. Preliminaries

A distributive p-algebra is an algebra A={A; A, V , * , 0 , 1) of type (2,2,1,0,0) such
that (A; A, v,0,1) is a bounded distributive lattice and * is a unary operation that
satisfies
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y A x=0oy^x*,

i.e., x* is the pseudocomplement of x.
A distributive double p-algebra is an algebra A = (A; A, V,* , +,0,1) of type

(2,2,1,1,0,0) such that A = (A; A, V , * , 0 , 1) is a distributive p-algebra and + is a unary
operation that satisfies

y v x = lox+ £y,

i.e., x+ is the dual psudocomplement of x.
We denote the variety of distributive double p-algebras by B".
Let L be a distributive (double) p-algebra. We say that L is a (double) Stone algebra

if x* v x** = l (x* v x** = 1 and x+ A X + + = 0 ) , for every xeL.
We start by giving a brief outline of Priestley's duality as it applies to distributive

double p-algebras. For more details see [4, 5, 6,7].
First, let P be a partially ordered set and Q^P. We define 1Q = {xeP\(3yeQ)x^y}

and lQ = {xeP\(3yeQ)x^y}. When Q = {z}, we simply write }z and \z for ]{z) and
j{z}, respectively. The subset Q is said to be an up set if Q = 1Q, a down set if Q = [Q
and an up-down set if Q = tQ = lQ. We denote by MinP and Max P the sets of minimal
and of maximal elements of P, respectively. We say that P has length less than or equal
to keN0, and write l(P)^k, if every chain in P has at most k+l elements. Let
X=(X;i, ^ ) be an ordered topological space, X is called a Priestley space if it is
compact and totally order disconnected, that is, if x,yeX and x^y, there exists a
clopen down set U such that yeU and x$U (thus X is Hausdorff). If X is a Priestley
space, then, for every xsX, there exist j>€MinX and zeMaxX such that y^x^z and,
for every closed set Q, the subsets |Q and [Q are closed.

Now, we say that a Priestley space X is a double p-space if j [/ and J, F are open (and
therefore clopen), whenever U is a clopen down subset of X and V is a clopen up subset
of X. Let Xt and X2 be double p-spaces. A map f:Xl-*X2 is said to be a double
p-morphism if it is continuous, order-preserving and /(Min X^ n Jx) = MinX2 n | / (x)
and / (MaxX, n |x) = MaxX2 n f/M> for every xeXl. Next, notice that the category
of distributive double p-algebras together with homomorphisms is dually equivalent to
the category of double p-spaces together with double p-morphisms. Given a double p-
space X, its dual algebra &(X) is the distributive double p-algebra whose elements are
the clopen down subsets of X and whose operations are the intersection, union, 0, X
and * and + defined as follows: U* = X — fl/ and U+ = l(X — U), for every clopen
down set U. Given a distributive double p-algebra L, its dual space is (X;t, ^ ) where X
is the set of prime ideals of L, the topology T has as a sub-basis {Xa\aeL} u {X—Xa\
asL} (for each aeL, Xa = {leX\a$I}) and the order is the inclusion. If X is a double
p-space, then a subset Q of X is called a double p-subset if f((?nMinX)£(2 and
| (Qn Max X) £ g . There is an isomorphism [fi between the congruence lattice of LeB^
and the lattice of open double p-subsets of its dual space X which assigns to each
congruence 0 the open double p-subset U(fl,6)6e(Xfl—Xb). If Q is an open double
p-subset of X, then (a,b)e\l/~\Q) if and only if Xa-Q = Xb-Q. We ought to observe
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that in [4] and [6] the authors represent the congruences by closed sets whereas we do
it by open sets; we just take the complements.

Let X be a double p-space. In [8, Lemma 1, Corollary 6], Priestley showed that
MinX is closed in X and if C is a clopen subset of X, then f(CnMinX) is clopen.
Similarly, we can prove that MaxX is closed in X and | (Cn Max X) is clopen, when-
ever C is clopen. We denote by Mid-Y the open double p-subset X—(MinXuMaxX).
This set plays an important role since it represents the determination congruence of
V(X), i.e., for all U,Ve&(X),

U-MidX=V-MidXoU* = V* and U+ = V+.

