by JÚLIA VAZ DE CARVALHO*

(Received 29th September 1994)

We use Priestley's duality to characterize, via their dual space, the distributive double p-algebras on which all congruences are principal.

1991 Mathematics subject classification: 06D15.

1. Introduction

An algebra L is said to have property PC if all its congruences are principal. This notion was introduced by Blyth and Varlet in [3]. There the authors characterize the distributive lattices and the Stone, the de Morgan and the Heyting algebras that have PC.

In [2], Beazer characterizes the quasi-modular p-algebras that have PC and solves the same problem for some special classes of distributive double p-algebras, using purely algebraic tools.

In this paper we use Priestley's duality to characterize, via their dual space, all the distributive double p-algebras that have PC. As a consequence we obtain not only the characterization for double Stone algebras established by the author in [9] and by Beazer in [2], but also the characterizations stated in [2] for some special classes of distributive double p-algebras.

In order to obtain such results, we start by determining the subsets of the dual space of a distributive double p-algebra that represent principal congruences and also "translate" some properties on the dual space into properties of the algebra and vice versa.

2. Preliminaries

A distributive p-algebra is an algebra $A = (A; \land, \lor, *, 0, 1)$ of type (2, 2, 1, 0, 0) such that $(A; \land, \lor, 0, 1)$ is a bounded distributive lattice and * is a unary operation that satisfies

*This work was done within the activities of Centro de Álgebra da Universidade de Lisboa.

491

$$y \wedge x = 0 \Leftrightarrow y \leq x^*$$

i.e., x^* is the pseudocomplement of x.

A distributive double p-algebra is an algebra $A = (A; \land, \lor, *, +, 0, 1)$ of type (2, 2, 1, 1, 0, 0) such that $A = (A; \land, \lor, *, 0, 1)$ is a distributive p-algebra and + is a unary operation that satisfies

$$y \vee x = 1 \Leftrightarrow x^+ \leq y$$

i.e., x^+ is the dual psudocomplement of x.

We denote the variety of distributive double p-algebras by $\mathbf{B}_{\omega}^{\omega}$.

Let L be a distributive (double) p-algebra. We say that L is a (double) Stone algebra if $x^* \lor x^{**} = 1$ ($x^* \lor x^{**} = 1$ and $x^+ \land x^{++} = 0$), for every $x \in L$.

We start by giving a brief outline of Priestley's duality as it applies to distributive double p-algebras. For more details see [4, 5, 6, 7].

First, let P be a partially ordered set and $Q \subseteq P$. We define $\uparrow Q = \{x \in P \mid (\exists y \in Q) \ x \ge y\}$ and $\downarrow Q = \{x \in P \mid (\exists y \in Q) \ x \le y\}$. When $Q = \{z\}$, we simply write $\uparrow z$ and $\downarrow z$ for $\uparrow \{z\}$ and $\downarrow \{z\}$, respectively. The subset Q is said to be an up set if $Q = \uparrow Q$, a down set if $Q = \downarrow Q$ and an up-down set if $Q = \uparrow Q = \downarrow Q$. We denote by Min P and Max P the sets of minimal and of maximal elements of P, respectively. We say that P has length less than or equal to $k \in N_0$, and write $l(P) \le k$, if every chain in P has at most k+1 elements. Let $X = (X; \tau, \le)$ be an ordered topological space, X is called a Priestley space if it is compact and totally order disconnected, that is, if $x, y \in X$ and $x \not \le y$, there exists a clopen down set U such that $y \in U$ and $x \notin U$ (thus X is Hausdorff). If X is a Priestley space, then, for every $x \in X$, there exist $y \in M$ in X and $z \in M$ ax X such that $y \le x \le z$ and, for every closed set Q, the subsets $\uparrow Q$ and $\downarrow Q$ are closed.

Now, we say that a Priestley space X is a double p-space if $\uparrow U$ and $\downarrow V$ are open (and therefore clopen), whenever U is a clopen down subset of X and V is a clopen up subset of X. Let X_1 and X_2 be double p-spaces. A map $f: X_1 \to X_2$ is said to be a double *p-morphism* if it is continuous, order-preserving and $f(\operatorname{Min} X_1 \cap \downarrow x) = \operatorname{Min} X_2 \cap \downarrow f(x)$ and $f(\operatorname{Max} X_1 \cap \uparrow x) = \operatorname{Max} X_2 \cap \uparrow f(x)$, for every $x \in X_1$. Next, notice that the category of distributive double p-algebras together with homomorphisms is dually equivalent to the category of double p-spaces together with double p-morphisms. Given a double pspace X, its dual algebra $\mathcal{O}(X)$ is the distributive double p-algebra whose elements are the clopen down subsets of X and whose operations are the intersection, union, \emptyset , X and * and + defined as follows: $U^* = X - \uparrow U$ and $U^+ = \downarrow (X - U)$, for every clopen down set U. Given a distributive double p-algebra L, its dual space is $(X; \tau, \leq)$ where X is the set of prime ideals of L, the topology τ has as a sub-basis $\{X_a \mid a \in L\} \cup \{X - X_a\}$ $a \in L$ (for each $a \in L$, $X_a = \{I \in X \mid a \notin I\}$) and the order is the inclusion. If X is a double p-space, then a subset Q of X is called a double p-subset if $\uparrow(Q \cap Min X) \subseteq Q$ and $\downarrow(Q \cap \text{Max } X) \subseteq Q$. There is an isomorphism ψ between the congruence lattice of $L \in \mathbf{B}_{\alpha}^{\omega}$ and the lattice of open double p-subsets of its dual space X which assigns to each congruence θ the open double p-subset $\bigcup_{(a,b)\in\theta}(X_a-X_b)$. If Q is an open double p-subset of X, then $(a,b) \in \psi^{-1}(Q)$ if and only if $X_a - Q = X_b - Q$. We ought to observe

493

that in [4] and [6] the authors represent the congruences by closed sets whereas we do it by open sets; we just take the complements.

