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1. Introduction

An algebra L is said to have property PC if all its congruences are principal. This
notion was introduced by Blyth and Varlet in [3]. There the authors characterize the
distributive lattices and the Stone, the de Morgan and the Heyting algebras that
have PC.

In [2], Beazer characterizes the quasi-modular p-algebras that have PC and solves the
same problem for some special classes of distributive double p-algebras, using purely
algebraic tools.

In this paper we use Priestley’s duality to characterize, via their dual space, all the
distributive double p-algebras that have PC. As a consequence we obtain not only the
characterization for double Stone algebras established by the author in [9] and by
Beazer in [2], but also the characterizations stated in [2] for some special classes of
distributive double p-algebras.

In order to obtain such results, we start by determining the subsets of the dual space
of a distributive double p-algebra that represent principal congruences and also
“translate” some properties on the dual space into properties of the algebra and vice
versa.

2. Preliminaries

A distributive p-algebra is an algebra A=(4; A, v,*,0,1) of type (2,2,1,0,0) such
that (4; A, v,0,1) is a bounded distributive lattice and * is a unary operation that
satisfies
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yAx=0eysx*,

i.e., x* is the pseudocomplement of x.

A distributive double p-algebra is an algebra A=(4; A, v, +,0,1) of type
(2,2,1,1,0,0) such that A=(4; A, v,*,0,1) is a distributive p-algebra and + is a unary
operation that satisfies

yvx=lex' <y,

i, x* is the dual psudocomplement of x.

We denote the variety of distributive double p-algebras by B2.

Let L be a distributive (double) p-algebra. We say that L is a (double) Stone algebra
if x* v x**=1(x* v x*=1and x* A x**=0), for every xeL.

We start by giving a brief outline of Priestley’s duality as it applies to distributive
double p-algebras. For more details see [4, 5, 6,7].

First, let P be a partially ordered set and Q < P. We define 1Q={xeP|(Iye Q) x2y}
and |Q={xeP|(AyeQ)x<y}. When Q={z}, we simply write 1z and |z for 1{z} and
1{z}, respectively. The subset Q is said to be an up set if Q=1Q, a down set if Q=]Q
and an up-down set if Q=1Q=]Q. We denote by Min P and Max P the sets of minimal
and of maximal elements of P, respectively. We say that P has length less than or equal
to keN,, and write I(P)<k, if every chain in P has at most k+1 elements. Let
X=(X;1, <) be an ordered topological space, X is called a Priestley space if it is
compact and totally order disconnected, that is, if x,yeX and x$ y, there exists a
clopen down set U such that yeU and x¢ U (thus X is Hausdorff). If X is a Priestley
space, then, for every xe X, there exist ye Min X and ze Max X such that y<x <z and,
for every closed set Q, the subsets 1Q and |Q are closed.

Now, we say that a Priestley space X is a double p-space if 1U and |V are open (and
therefore clopen), whenever U is a clopen down subset of X and V is a clopen up subset
of X. Let X, and X, be double p-spaces. A map f:X,—>X, is said to be a double
p-morphism if it is continuous, order-preserving and f(MinX, n [x)=Min X, n | f(x)
and f(Max X, n Tx)=Max X, n 1 f(x), for every xe X . Next, notice that the category
of distributive double p-algebras together with homomorphisms is dually equivalent to
the category of double p-spaces together with double p-morphisms. Given a double p-
space X, its dual algebra @(X) is the distributive double p-algebra whose elements are
the clopen down subsets of X and whose operations are the intersection, union, §, X
and * and + defined as follows: U*=X—-1U and U™* = |(X—U), for every clopen
down set U. Given a distributive double p-algebra L, its dual space is (X; 1, <) where X
is the set of prime ideals of L, the topology t has as a sub-basis {X,,laeL} vi{X —Xal
aeL} (for each aeL, X,={Ie X |a¢I}) and the order is the inclusion. If X is a double
p-space, then a subset Q of X is called a double p-subset if 1(Q "MinX)=Q and
1(@ nMax X)= Q. There is an isomorphism y between the congruence lattice of Le B2
and the lattice of open double p-subsets of its dual space X which assigns to each
congruence # the open double p-subset U(,,,,,,G,(x o—X,;). If @ is an open double
p-subset of X, then (a,b)ey~'(Q) if and only if X,—Q=X,—Q. We ought to observe
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that in [4] and [6] the authors represent the congruences by closed sets whereas we do
it by open sets; we just take the complements. .