There is an isomorphism between the lattice of filters of LEB™ and the lattice of open
up subsets of its dual space X which assigns to each filter F of L the open up set
rF = \JaeF(X-Xa). By [6, Theorem 2.3.5], the filter F is normal (i.e., a+*eF, whenever
a e F) if and only if FF is a down set.

By [7, Proposition 3], if X is the dual space of a double Stone algebra, then, for every
xeX, there is a unique m(x) e Min X such that m(x) ^ x; similarly, we prove that there is
a unique M(x) e Max X such that x 5£ M(x). Notice that the partial order we defined on
X is the reverse of that used in [7].

If L is a finite distributive double p-algebra, we may consider its dual space to be the
pair (J(L); ^ ) , where J(L) is the set of nonzero join irreducible elements of L and ^ is
the partial order induced by the lattice order. Here we drop the topology as it is the
discrete one.

3. Double p-algebras

Let X be a double p-space and CsX. For neJV0) we define Bn(C), B'n(C) and (T1)"(C)
as follows:

Bn+l(C) = i(B'n(C) r^MaxX),B'n+1(Q = UBn(C) nMinX)

We define (|T)"(C) similarly. For every neN, it is obvious that Bn(C) is a down set
and B'n(C) is an up set.

Lemma 3.1. Let X be a double p-space and C^X.

(i) / / C is a down set, then f(C n Min X) = |C;

(iii) / / C is an up set, then |(C n Max X) = [C;

(iii) For every neN, B'n{C)^Bn+l(Q and Bn(C)<=B'n+l(C);

(iv) For every n > 3, Bn(C) = !!»„- z(Q;

(v) / / C is an up set, then {jneNo Bn(Q = [jneNo(U)n{Q;
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(vi) IfC is clopen, then, for every neN0, Bn(Q is clopen and {JneNoBn(Q is open;

(vii) Q = \JneNo Bn(Q is a double p-subset of X;

(viii) IfX is the dual space of a double Stone algebra, then \JneNoBn(C) = {JZ=oBn(C).

Proof, (i) Let ye]C. There exist ceC and meMinX such that m^c^y. Since C is
a down set, the element meCn MinX. Therefore, ye|(C n MinX).

The proof of (ii) is similar.

(iii) Let neN. By the definitions of the Bs, B's and (i) and (ii),

Bn+l(Q = i(B'n{Q n Max X) = lB'n{C)2 B'n(Q,

B; + t(C) = T(Bn(C) n Min X) = TBn(C)2 Bn(C).
(iv) Let n ̂  3. By the definitions of the Bs, B's and (i) and (ii), we get

(v) Let C be an up set. First we prove, inductively, that, for every neN, we have
B2n(C)eB2n_1(C). Since C is an up set, then, by the definition of the Bs, B's and (ii),

Suppose

B2n(C)c:B2n_l(C). By (iv), we have B2n+2(C) = 4tB2n(C)s||B2n_1(C) = B2n + 1(C).

Now, applying (ii) and (iv),

U Bn(q= (J B2n+1(C)= U UT)"UC)= U iUTiQ-
neNo neNo neNo neNo

(vi) By hypothesis, B0{C) = B'0(C) = C is clopen. Now, it is clear, from the observations
in Section 2, that if Bn(Q and B'n(Q are clopen, so are Bn+l(C) and B'n+1{C). Therefore,
for every neN0, the set Bn is clopen and the set \JneN0Bn(C) is open.

(vii) The set

T(enMinX) = t(Y U Bn(C))n Min x) = (J f(BB(C)n Min X)= [j B'n(C)
\\neNo / / neNo neN

is contained in Q, by (iii). And

l{QnMaxX) = l(( [j Bn(C))n Max x)= [j |(BB(Q n Max X)
\\nsNo / / neNo

neN

neN
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(viii) It is sufficient to show that B,(QcBB.2(Q, for «^3 . Let «^3 and yeBn(Q. By
the definitions of Bn(Q, B'n_x{C) and Bn_2(Q, there are elements xeB'n.i(Qn MaxX,
zeBn_2(QnMinX and teB'n_3(C)n MaxX such that zgt, z^x and y^x. But
t,xeMaxX, and so t = x and ye|(B;_3(C)nMaxA') = Bn_2(C

1). D

Proposition 3.2. Let LGB£ and a,beL,a^b.