Let X be a double p-space. In [8, Lemma 1, Corollary 6], Priestley showed that Min X is closed in X and if C is a clopen subset of X, then $\uparrow(C \cap \text{Min } X)$ is clopen. Similarly, we can prove that Max X is closed in X and $\downarrow(C \cap \text{Max } X)$ is clopen, whenever C is clopen. We denote by Mid X the open double p-subset $X - (\text{Min } X \cup \text{Max } X)$. This set plays an important role since it represents the determination congruence of $\mathcal{O}(X)$, i.e., for all $U, V \in \mathcal{O}(X)$,

$$U - \text{Mid } X = V - \text{Mid } X \Leftrightarrow U^* = V^* \text{ and } U^+ = V^+.$$

There is an isomorphism between the lattice of filters of $L \in \mathbf{B}_{\alpha}^{\omega}$ and the lattice of open up subsets of its dual space X which assigns to each filter F of L the open up set $\Gamma_F = \bigcup_{a \in F} (X - X_a)$. By [6, Theorem 2.3.5], the filter F is normal (i.e., $a^{+*} \in F$, whenever $a \in F$) if and only if Γ_F is a down set.

By [7, Proposition 3], if X is the dual space of a double Stone algebra, then, for every $x \in X$, there is a unique $m(x) \in \text{Min } X$ such that $m(x) \leq x$; similarly, we prove that there is a unique $M(x) \in \text{Max } X$ such that $x \leq M(x)$. Notice that the partial order we defined on X is the reverse of that used in [7].

If L is a finite distributive double p-algebra, we may consider its dual space to be the pair $(J(L); \leq)$, where J(L) is the set of nonzero join irreducible elements of L and \leq is the partial order induced by the lattice order. Here we drop the topology as it is the discrete one.

3. Double p-algebras

Let X be a double p-space and $C \subseteq X$. For $n \in N_0$, we define $B_n(C)$, $B'_n(C)$ and $(\uparrow\downarrow)^n(C)$ as follows:

$$B_0(C) = B'_0(C) = C, (\uparrow\downarrow)^0(C) = C,$$

$$B_{n+1}(C) = \downarrow (B'_n(C) \cap \operatorname{Max} X), B'_{n+1}(C) = \uparrow (B_n(C) \cap \operatorname{Min} X) \text{ and } (\uparrow\downarrow)^{n+1}(C) = \uparrow \downarrow ((\uparrow\downarrow)^n(C)).$$

We define $(\downarrow\uparrow)^n(C)$ similarly. For every $n\in N$, it is obvious that $B_n(C)$ is a down set and $B'_n(C)$ is an up set.

Lemma 3.1. Let X be a double p-space and $C \subseteq X$.

- (i) If C is a down set, then $\uparrow(C \cap \text{Min } X) = \uparrow C$;
- (iii) If C is an up set, then $\downarrow (C \cap \text{Max } X) = \downarrow C$;
- (iii) For every $n \in N$, $B'_n(C) \subseteq B_{n+1}(C)$ and $B_n(C) \subseteq B'_{n+1}(C)$;
- (iv) For every $n \ge 3$, $B_n(C) = \downarrow \uparrow B_{n-2}(C)$;
- (v) If C is an up set, then $\bigcup_{n \in N_0} B_n(C) = \bigcup_{n \in N_0} (\uparrow \downarrow)^n(C)$;

- (vi) If C is clopen, then, for every $n \in N_0$, $B_n(C)$ is clopen and $\bigcup_{n \in N_0} B_n(C)$ is open;
- (vii) $Q = \bigcup_{n \in N_0} B_n(C)$ is a double p-subset of X;
- (viii) If X is the dual space of a double Stone algebra, then $\bigcup_{n \in N_0} B_n(C) = \bigcup_{n=0}^2 B_n(C)$.
- **Proof.** (i) Let $y \in \uparrow C$. There exist $c \in C$ and $m \in M$ in X such that $m \le c \le y$. Since C is a down set, the element $m \in C \cap M$ in X. Therefore, $y \in \uparrow (C \cap M$ in X). The proof of (ii) is similar.
 - (iii) Let $n \in \mathbb{N}$. By the definitions of the Bs, B's and (i) and (ii),

$$B_{n+1}(C) = \downarrow (B'_n(C) \cap \operatorname{Max} X) = \downarrow B'_n(C) \supseteq B'_n(C),$$

$$B'_{n+1}(C) = \uparrow (B_n(C) \cap \operatorname{Min} X) = \uparrow B_n(C) \supseteq B_n(C).$$

(iv) Let $n \ge 3$. By the definitions of the B_s , B'_s and (i) and (ii), we get

$$B_n(C) = \downarrow (B'_{n-1}(C) \cap \operatorname{Max} X) = \downarrow B'_{n-1}(C) = \downarrow \uparrow (B_{n-2}(C) \cap \operatorname{Min} X) = \downarrow \uparrow B_{n-2}(C).$$

(v) Let C be an up set. First we prove, inductively, that, for every $n \in N$, we have $B_{2n}(C) \subseteq B_{2n-1}(C)$. Since C is an up set, then, by the definition of the Bs, B's and (ii),

$$B_2(C) = \downarrow (B_1'(C) \cap \text{Max } X) = \downarrow B_1'(C) = \downarrow \uparrow (C \cap \text{Min } X) \subseteq \downarrow \uparrow C = \downarrow C = \downarrow (C \cap \text{Max } X) = B_1(C).$$
 Suppose

$$B_{2n}(C) \subseteq B_{2n-1}(C)$$
. By (iv), we have $B_{2n+2}(C) = \downarrow \uparrow B_{2n}(C) \subseteq \downarrow \uparrow B_{2n-1}(C) = B_{2n+1}(C)$.