Let X be a double p-space. In [8, Lemma 1, Corollary 6], Priestley showed that
Min X is closed in X and if C is a clopen subset of X, then {(C n Min X) is clopen.
Similarly, we can prove that Max X is closed in X and [(C n Max X) is clopen, when-
ever C is clopen. We denote by Mid X the open double p-subset X —(Min X u Max X).
This set plays an important role since it represents the determination congruence of
0(X), ie, for all U, Ve O(X),

U-MidX=V-MidX<U*=V*and U*=V".

There is an isomorphism between the lattice of filters of L e B2 and the lattice of open
up subsets of its dual space X which assigns to each filter F of L the open up set
IT'r=Jser (X —X,). By [6, Theorem 2.3.5], the filter F is normal (i.e., a** € F, whenever
aeF) if and only if I'r is a down set.

By [7, Proposition 3], if X is the dual space of a double Stone algebra, then, for every
x € X, there is a unique m(x)e Min X such that m(x) < x; similarly, we prove that there is
a unique M(x)e Max X such that x < M(x). Notice that the partial order we defined on
X is the reverse of that used in [7].

If L is a finite distributive double p-algebra, we may consider its dual space to be the
pair (J(L); <), where J(L) is the set of nonzero join irreducible elements of L and £ is
the partial order induced by the lattice order. Here we drop the topology as it is the
discrete one.

3. Double p-algebras

Let X be a double p-space and C< X. For ne N, we define B,(C), B,(C) and (11)(C)
as follows:

Bo(C)=Bo(C)=C,(1))°(C)=C,
B, .1(C)=l(B,(C) n Max X), B, , ,(C)=1(B,(C) n Min X) and (11)"**(C)=11(11)"(C))-

We define (|1)"(C) similarly. For every ne N, it is obvious that B,(C) is a down set
and B;(C) is an up set.

Lemma 3.1. Let X be a double p-space and C< X.

(i) If Cis a down set, then 1(C n Min X)=1C;

(ii)) If C is an up set, then |(C nMax X)=|C;

(iij) For every neN, B,(C)< B, ,(C) and B,(C)< B, . ,(C);

(iv) For every n23, B,(C)=11B,_,(C);

(¥) I C is an up set, then Jneno BAC)=neno (111(C);
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(vi) If C is clopen, then, for every ne Ny, B,(C) is clopen and | },cx, B.(C) is open;
(vii) @=1neno Ba(C) is a double p-subset of X;

(viii) If X is the dual space of a double Stone algebra, then | .y, B/(C)=|J2- BA(C).
Proof. (i) Let yeTC. There exist ce C and me Min X such that m<c¢<y. Since C is

a down set, the element me C n Min X. Therefore, ye 1(C n Min X).
The proof of (ii) is similar.

(iii) Let ne N. By the definitions of the Bs, B’s and (i) and (ii),
B, .1(C)=1(B,(C) n Max X)=| B,(C)2 B;(C),
B, +1(C)=1(B,(C) " Min X)=1B,(C)=2 B,(C).

(iv) Let n=3. By the definitions of the Bs, B's and (i) and (ii), we get
B,(C)=(B,-(C)nMax X)=|B,_,(C)=|1(B,-(C) " Min X)=[1B,_,(C).

(v) Let C be an up set. First we prove, inductively, that, for every ne N, we have
B, (C)= B,,_,(C). Since C is an up set, then, by the definition of the Bs, B’s and (ii),
B,(C)=|(B{(C)nMax X)=|B{(C)=|T(CrMinX)< |1C=|C= |(C nMax X)=B,(C).
Suppose

Ba(C) < B;,-1(C). By (iv), we have B,,, ,(C)={1B,,(C) S 1By, 1(C)=B2,+,(C).

Now, applying (ii) and (iv),

U Bi(O)= U Bz+:(O)= U (DO)= U (11)(O).

neNo neNo neNo neNo

(vi) By hypothesis, Bo(C)=By(C)=C is clopen. Now, it is clear, from the observations
in Section 2, that if B,(C) and B,(C) are clopen, so are B,,,(C) and B, (C). Therefore,
for every ne N,, the set B, is clopen and the set | ),,cx, B.(C) is open.

(vii) The set

HQ A MinX)=1 (( U B,,(C)) A Min x) = |J 1(B.(C)nMinX)= | B,(C)

neNo neNo neN
is contained in Q, by (iii). And

1(QnMaxX)=l(( U B,,(C))nMaxX): U U(BL(C)nMax X)

neNo neNo

€ l(By(C)nMax X) u | IB,(C)

neN
= {(By(C)n Max X) U | B,(C)
neN
= BO)=@.
neN
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(viii) It is sufficient to show that B,(C)<B,_,(C), for n23. Let n=3 and ye B,(C). By
the definitions of B,(C), B,_,(C) and B,_,(C), there are elements xe€ B, _,(C) n Max X,
zeB,_,(C)nMinX and teB,_;(C)nMaxX such that z<t, z<x and y<x. But
t,xeMax X, and so t=x and ye |(B,_(C) n Max X)=B, _,(C). a