(i) 77ie congruence 6(a, b) is represented by Q = \JneNo Bn(Xb- Xa);

(ii) / / L is a double Stone algebra, then 8(a,b) is represented by the clopen set

Proof, (i) First notice that the open double p-subset of X that represents 6(a,b)
must contain

Q= U Bn(Xb-Xa).
16 No

Hence, it is sufficient to show that Q is an open double p-subset of X but this follows
from Lemma 3.1 (vi) and (vii).

(ii) This is an immediate consequence of (i) and Lemma 3.1 (viii), (vi). •

Proposition 3.3. Let Le B£ and X be its dual space.

(i) The subset Q of X represents a principal congruence if and only if there is a clopen
convex set C such that Q = \JneNoBn(C);

(ii) / / L is a double Stone algebra, then the subset Q of X represents a principal
congruence if and only if there is a clopen convex set C such that Q = \jl=o

Proof, (i) Suppose that Q represents a principal congruence 0(a, b). We may suppose
that a^b. By Proposition 3.2, we have Q = \JneN0Bn{Xb—Xa) and Xb—Xa is clopen and
convex.

Conversely, let Q = {jneNoBn{Q, for some clopen convex set C. Then Q is an open
double p-subset, by Lemma 3.1 (vi) and (vii). Now, the result follows as in Lemma 3
of[l] .

(ii) This follows from (i) and Lemma 3.1 (viii). •

Proposition 3.4. / / L e B " and L has PC, then D is an open up-down subset of its dual
space X if and only if there is a clopen up set A such that D = \JtteNotfl)"(A).

Proof. Let D be an open up-down set, then D represents a congruence on L which
must be principal. By Proposition 3.3 (i), there is a clopen convex set C such that
D = \JneNoBn(Q. However, D is an open up-down set, and so it also represents a filter F
of L, that is, D = \JaeF(X-Xa). The clopen C is contained in \JaeF(X — Xa). Since
X is compact, there exist teN0 and au...,a,eF such that C is contained in
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[Jim,(X-Xai) = X-Xai^^at. Let 6 = a ,A . . .Af l , and A = X-Xb. Then the
element beF and D is up and down, hence \JneNa(Hy(A)^D. By applying Lemma 3.1
(v) to the up set A, we obtain D = \JneNoBn{C)^(jn€NoBn(A) = {JneNo(1l)n(A)-

Now, let D = \JneNo{]l)n(A), where A is a clopen up set. Clearly D is up and down,
hence, by Lemma 3.1 (v) and (vi), D is open. •

Proposition 3.5. Let L e B™ and X be its dual space. If L has PC, then every subset of
Mid X is clopen and convex.

Proof. First we show that if Q^MidX and Q is open in X, then Q is clopen and
convex. Let Q^MidX and Q be open. Then Q represents a congruence on L which
must be principal. By Proposition 3.3 (i), there is a clopen convex set C such that
Q = {JneNoBn(C). But, for every «eJV, we have Bn(C)=0. Therefore Q = C and Q is
clopen and convex.

To complete the proof it remains to show that every subset of MidX is open. Let
x e Mid X, the set Mid X — {x} is open and so it is clopen. Thus {x} = Mid X—(Mid X — {x})
is open. •

Corollary 3.6. Let LeB™ and X be its dual space. If L has PC, then Mid X is finite.

Proof. By Proposition 3.5, the set MidX is closed and every subset of MidX is
clopen in X and so clopen in Mid X. Thus Mid X is a compact Hausdorff space whose
subsets are clopen. Therefore, by [5, Lemma 10.9A], Mid X is finite. •

Corollary 3.7. Let LeBZ and X be its dual space. If L has PC, then l(X)^3.

Proof. Suppose that l(X)>3. Then, there are elements a1,a2,a3,a4.,a5eX such that
ai <a2<a3<a4<a5. Hence, the set {a2,a^\ is contained in MidX and is not convex.
This contradicts Proposition 3.5. •

Lemma 3.8. Let X be a double p-space such that l(X) ^ 3 and Mid X is finite. Let A and
T be subsets of X and MidA\ respectively, and 7\ = {xeT\(3y$A u T)(3zeA)x<y<z}.
If A is a clopen up set and T is open, then ^ u ( T - T , ) is clopen and convex.