Now, applying (ii) and (iv),

$$\bigcup_{n\in N_0} B_n(C) = \bigcup_{n\in N_0} B_{2n+1}(C) = \bigcup_{n\in N_0} (\downarrow\uparrow)^n (\downarrow C) = \bigcup_{n\in N_0} (\uparrow\downarrow)^n (C).$$

- (vi) By hypothesis, $B_0(C) = B'_0(C) = C$ is clopen. Now, it is clear, from the observations in Section 2, that if $B_n(C)$ and $B'_n(C)$ are clopen, so are $B_{n+1}(C)$ and $B'_{n+1}(C)$. Therefore, for every $n \in N_0$, the set B_n is clopen and the set $\bigcup_{n \in N_0} B_n(C)$ is open.
 - (vii) The set

$$\uparrow(Q \cap \operatorname{Min} X) = \uparrow\left(\left(\bigcup_{n \in N_0} B_n(C)\right) \cap \operatorname{Min} X\right) = \bigcup_{n \in N_0} \uparrow(B_n(C) \cap \operatorname{Min} X) = \bigcup_{n \in N} B'_n(C)$$

is contained in Q, by (iii). And

$$\downarrow (Q \cap \text{Max } X) = \downarrow \left(\left(\bigcup_{n \in N_0} B_n(C) \right) \cap \text{Max } X \right) = \bigcup_{n \in N_0} \downarrow (B_n(C) \cap \text{Max } X)$$

$$\subseteq \downarrow (B_0(C) \cap \text{Max } X) \cup \bigcup_{n \in N} \downarrow B_n(C)$$

$$= \downarrow (B'_0(C) \cap \text{Max } X) \cup \bigcup_{n \in N} B_n(C)$$

$$= \bigcup_{n \in N} B_n(C) \subseteq Q.$$

(viii) It is sufficient to show that $B_n(C) \subseteq B_{n-2}(C)$, for $n \ge 3$. Let $n \ge 3$ and $y \in B_n(C)$. By the definitions of $B_n(C)$, $B'_{n-1}(C)$ and $B_{n-2}(C)$, there are elements $x \in B'_{n-1}(C) \cap \text{Max } X$, $z \in B_{n-2}(C) \cap \text{Min } X$ and $t \in B'_{n-3}(C) \cap \text{Max } X$ such that $z \le t$, $z \le x$ and $y \le x$. But $t, x \in \text{Max } X$, and so t = x and $y \in \downarrow (B'_{n-3}(C) \cap \text{Max } X) = B_{n-2}(C)$.

Proposition 3.2. Let $L \in \mathbf{B}_{\omega}^{\omega}$ and $a, b \in L$, $a \leq b$.

- (i) The congruence $\theta(a,b)$ is represented by $Q = \bigcup_{n \in N_0} B_n(X_b X_a)$;
- (ii) If L is a double Stone algebra, then $\theta(a,b)$ is represented by the clopen set $Q = \bigcup_{n=0}^{2} B_n(X_b X_a)$.
- **Proof.** (i) First notice that the open double p-subset of X that represents $\theta(a, b)$ must contain

$$Q = \bigcup_{n \in N_0} B_n(X_b - X_a).$$

Hence, it is sufficient to show that Q is an open double p-subset of X but this follows from Lemma 3.1 (vi) and (vii).

(ii) This is an immediate consequence of (i) and Lemma 3.1 (viii), (vi).

Proposition 3.3. Let $L \in \mathbf{B}_{\omega}^{\omega}$ and X be its dual space.

- (i) The subset Q of X represents a principal congruence if and only if there is a clopen convex set C such that $Q = \bigcup_{n \in N_0} B_n(C)$;
- (ii) If L is a double Stone algebra, then the subset Q of X represents a principal congruence if and only if there is a clopen convex set C such that $Q = \bigcup_{n=0}^{2} B_n(C)$.
- **Proof.** (i) Suppose that Q represents a principal congruence $\theta(a,b)$. We may suppose that $a \le b$. By Proposition 3.2, we have $Q = \bigcup_{n \in N_0} B_n(X_b X_a)$ and $X_b X_a$ is clopen and convex.

Conversely, let $Q = \bigcup_{n \in N_0} B_n(C)$, for some clopen convex set C. Then Q is an open double p-subset, by Lemma 3.1 (vi) and (vii). Now, the result follows as in Lemma 3 of [1].

(ii) This follows from (i) and Lemma 3.1 (viii).

Proposition 3.4. If $L \in \mathbf{B}_{\infty}^{\omega}$ and L has PC, then D is an open up-down subset of its dual space X if and only if there is a clopen up set A such that $D = \bigcup_{n \in \mathbb{N}_0} (\uparrow \downarrow)^n(A)$.