Proposition 3.2. Let Le B2 and a,beL, a<b.
(i) The congruence 0(a,b) is represented by Q=1|,en, Bo(Xs—X,);

(ii) If L is a double Stone algebra, then 6(a,b) is represented by the clopen set
Q=U:=OBn(Xb—Xa)'

Proof. (i) First notice that the open double p-subset of X that represents 6(a,b)
must contain
Q= U Bn(Xb_Xa)'
neNo

Hence, it is sufficient to show that Q is an open double p-subset of X but this follows
from Lemma 3.1 (vi) and (vii).

(ii) This is an immediate consequence of (i) and Lemma 3.1 (viii), (vi). O

Proposition 3.3. Let Le B2 and X be its dual space.

(i) The subset Q of X represents a principal congruence if and only if there is a clopen
convex set C such that Q=\),cn, B.(C);

(ii) If L is a double Stone algebra, then the subset Q of X represents a principal
congruence if and only if there is a clopen convex set C such that Q=1 JZ-, B,(C).

Proof. (i) Suppose that Q represents a principal congruence 6(a, b). We may suppose
that a<b. By Proposition 3.2, we have Q= J,cn, Bs(X,—X,) and X,— X, is clopen and
convex,

Conversely, let Q=1{J,cn, B,(C), for some clopen convex set C. Then Q is an open
double p-subset, by Lemma 3.1 (vi) and (vii). Now, the result follows as in Lemma 3
of [1].

(ii) This follows from (i) and Lemma 3.1 (viii). O

Proposition 34. [f LeBZ and L has PC, then D is an open up-down subset of its dual
space X if and only if there is a clopen up set A such that D=\J,.x,(11)"(A).

Proof. Let D be an open up-down set, then D represents a congruence on L which
must be principal. By Proposition 3.3 (i), there is a clopen convex set C such that
D=|,en, B.(C). However, D is an open up-down set, and so it also represents a filter F
of L, that is, D=|J,.r(X—X,). The clopen C is contained in {J,.r(X—X,). Since
X is compact, there exist te N, and a,,...,a,€ F such that C is contained in
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Uisis:(X—=X,)=X—X,, ... na- Let b=a; A...Ana and A=X-—X, Then the
element be F and D is up and down, hence U,,E No (11)'(A)=D. By applying Lemma 3.1
(v) to the up set A, we obtain D=\,cn, B(C) S U neno Ba(A) =Uneno (T1)"(A).

Now, let D=|,cn,(11)"(A), where A4 is a clopen up set. Clearly D is up and down,
hence, by Lemma 3.1 (v) and (vi), D is open. a

Proposition 3.5. Let LeBg and X be its dual space. If L has PC, then every subset of
Mid X is clopen and convex.

Proof. First we show that if Q= Mid X and Q is open in X, then Q@ is clopen and
convex. Let Q=Mid X and Q be open. Then Q represents a congruence on L which
must be principal. By Proposition 3.3 (i), there is a clopen convex set C such that
Q=1{Jneno Bx(C). But, for every ne N, we have B,(C)=§. Therefore Q=C and Q is
clopen and convex.

To complete the proof it remains to show that every subset of Mid X is open. Let
x€Mid X, the set Mid X — {x} is open and so it is clopen. Thus {x} =Mid X —(Mid X —{x})
is open. a

Corollary 3.6. Let LeB and X be its dual space. If L has PC, then Mid X is finite.

Proof. By Proposition 3.5, the set Mid X is closed and every subset of Mid X is
clopen in X and so clopen in Mid X. Thus Mid X is a compact Hausdorff space whose
subsets are clopen. Therefore, by [5, Lemma 10.9A7, Mid X is finite. O

Corollary 3.7. Let LeB; and X be its dual space. If L has PC, then I(X)<3.

Proof. Suppose that I(X)>3. Then, there are elements a,,d,,a,,a,,a5€ X such that
ay<ay<az<az<as. Hence, the set {a,,a,} is contained in Mid X and is not convex.
This contradicts Proposition 3.5. ad

Lemma 3.8. Let X be a double p-space such that (X)<3 and Mid X is finite. Let A and
T be subsets of X and Mid X, respectively, and T, ={xe T|(3y¢A uT)Fzed)x<y<z}.
If A is a clopen up set and T is open, then A U(T —T,) is clopen and convex.

Proof. The sets T, Ty and T—T, are closed, since Mid X is finite and 7T, T; and
T—T, are subsets of Mid X. However T is open and so T—T, is also open. Therefore,
Au(T-T,) is clopen.