Proof. The sets T, Tt and T—Tx are closed, since MidZ is finite and T, Tt and
T—T^ are subsets of Mid A". However T is open and so T—T^ is also open. Therefore,
AKj(T-Tt) is clopen.

To show that /4u(T-T 1 ) is convex, let u,veAKJ^T-T^ and xeAT be such that
u<x<v. If us A, then xeA, since A is an up set. Suppose that ueT— Tt. Now,
as l(X)^3 and T - Tx sMidX, the element v must belong to A. If x<£A u T, then ue Tu

a contradiction. If xeTl 5 then there are elements y$A*uT and zeA such that
u<x<)><z, contradicting the fact that ueT—T^. Thus xeA^j(T-Ti) and so
A u ( T - 7\) is convex. D
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Theorem 3.9. Let L e B£ and X be its dual space. Then L has PC if and only if X
satisfies the following conditions

(i) Mid X is finite,

(ii)

(iii) The open up-down subsets of X are the sets of the form Unejv0(TI)n(/4), where A is
a clopen up set.

Proof. Suppose that L has PC. By Proposition 3.4 and Corollaries 3.6 and 3.7, the
conditions (i), (ii) and (iii) are satisfied.

Conversely, suppose that X satisfies (i), (ii) and (iii) and let Q £ X be an open double
p-subset of X. By [6, Theorems 2.3.5, 2.3.6, 2.3.7], we have Q = QX u ( g n MidX), where
Qi is an open up-down set. Hence, there is a clopen up set A such that Qt =
U».wo(Ti)"M). By Lemma 3.1 (v), we obtain QY = \jn£NoBn(A). Next, notice that the set
T=Qr\ Mid.Y is open and so, by Lemma 3.8, the set A u(T— T,) is clopen and convex.
If xeTu then xe[A = Bl(A), by the definition of Tx and Lemma 3.1 (ii). Therefore

Q = (\J Bn(A))vT = ({J B.M))u(r-T1)= (J BMviT-TJ)
\neJVo / \neJVo / neJVo

and, by Proposition 3.3 (i), it follows that Q represents a principal congruence. Hence L
has PC. •

Corollary 3.10. Let L be a double Stone algebra and X be its dual space. Then L has
PC if and only if X is finite and l(X)^3 (if and only if L is finite and l(J(L))^3).

Proof. Suppose that L has PC. By Theorem 3.9, we know that Mid-Y is finite and
/(Z)g3. Let xeMinX The set T* is closed. Consider the open set X — fx. It is easy to
prove that X — ^x is a double p-subset. Thus X — f x represents a congruence that must
be principal. By Proposition 3.2 (ii), the set X — |x is clopen and so fx is open and
{x} = |x n Min X is open in Min X. Now, every subset of the compact Hausdorff space
Min X is open and, by [5, Lemma 10.9A], the set Min X is finite. In a similar way we
prove that Max X is also finite. Therefore, X = Min X u Max X u Mid X is finite.

The converse is immediate, by Theorem 3.9. •

The following examples prove that conditions (i), (ii) and (iii) of Theorem 3.9 are
independent.

1. Consider L the 6-element chain with 1+ =0 and x+ = 1, for every x / 1 ; 0* = 1 and
x* = 0, for every x^O. Its dual space X is the five element chain: x o <x 1 <x 2 <x 3 <x 4 .
Now, X satisfies conditions (i) and (iii), but it does not satisfy (ii). Notice that L does
not have PC: {xj,x3} represents a congruence which is not principal.

2. Let {0} and {1} be one point double p-spaces and AToo = {xB|neAf u {oo}} be the
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double p-space defined by the partial order given by x,||x;, for all i,jeJVu{oo),
and the one-point compactiflcation of a countable discrete space, [5, Example 10.11].
Consider X = { 0 } © N O O © { 1 } , where © denotes the usual linear sum and which is
endowed with the disjoint union topology [5, Exercise 10.4]. Now, X satisfies (ii) and
(iii), but it does not satisfy (i). The dual double p-algebra of X does not have PC:
Nco — {xoo} represents a congruence which is not principal.