Proof. Let D be an open up-down set, then D represents a congruence on L which must be principal. By Proposition 3.3 (i), there is a clopen convex set C such that $D = \bigcup_{n \in N_0} B_n(C)$. However, D is an open up-down set, and so it also represents a filter F of L, that is, $D = \bigcup_{a \in F} (X - X_a)$. The clopen C is contained in $\bigcup_{a \in F} (X - X_a)$. Since X is compact, there exist $t \in N_0$ and $a_1, \ldots, a_t \in F$ such that C is contained in

 $\bigcup_{1 \le i \le t} (X - X_{a_i}) = X - X_{a_1 \land \dots \land a_t}. \text{ Let } b = a_1 \land \dots \land a_t \text{ and } A = X - X_b. \text{ Then the element } b \in F \text{ and } D \text{ is up and down, hence } \bigcup_{n \in N_0} (\uparrow\downarrow)^n(A) \subseteq D. \text{ By applying Lemma } 3.1$ (v) to the up set A, we obtain $D = \bigcup_{n \in N_0} B_n(C) \subseteq \bigcup_{n \in N_0} B_n(A) = \bigcup_{n \in N_0} (\uparrow\downarrow)^n(A)$.

Now, let $D = \bigcup_{n \in N_0} (\uparrow \downarrow)^n(A)$, where A is a clopen up set. Clearly D is up and down, hence, by Lemma 3.1 (v) and (vi), D is open.

Proposition 3.5. Let $L \in \mathbf{B}_{\omega}^{\omega}$ and X be its dual space. If L has PC, then every subset of Mid X is clopen and convex.

Proof. First we show that if $Q \subseteq Mid X$ and Q is open in X, then Q is clopen and convex. Let $Q \subseteq Mid X$ and Q be open. Then Q represents a congruence on L which must be principal. By Proposition 3.3 (i), there is a clopen convex set C such that $Q = \bigcup_{n \in N_0} B_n(C)$. But, for every $n \in N$, we have $B_n(C) = \emptyset$. Therefore Q = C and Q is clopen and convex.

To complete the proof it remains to show that every subset of Mid X is open. Let $x \in \text{Mid } X$, the set Mid $X - \{x\}$ is open and so it is clopen. Thus $\{x\} = \text{Mid } X - (\text{Mid } X - \{x\})$ is open.

Corollary 3.6. Let $L \in \mathbf{B}_{\omega}^{\omega}$ and X be its dual space. If L has PC, then Mid X is finite.

Proof. By Proposition 3.5, the set Mid X is closed and every subset of Mid X is clopen in X and so clopen in Mid X. Thus Mid X is a compact Hausdorff space whose subsets are clopen. Therefore, by [5, Lemma 10.9A], Mid X is finite.

Corollary 3.7. Let $L \in \mathbf{B}_{\omega}^{\omega}$ and X be its dual space. If L has PC, then $l(X) \leq 3$.

Proof. Suppose that l(X) > 3. Then, there are elements $a_1, a_2, a_3, a_4, a_5 \in X$ such that $a_1 < a_2 < a_3 < a_4 < a_5$. Hence, the set $\{a_2, a_4\}$ is contained in Mid X and is not convex. This contradicts Proposition 3.5.

Lemma 3.8. Let X be a double p-space such that $l(X) \le 3$ and Mid X is finite. Let A and T be subsets of X and Mid X, respectively, and $T_1 = \{x \in T | (\exists y \notin A \cup T) (\exists z \in A) x < y < z\}$. If A is a clopen up set and T is open, then $A \cup (T - T_1)$ is clopen and convex.

Proof. The sets T, T_1 and $T-T_1$ are closed, since Mid X is finite and T, T_1 and $T-T_1$ are subsets of Mid X. However T is open and so $T-T_1$ is also open. Therefore, $A \cup (T-T_1)$ is clopen.

To show that $A \cup (T-T_1)$ is convex, let $u, v \in A \cup (T-T_1)$ and $x \in X$ be such that u < x < v. If $u \in A$, then $x \in A$, since A is an up set. Suppose that $u \in T-T_1$. Now, as $l(X) \le 3$ and $T-T_1 \subseteq \text{Mid } X$, the element v must belong to A. If $x \notin A \cup T$, then $u \in T_1$, a contradiction. If $x \in T_1$, then there are elements $y \notin A \cup T$ and $z \in A$ such that u < x < y < z, contradicting the fact that $u \in T-T_1$. Thus $x \in A \cup (T-T_1)$ and so $A \cup (T-T_1)$ is convex.

Theorem 3.9. Let $L \in \mathbf{B}_{\omega}^{\omega}$ and X be its dual space. Then L has PC if and only if X satisfies the following conditions

- (i) Mid X is finite;
- (ii) $l(X) \leq 3$;
- (iii) The open up-down subsets of X are the sets of the form $\bigcup_{n \in N_0} (\uparrow \downarrow)^n(A)$, where A is a clopen up set.

Proof. Suppose that L has PC. By Proposition 3.4 and Corollaries 3.6 and 3.7, the conditions (i), (ii) and (iii) are satisfied.

Conversely, suppose that X satisfies (i), (ii) and (iii) and let $Q \subseteq X$ be an open double p-subset of X. By [6, Theorems 2.3.5, 2.3.6, 2.3.7], we have $Q = Q_1 \cup (Q \cap \operatorname{Mid} X)$, where Q_1 is an open up-down set. Hence, there is a clopen up set A such that $Q_1 = \bigcup_{n \in N_0} (\uparrow \downarrow)^n(A)$. By Lemma 3.1 (v), we obtain $Q_1 = \bigcup_{n \in N_0} B_n(A)$. Next, notice that the set $T = Q \cap \operatorname{Mid} X$ is open and so, by Lemma 3.8, the set $A \cup (T - T_1)$ is clopen and convex. If $x \in T_1$, then $x \in \downarrow A = B_1(A)$, by the definition of T_1 and Lemma 3.1 (ii). Therefore

$$Q = \left(\bigcup_{n \in N_0} B_n(A)\right) \cup T = \left(\bigcup_{n \in N_0} B_n(A)\right) \cup (T - T_1) = \bigcup_{n \in N_0} B_n(A \cup (T - T_1))$$

and, by Proposition 3.3 (i), it follows that Q represents a principal congruence. Hence L has PC.

Corollary 3.10. Let L be a double Stone algebra and X be its dual space. Then L has PC if and only if X is finite and $l(X) \le 3$ (if and only if L is finite and $l(J(L)) \le 3$).

Proof. Suppose that L has PC. By Theorem 3.9, we know that Mid X is finite and $l(X) \le 3$. Let $x \in Min X$. The set $\uparrow x$ is closed. Consider the open set $X - \uparrow x$. It is easy to prove that $X - \uparrow x$ is a double p-subset. Thus $X - \uparrow x$ represents a congruence that must be principal. By Proposition 3.2 (ii), the set $X - \uparrow x$ is clopen and so $\uparrow x$ is open and $\{x\} = \uparrow x \cap Min X$ is open in Min X. Now, every subset of the compact Hausdorff space Min X is open and, by [5, Lemma 10.9A], the set Min X is finite. In a similar way we prove that Max X is also finite. Therefore, $X = Min X \cup Max X \cup Mid X$ is finite.

The converse is immediate, by Theorem 3.9.

The following examples prove that conditions (i), (ii) and (iii) of Theorem 3.9 are independent.

- 1. Consider L the 6-element chain with $1^+=0$ and $x^+=1$, for every $x \ne 1$; $0^*=1$ and $x^*=0$, for every $x \ne 0$. Its dual space X is the five element chain: $x_0 < x_1 < x_2 < x_3 < x_4$. Now, X satisfies conditions (i) and (iii), but it does not satisfy (ii). Notice that L does not have $PC: \{x_1, x_3\}$ represents a congruence which is not principal.
 - 2. Let $\{0\}$ and $\{1\}$ be one point double p-spaces and $N\infty = \{x_n \mid n \in \mathbb{N} \cup \{\infty\}\}$ be the

double p-space defined by the partial order given by $x_i || x_j$, for all $i, j \in N \cup \{\infty\}$, $i \neq j$, and the one-point compactification of a countable discrete space, [5, Example 10.11]. Consider $X = \{0\} \oplus N \infty \oplus \{1\}$, where \oplus denotes the usual linear sum and which is endowed with the disjoint union topology [5, Exercise 10.4]. Now, X satisfies (ii) and (iii), but it does not satisfy (i). The dual double p-algebra of X does not have PC: $N \infty - \{x_\infty\}$ represents a congruence which is not principal.

- 3. Let $N\infty$ be the double p-space defined in the previous example. Obviously, $N\infty$ satisfies (i) and (ii), but it does not satisfy (iii): $\{x_n \mid n \in N\}$ is an open up-down subset of $N\infty$ and there is no clopen up set A of $N\infty$ such that $\{x_n \mid n \in N\} = \bigcup_{n \in N} (\uparrow\downarrow)^n(A)$. The double p-algebra L, dual of $N\infty$, does not have PC: the underlying lattice is a Boolean lattice and every lattice congruence is a congruence of L, thus by [3, Theorem 1] L does not have PC. The set $\{x_n \mid n \in N\}$ represents a congruence which is not principal.
- In [2], Beazer characterizes some classes of distributive double p-algebras that have PC. In order to show that his characterizations follow from our Theorem 3.9, we must translate some properties of distributive double p-algebras into properties of its dual space and vice-versa.

Let $L \in \mathbf{B}_{\omega}^{\omega}$. The dually dense set of L is $D^{+}(L) = \{x \in L \mid x^{+} = 1\}$ and it is an ideal of L. The core of L is $C(L) = \{x \in L \mid x^{+} = 1, x^{*} = 0\}$ and Cen(L) is the Boolean lattice of the complemented elements of L. If $a \in L$ the elements $a^{n(+ \cdot)}$, with $n \in N_0$, are defined in L, inductively, as follows: $a^{0(+ \cdot)} = a$ and $a^{(n+1)(+ \cdot)} = (a^{n(+ \cdot)})^{+ \cdot}$. We say that L has finite range if, for every $a \in L$, there is $k \in N_0$ such that $a^{(k+1)(+ \cdot)} = a^{k(+ \cdot)}$, this is equivalent to $a^{k(+ \cdot)} \in Cen(L)$.

Observation. Let $L \in \mathbf{B}_{\omega}^{\omega}$ and X its dual space.

(i) Let $U \in \mathcal{O}(X)$. Identifying L and $\mathcal{O}(X)$ we have that

 $U \in D^+(L)$ if and only if $U \subseteq X - \text{Max } X$;

 $U \in C(L)$ if and only if Min $X \subseteq U \subseteq X - \text{Max } X$:

 $U \in Cen(L)$ if and only if U is an up set;

for all $n \in N_0$, $U^{n(++)} = X - (\uparrow\downarrow)^n (X - U)$.