3. Let Noo be the double p-space defined in the previous example. Obviously, Noo
satisfies (i) and (ii), but it does not satisfy (iii): {xn | n e N} is an open up-down subset of
Noo and there is no clopen up set A of Noo such that {xn\neN} = \JneN('\l)''(A). The
double p-algebra L, dual of JVoo, does not have PC: the underlying lattice is a Boolean
lattice and every lattice congruence is a congruence of L, thus by [3, Theorem 1] L does
not have PC. The set {xn \ n e N} represents a congruence which is not principal.

In [2], Beazer characterizes some classes of distributive double p-algebras that have
PC. In order to show that his characterizations follow from our Theorem 3.9, we must
translate some properties of distributive double p-algebras into properties of its dual
space and vice-versa.

Let LeB™. The dually dense set of L is D+(L) = {xeL\x+ = 1} and it is an ideal of L.
The core of L is C(L) = {xeL | x + = l,x*=0} and Cen(L) is the Boolean lattice of the
complemented elements of L. If aeL the elements aM+'\ with neN0, are defined in L,
inductively, as follows: aP^'^a and a(n+1)(+*)=(a"(+*Y\ We say that L has finite range
if, for every aeL, there is keN0 such that a(*+1)<+*) = a*(+'), this is equivalent to
al[(+*)6Cen(L).

Observation. Let LeB" and X its dual space.

(i) Let Ue &(X). Identifying L and &(X) we have that

UeD+{L) if and only ifU^X-MaxX;

U e C{L) if and only if Min X £ U £ X - Max X;

UeCen(L) if and only if U is an up set;

for all neJV0,l/n(+*) = A'-(TJ)n(A:-l/).

Therefore

D+(L) is principal if and only if X — MaxX is closed (therefore clopen);

C(L) # 0 if and only if Min X £ X - Max X;

L has finite range if and only if, for every clopen up set V of X, there exists k e No

such that (n)k+1(V)=(n)k(V), that is (U)'(K)<=Cen(L).

(ii) The open up-down subsets of X are the sets of the form UBew0(TI)"(^) where A is a
clopen up set if and only if every normal filter F of L is principal (i.e., there is aeL such
that F = {xeL\{lneN0) x^aB(+'>}).

(iii) l(X) ^ 3 if and only if the poset of all prime ideals of L contains no 5-element chain.

https://doi.org/10.1017/S0013091500023257 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500023257


PRINCIPAL CONGRUENCES ON DISTRIBUTIVE DOUBLE p-ALGEBRAS 499

Proposition 3.11. Let LeB£ and X be its dual space. If MidX is finite, then every
determination class of L is finite.

Proof. Suppose that Mid* is finite. We identify L and 0{X). Now, let Uoe0{X). A
clopen down set U is in the determination class of Uo if and only if U — MidX =
Uo — Mid X. Hence, since Mid X is finite, there is a finite number of elements in the
determination class of Uo. •

Proposition 3.12. Let X be the dual space o/LeBg, Suppose that there is an open set
V satisfying the following conditions

(i) MinXnMaxXsF;
(ii) V is contained in every clopen down set U such that MinX^U.
If every determination class of L is finite, then Mid-Y is finite.

Proof. Let us identify L and <9(X). Suppose that Mid A" is infinite. Either Mid A"
does not satisfy, at least, one of the chain conditions or Mid X has an infinite antichain.
First, suppose that Mid X does not satisfy the descending chain condition, i.e., there are
ytteMidX, with neN, such that ya+i<yn. For each neN, consider

rn = MinXu{yn+i} and An=(MaxX n(X-V))u {y,,...,yn],

which are closed subsets of X. For all x e Fn and z e An, we have z ̂  x. The total order
disconnectedness and compactness provides, for each neN, a clopen down set [/„ such
that F n £ l / n £ Z — An. Now let m,n be distinct natural numbers. It is obvious that
Un^Um. Next notice that if xeMinZ, then xeUn and xeUm. Also, if x e M a x X -
MinX, then, by [5, Lemma 10.16], there is a clopen down set U such that MinX^U
and x$U. Hence, by (2), we have that x$V and then x £ [ / n u Um. Thus, Un-MidX =
Um — MidX. Therefore, the clopen down sets Un, with neN, are in the same
determination class, a contradiction.

Second, let us assume that MidX does not satisfy the ascending chain condition or
that Mid-Y has an infinite antichain. Then there are yneMidX, with neN, such that
^n+i^^n- F° r e a ch neN, consider Tn = M\nX<o {yl,...,yn} and An=(MaxA"
n(X— V)) u {yn+i}. Reasoning as before leads us once again to a contradiction. •

At this point we observe that if L is such that C(L)^=0, then we may consider V=Q
and so it is obvious that the sets Un,neN, of last proof are in C(L). Thus we have the
following

Corollary 3.13. Let LeB^ be such that C(L)=tQ and let X be its dual space. IfC(L) is
finite, then Mid X is finite.

Corollary 3.14. Let LeV% be such that D+(L) is principal and let X be its dual space.
If every determination class of L is finite, then MidX is finite.
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Proof. If D+(L) is principal, then X — MaxX is clopen and so is U(X — MaxX)
nMinX). As U(X-MaxX)nMinX)=X-(MinX nMaxX), we have that MinAT
nMaxX is clopen and so it is open. The result now follows from Proposition 3.12, by
taking F=Min X n Max X. •

Corollary 3.15. Let LeB™ be such that L has finite range and Cen(L) is finite and let
X be the dual space of L. Then if every determination class of L is finite so is Mid X.

Proof. We identify L and &(X). Let I = {U e(9(X)\M\nXsU}. For every Uel,
there is k{U)eN0 such that C/^ '^^eCen^) . Consider sf = {UHm+')\ Uel} and
V = ns/. Since Cen (L) is finite, so is srf. Thus V is an open subset of X. If U e I, then

£ l / and

Therefore, K = n ^ 2 M i n I n MaxX and, by Proposition 3.12, the set MidX is finite.

•
Proposition 3.16. Let LeB™ be such that L has finite range. Then the following

conditions are equivalent
(i) every normal filter of L is principal;
(ii) every open up-down subset of the dual space of L is closed;
(iii) Cen(L) is finite.

Proof. Let X be the dual space of L and identify L with (9(X).

(i)=>(ii) Let F be an open up-down subset of X. Then, by Observation (ii), there is a
clopen up set A such that F = yn6jVo(||,)

n(y4). Since F has finite range, we have
r = (1l)k(A), for some keN0. Thus F is closed in X.

(ii)=>(i) This is obvious, by Observation (ii).

(ii)=>(iii) We prove that the Boolean lattice Cen(L) satisfies the ascending chain
condition and, that, consequently, Cen(L) is finite. Let Un,neN, be clopen up-down
subsets of X such that t / n £ l / n + 1 . Consider the open up-down set r = [JneNUn. The set
F must be closed. Now, since X is compact and {Utt\neN} is a chain, we have F = (/s,
for some seN. Therefore, Cen(L) satisfies the ascending chain condition.

(iii)=>(ii) Let F be an open up-down subset of X and I = {U e(9(X)\X-t/sF}. For
each Uel, there is k{U)eN such that (U)kiU)(X-U)eCen(L). Let Vv = (n)kiU\X-U).
The centre of L contains {Vv\ Uel}, which must be finite. Consider A = \JUelVv. This is
a clopen up-down set contained in F. Now let x e F. The set X — F is a closed down set
and x$X — F. Then, by [5, Lemma 10.16], there is a clopen down set U such that
X — F £ U and x$U, i.e., xeX — U and Uel. Thus xeA and F = A. Therefore, F is
closed in X, as required. •
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Corollary 3.17. [2, Theorem 4.3] Let LeB£ be such that D+(L) is a principal ideal.
Then L has PC if and only if

(i) every normal filter of L is principal;
(ii) every determination class of L is finite;
(iii) there is no 5-element chain in the poset of prime ideals of L.

Proof. This is an immediate consequence of Theorem 3.9, Observation (ii) and (iii),
Proposition 3.11 and Corollary 3.14. •

In [2, Corollary 4.4], Beazer characterizes the distributive double p-algebras with
finite range and D+(L) principal that have PC. In the next corollary, we show that
requiring D+(L) principal is not necessary. In fact we are able to describe, in the same
algebraical way, all the distributive double p-algebras with the finite range that
have PC.