Therefore

 $D^+(L)$ is principal if and only if X - Max X is closed (therefore clopen);

 $C(L) \neq \emptyset$ if and only if $Min X \subseteq X - Max X$;

L has finite range if and only if, for every clopen up set V of X, there exists $k \in N_0$ such that $(\uparrow\downarrow)^{k+1}(V) = (\uparrow\downarrow)^k(V)$, that is $(\uparrow\downarrow)^k(V) \in Cen(L)$.

- (ii) The open up-down subsets of X are the sets of the form $\bigcup_{n\in\mathbb{N}_0}(\uparrow\downarrow)^n(A)$ where A is a clopen up set if and only if every normal filter F of L is principal (i.e., there is $a\in L$ such that $F = \{x \in L | (\exists n \in \mathbb{N}_0) \mid x \geq a^{n(+\bullet)} \}$).
 - (iii) $l(X) \le 3$ if and only if the poset of all prime ideals of L contains no 5-element chain.

Proposition 3.11. Let $L \in \mathbf{B}_{\omega}^{\infty}$ and X be its dual space. If Mid X is finite, then every determination class of L is finite.

Proof. Suppose that Mid X is finite. We identify L and $\mathcal{O}(X)$. Now, let $U_0 \in \mathcal{O}(X)$. A clopen down set U is in the determination class of U_0 if and only if $U - \text{Mid } X = U_0 - \text{Mid } X$. Hence, since Mid X is finite, there is a finite number of elements in the determination class of U_0 .

Proposition 3.12. Let X be the dual space of $L \in \mathbf{B}_{\omega}^{o}$, Suppose that there is an open set V satisfying the following conditions

- (i) $\operatorname{Min} X \cap \operatorname{Max} X \subseteq V$;
- (ii) V is contained in every clopen down set U such that $\min X \subseteq U$.

If every determination class of L is finite, then Mid X is finite.

Proof. Let us identify L and $\mathcal{O}(X)$. Suppose that Mid X is infinite. Either Mid X does not satisfy, at least, one of the chain conditions or Mid X has an infinite antichain. First, suppose that Mid X does not satisfy the descending chain condition, i.e., there are $y_n \in \text{Mid } X$, with $n \in \mathbb{N}$, such that $y_{n+1} < y_n$. For each $n \in \mathbb{N}$, consider

$$\Gamma_n = \operatorname{Min} X \cup \{y_{n+1}\} \text{ and } \Delta_n = (\operatorname{Max} X \cap (X - V)) \cup \{y_1, \dots, y_n\},$$

which are closed subsets of X. For all $x \in \Gamma_n$ and $z \in \Delta_n$, we have $z \nleq x$. The total order disconnectedness and compactness provides, for each $n \in N$, a clopen down set U_n such that $\Gamma_n \subseteq U_n \subseteq X - \Delta_n$. Now let m, n be distinct natural numbers. It is obvious that $U_n \neq U_m$. Next notice that if $x \in \text{Min } X$, then $x \in U_n$ and $x \in U_m$. Also, if $x \in \text{Max } X - \text{Min } X$, then, by [5, Lemma 10.16], there is a clopen down set U such that $\text{Min } X \subseteq U$ and $x \notin U$. Hence, by (2), we have that $x \notin V$ and then $x \notin U_n \cup U_m$. Thus, $U_n - \text{Mid } X = U_m - \text{Mid } X$. Therefore, the clopen down sets U_n , with $n \in N$, are in the same determination class, a contradiction.

Second, let us assume that Mid X does not satisfy the ascending chain condition or that Mid X has an infinite antichain. Then there are $y_n \in \text{Mid } X$, with $n \in N$, such that $y_{n+1} \nleq y_n$. For each $n \in N$, consider $\Gamma_n = \text{Min } X \cup \{y_1, \dots, y_n\}$ and $\Delta_n = (\text{Max } X \cap (X - V)) \cup \{y_{n+1}\}$. Reasoning as before leads us once again to a contradiction.

At this point we observe that if L is such that $C(L) \neq \emptyset$, then we may consider $V = \emptyset$ and so it is obvious that the sets $U_n, n \in \mathbb{N}$, of last proof are in C(L). Thus we have the following

Corollary 3.13. Let $L \in \mathbf{B}_{\omega}^{\infty}$ be such that $C(L) \neq \emptyset$ and let X be its dual space. If C(L) is finite, then Mid X is finite.

Corollary 3.14. Let $L \in \mathbf{B}_{\omega}^{m}$ be such that $D^{+}(L)$ is principal and let X be its dual space. If every determination class of L is finite, then Mid X is finite.

Proof. If $D^+(L)$ is principal, then $X - \operatorname{Max} X$ is clopen and so is $\uparrow((X - \operatorname{Max} X) \cap \operatorname{Min} X)$. As $\uparrow((X - \operatorname{Max} X) \cap \operatorname{Min} X) = X - (\operatorname{Min} X \cap \operatorname{Max} X)$, we have that $\operatorname{Min} X \cap \operatorname{Max} X$ is clopen and so it is open. The result now follows from Proposition 3.12, by taking $V = \operatorname{Min} X \cap \operatorname{Max} X$.

Corollary 3.15. Let $L \in \mathbf{B}_{\omega}^{\omega}$ be such that L has finite range and $\operatorname{Cen}(L)$ is finite and let X be the dual space of L. Then if every determination class of L is finite so is Mid X.