Corollary 3.18. Let LeB™ be such that L has finite range. Then L has PC if and only

if
(i) Cen(L) and every determination class are finite;
(ii) there is no 5-element chain in the poset of all prime ideals of L.

Proof. It follows from Theorem 3.9, Observation (ii) and (iii), Propositions 3.11 and
3.16 and Corollary 3.15. •

Corollary 3.19. Let L e B£ be such that its p-algebra reduct is Stone. Then L has PC if
and only if conditions (i) and (ii) in the statement of Corollary 3.18 hold.

Proof. We start by noticing that if the p-algebra reduct of L is Stone, then L has
finite range and then we apply Corollary 3.18. •

In [2, Corollary 4.5] not only conditions (i) and (ii) are required but also is the
existence of an element teD+(L) such that D+(L)^(t**]. However, we observe that if L
is a distributive double p-algebra whose p-algebra reduct is Stone and Cen(L) is finite,
there is always an element teD+(L) such that £)+(L)c((**]. In fact, if we identify L
and 0{X), then I = {U**\ UeD+(L)} is contained in Cen(L) and so / is finite. Next, for
each Tel we choose C/reZ)+(L) such that Vf* = T. Hence V=\Jrel UreD + {L) and, for
every UeD+(L), we have that t/£[/**sK**. Therefore D+(L)£(K**], as required.

In [3], Blyth and Varlet showed that a distributive lattice L has PC if and only if L is
finite and l(J(L))^ 1. Therefore the next corollary corresponds to Theorem 4.9 of [2].

Corollary 3.20. [2, Theorem 4.9] Let LeB% be such that C(L) = <t>. Then L has PC if
and only if

(i) every normal filter of L is principal;
(ii) C(L) is finite and

https://doi.org/10.1017/S0013091500023257 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500023257


502 JULIA VAZ DE CARVALHO

Proof. First we prove that Mid X is finite and l(X) ^ 3 if and only if C(L) is finite
and /(J(C(L)))^1. Let us assume that MidX is finite and l(X)^3. By Proposition 3.11,
we have that C(L) is finite as C(L) is a determination class. Suppose that 1{J(C(L)))> 1.
Let Un, with l £ n ^ 3 , be elements of J(C(L)) such that UicU2<=U3. For n = 2,3,
consider the closed down set Vn = l(Un—Un..1)<jMinX. Each Vn is open, since
Vn = X-(MaxXv Yn) for some Yn^MidX and MidX is finite and so is Yn. Thus
VneC(L). Obviously, Un=VnuUn-u for n = 2,3. As UneJ{C(L)), for I ^ n g 3 , we have

MinXczU1,U3^X-MaxX,U2=V2 and U3 = V3.

Next let XteUi-MmX. Since t / 1 c t / 2 = K2=(Ul/2-C/1)uMinX), there is x2eU2-
l/j such that x t <x 2 . Similarly, there is x 3 e( / 3 -U 2 such that x2<x3. On the other
hand, every element of X contains a minimal one and it is contained in a maximal one.
Therefore, l(X)^4, which is a contradiction.

Conversely, suppose that C(L) is finite and /(J(C(L)))^1. By Corollary 3.13, it follows
that MidX is finite. Suppose that /(X)>3. Let xn, with l ^ n ^ 5 , be elements of X such
that x 1 <x 2 <x 3 <x 4 .<x 5 . For ne{2,3,4}, consider the closed down set l / n=( |xn)u
MinX Now each Un is open, since Un = X—(MaxXu Yn) for some Yn^MidX. Thus, it
is obvious that UneJ(C(L)), for ne{2,3,4}, and U2aU3<= UA, a contradiction.

Finally, the result follows from Theorem 3.9 and Observation (ii). •

Corollary 3.21. [2, Corollary 4.10] Let LeB™ be such that L has finite range and
C(L)*Q. Then L has PC if and only if

(i) Cen(L) is finite;
(ii) C(L) is finite and

Proof. This is an immediate consequence of Corollary 3.20 and Proposition 3.16.

•
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