Proof. We identify L and $\mathcal{O}(X)$. Let $I = \{U \in \mathcal{O}(X) \mid \text{Min } X \subseteq U\}$. For every $U \in I$, there is $k(U) \in N_0$ such that $U^{k(U)(+*)} \in \text{Cen}(L)$. Consider $\mathscr{A} = \{U^{k(U)(+*)} \mid U \in I\}$ and $V = \cap \mathscr{A}$. Since Cen(L) is finite, so is \mathscr{A} . Thus V is an open subset of X. If $U \in I$, then $V = \cap \mathscr{A} \subseteq U^{k(U)(+*)} \subseteq U$ and

$$U^{k(U)(+*)} = X - (\uparrow\downarrow)^{k(U)}(X-U) \supseteq X - (\uparrow\downarrow)^{k(U)}(X-\operatorname{Min} X) \supseteq \operatorname{Min} X \cap \operatorname{Max} X.$$

Therefore, $V = \cap \mathcal{A} \supseteq \operatorname{Min} X \cap \operatorname{Max} X$ and, by Proposition 3.12, the set Mid X is finite.

Proposition 3.16. Let $L \in \mathbf{B}_{\omega}^{\omega}$ be such that L has finite range. Then the following conditions are equivalent

- (i) every normal filter of L is principal;
- (ii) every open up-down subset of the dual space of L is closed;
- (iii) Cen(L) is finite.

Proof. Let X be the dual space of L and identify L with $\mathcal{O}(X)$.

- (i) \Rightarrow (ii) Let Γ be an open up-down subset of X. Then, by Observation (ii), there is a clopen up set A such that $\Gamma = \bigcup_{n \in N_0} (\uparrow \downarrow)^n (A)$. Since Γ has finite range, we have $\Gamma = (\uparrow \downarrow)^k (A)$, for some $k \in N_0$. Thus Γ is closed in X.
 - (ii) ⇒(i) This is obvious, by Observation (ii).
- (ii) \Rightarrow (iii) We prove that the Boolean lattice Cen(L) satisfies the ascending chain condition and, that, consequently, Cen(L) is finite. Let $U_n, n \in N$, be clopen up-down subsets of X such that $U_n \subseteq U_{n+1}$. Consider the open up-down set $\Gamma = \bigcup_{n \in N} U_n$. The set Γ must be closed. Now, since X is compact and $\{U_n | n \in N\}$ is a chain, we have $\Gamma = U_s$, for some $s \in N$. Therefore, Cen(L) satisfies the ascending chain condition.
- (iii) \Rightarrow (ii) Let Γ be an open up-down subset of X and $I = \{U \in \mathcal{O}(X) \mid X U \subseteq \Gamma\}$. For each $U \in I$, there is $k(U) \in N$ such that $(\uparrow\downarrow)^{k(U)}(X U) \in \text{Cen}(L)$. Let $V_U = (\uparrow\downarrow)^{k(U)}(X U)$. The centre of L contains $\{V_U \mid U \in I\}$, which must be finite. Consider $A = \bigcup_{U \in I} V_U$. This is a clopen up-down set contained in Γ . Now let $x \in \Gamma$. The set $X \Gamma$ is a closed down set and $x \notin X \Gamma$. Then, by [5, Lemma 10.16], there is a clopen down set U such that $X \Gamma \subseteq U$ and $x \notin U$, i.e., $x \in X U$ and $U \in I$. Thus $x \in A$ and $\Gamma = A$. Therefore, Γ is closed in X, as required.

Corollary 3.17. [2, Theorem 4.3] Let $L \in \mathbf{B}_{\omega}^{\omega}$ be such that $D^{+}(L)$ is a principal ideal. Then L has PC if and only if

- (i) every normal filter of L is principal;
- (ii) every determination class of L is finite;
- (iii) there is no 5-element chain in the poset of prime ideals of L.

Proof.	This is ar	ı immediate	consequence	of	Theorem	3.9,	Observation	(ii)	and	(iii)
Proposition 3.11 and Corollary 3.14.										

In [2, Corollary 4.4], Beazer characterizes the distributive double p-algebras with finite range and $D^+(L)$ principal that have PC. In the next corollary, we show that requiring $D^+(L)$ principal is not necessary. In fact we are able to describe, in the same algebraical way, all the distributive double p-algebras with the finite range that have PC.

Corollary 3.18. Let $L \in \mathbf{B}_{\omega}^{\omega}$ be such that L has finite range. Then L has PC if and only if

- (i) Cen(L) and every determination class are finite;
 - (ii) there is no 5-element chain in the poset of all prime ideals of L.

Proof. It follows from Theorem 3.9, Observation (ii) and (iii), Propositions 3.11 and 3.16 and Corollary 3.15.

Corollary 3.19. Let $L \in \mathbf{B}_{\omega}^{\omega}$ be such that its p-algebra reduct is Stone. Then L has PC if and only if conditions (i) and (ii) in the statement of Corollary 3.18 hold.

Proof. We start by noticing that if the p-algebra reduct of L is Stone, then L has finite range and then we apply Corollary 3.18.

In [2, Corollary 4.5] not only conditions (i) and (ii) are required but also is the existence of an element $t \in D^+(L)$ such that $D^+(L) \subseteq (t^{**}]$. However, we observe that if L is a distributive double p-algebra whose p-algebra reduct is Stone and Cen(L) is finite, there is always an element $t \in D^+(L)$ such that $D^+(L) \subseteq (t^{**}]$. In fact, if we identify L and $\mathcal{O}(X)$, then $I = \{U^{**} \mid U \in D^+(L)\}$ is contained in Cen(L) and so I is finite. Next, for each $\Gamma \in I$ we choose $U_{\Gamma} \in D^+(L)$ such that $U_{\Gamma}^{**} = \Gamma$. Hence $V = \bigcup_{\Gamma \in I} U_{\Gamma} \in D^+(L)$ and, for every $U \in D^+(L)$, we have that $U \subseteq U^{**} \subseteq V^{**}$. Therefore $D^+(L) \subseteq (V^{**}]$, as required.

In [3], Blyth and Varlet showed that a distributive lattice L has PC if and only if L is finite and $l(J(L)) \le 1$. Therefore the next corollary corresponds to Theorem 4.9 of [2].

Corollary 3.20. [2, Theorem 4.9] Let $L \in \mathbf{B}_{\omega}^{\omega}$ be such that $C(L) = \emptyset$. Then L has PC if and only if

- (i) every normal filter of L is principal;
- (ii) C(L) is finite and $l(J(C(L))) \le 1$.

Proof. First we prove that Mid X is finite and $l(X) \le 3$ if and only if C(L) is finite and $l(J(C(L))) \le 1$. Let us assume that Mid X is finite and $l(X) \le 3$. By Proposition 3.11, we have that C(L) is finite as C(L) is a determination class. Suppose that l(J(C(L))) > 1. Let U_n , with $1 \le n \le 3$, be elements of J(C(L)) such that $U_1 \subset U_2 \subset U_3$. For n = 2, 3, consider the closed down set $V_n = \bigcup (U_n - U_{n-1}) \cup \text{Min } X$. Each V_n is open, since $V_n = X - (\text{Max } X \cup Y_n)$ for some $Y_n \subseteq \text{Mid } X$ and Mid X is finite and so is Y_n . Thus $V_n \in C(L)$. Obviously, $U_n = V_n \cup U_{n-1}$, for n = 2, 3. As $U_n \in J(C(L))$, for $1 \le n \le 3$, we have

$$\operatorname{Min} X \subset U_1, U_3 \subseteq X - \operatorname{Max} X, U_2 = V_2$$
 and $U_3 = V_3$.

Next let $x_1 \in U_1 - \text{Min } X$. Since $U_1 \subset U_2 = V_2 = (\downarrow (U_2 - U_1) \cup \text{Min } X)$, there is $x_2 \in U_2 - U_1$ such that $x_1 < x_2$. Similarly, there is $x_3 \in U_3 - U_2$ such that $x_2 < x_3$. On the other hand, every element of X contains a minimal one and it is contained in a maximal one. Therefore, $I(X) \ge 4$, which is a contradiction.

Conversely, suppose that C(L) is finite and $l(J(C(L))) \le 1$. By Corollary 3.13, it follows that Mid X is finite. Suppose that l(X) > 3. Let x_n , with $1 \le n \le 5$, be elements of X such that $x_1 < x_2 < x_3 < x_4 < x_5$. For $n \in \{2, 3, 4\}$, consider the closed down set $U_n = (\downarrow x_n) \cup \text{Min } X$. Now each U_n is open, since $U_n = X - (\text{Max } X \cup Y_n)$ for some $Y_n \subseteq \text{Mid } X$. Thus, it is obvious that $U_n \in J(C(L))$, for $n \in \{2, 3, 4\}$, and $U_2 \subset U_3 \subset U_4$, a contradiction.

Finally, the result follows from Theorem 3.9 and Observation (ii).

Corollary 3.21. [2, Corollary 4.10] Let $L \in \mathbf{B}_{\omega}^{\omega}$ be such that L has finite range and $C(L) \neq \emptyset$. Then L has PC if and only if

- (i) Cen(L) is finite;
- (ii) C(L) is finite and $l(J(C(L))) \le 1$.

Proof. This is an immediate consequence of Corollary 3.20 and Proposition 3.16.

REFERENCES

- 1. M. E. Adams, Principal congruences in de Morgan algebras, Proc. Edinburgh Math. Soc. 30 (1987), 415-421.
- 2. R. Beazer, Some p-algebras and double p-algebras having only principal congruences, Glasgow Math. J. 34 (1992), 157-164.
- 3. T. S. Blyth and J. C. Varlet, Principal congruences on some lattice-ordered algebras, Discrete Math. 81 (1990), 323-329.
- 4. B. A. Davey, Subdirectly irreducible distributive double p-algebras, Algebra Universalis 8 (1978), 73-88.
- 5. B. A. Davey and H. A. Priestley, *Introduction to Lattices and Order* (Cambridge University Press, Cambridge, 1990).
- 6. M. S. GOLDBERG, Distributive p-algebras and Ockham algebras: a Topological Approach (Ph.D. thesis, La Trobe University, Bundoora, Australia, 1979).
 - 7. H. A. Priestley, Stone lattices: a topological approach, Fund, Math. 84 (1974), 127–143.

- 8. H. A. Priestley, The construction of spaces dual to pseudocomplemented distributive lattices, Quart. J. Oxford 26 (1975), 215-228.
- 9. J. VAZ DE CARVALHO, Congruências principais em álgebras de Stone duplas, Actas XV Jornadas Luso-Espanholas de Matemática 1 (1990), 49-54.

CENTRO DE ÁLGEBRA DA UNIVERSIDADE DE LISBOA AV. PROF. GAMA PINTO, 2 1699 LISBOA CODEX PORTUGAL