To show that A U(T—T,) is convex, let u,ve AU(T—T;) and xe X be such that
u<x<v. If ueA, then xe A, since A is an up set. Suppose that ueT—T,. Now,
as I(X)<3 and T— T, =Mid X, the element v must belong to A. If x¢ AU T, then ue T},
a contradiction. If xeT;, then there are elements y¢ AUT and zeA such that
u<x<y<z, contradicting the fact that ueT—-T,. Thus xeAu(T—-T,) and so
Au(T-T,) is convex. O
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Theorem 3.9. Let LeB? and X be its dual space. Then L has PC if and only if X
satisfies the following conditions

(i) Mid X is finite;
i) (X)=3

(iii) The open up-down subsets of X are the sets of the form { ),cn,(T1)"(A), where A is
a clopen up set.

Proof. Suppose that L has PC. By Proposition 3.4 and Corollaries 3.6 and 3.7, the
conditions (i), (i) and (iii) are satisfied.

Conversely, suppose that X satisfies (i), (ii) and (iii) and let Q € X be an open double
p-subset of X. By [6, Theorems 2.3.5, 2.3.6, 2.3.7], we have Q =0, U (@ n Mid X), where
Q, is an open up-down set. Hence, there is a clopen up set A such that Q,=
U,,e No(T1)"(A). By Lemma 3.1 (v), we obtain Q, =U,,e No Ba(A). Next, notice that the set
T=0 nMid X is open and so, by Lemma 3.8, the set A u(T— T;) is clopen and convex.
If xe T,, then xe | A= B,(A), by the definition of T; and Lemma 3.1 (ii). Therefore

Q=< U B,.(A))UT=< U B,.(A)>U(T—T1)= U B (4u(T-T)

neNo neNo neNo

and, by Proposition.3.3 (i), it follows that Q represents a principal congruence. Hence L
has PC. O

Corollary 3.10. Let L be a double Stone algebra and X be its dual space. Then L has
PC if and only if X is finite and I(X) <3 (if and only if L is finite and 1(J(L)) £3).

Proof. Suppose that L has PC. By Theorem 3.9, we know that Mid X is finite and
I(X)<3. Let xeMin X. The set Tx is closed. Consider the open set X —1x. It is easy to
prove that X —1x is a double p-subset. Thus X —Tx represents a congruence that must
be principal. By Proposition 3.2 (ii), the set X —{x is clopen and so {x is open and
{x}=1xMin X is open in Min X. Now, every subset of the compact Hausdorff space
Min X is open and, by [5, Lemma 10.9A], the set Min X is finite. In a similar way we
prove that Max X is also finite. Therefore, X =Min X U Max X u Mid X is finite.

The converse is immediate, by Theorem 3.9. d

The following examples prove that conditions (i), (ii) and (iii) of Theorem 3.9 are
independent.

1. Consider L the 6-clement chain with 1* =0 and x* =1, for every x#1;0*=1 and
x*=0, for every x#0. Its dual space X is the five element chain: x,<x; <X, <X3<X,.
Now, X satisfies conditions (i) and (iii), but it does not satisfy (ii). Notice that L does
not have PC: {x,,x,} represents a congruence which is not principal.

2. Let {0} and {1} be one point double p-spaces and Noo ={x,|ne N u {0}} be the
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double p-space defined by the partial order given by x;||x;, for all i, je Nu{o0}, i#},
and the one-point compactification of a countable discrete space, [5, Example 10.11].
Consider X ={0} ® Noo @ {1}, where @ denotes the usual linear sum and which is
endowed with the disjoint union topology [5, Exercise 10.4]. Now, X satisfies (ii) and
(iii), but it does not satisfy (i). The dual double p-algebra of X does not have PC:
Noo —{x,} represents a congruence which is not principal.

3. Let Noo be the double p-space defined in the previous example. Obviously, Noo
satisfies (i) and (ii), but it does not satisfy (iii): {x,,|neN } is an open up-down subset of
Nco and there is no clopen up set 4 of Noo such that {x,|ne N}=|J,.n(1])"(4). The
double p-algebra L, dual of Noo, does not have PC: the underlying lattice is a Boolean
lattice and every lattice congruence is a congruence of L, thus by [3, Theorem 1] L does
not have PC. The set {x,|ne N} represents a congruence which is not principal.

In [2], Beazer characterizes some classes of distributive double p-algebras that have
PC. In order to show that his characterizations follow from our Theorem 3.9, we must
translate some properties of distributive double p-algebras into properties of its dual
space and vice-versa.

Let LeBg. The dually dense set of L is D*(L)={xeL|x* =1} and it is an ideal of L.
The core of L is C(L)={xeL|x*=1,x*=0} and Cen(L) is the Boolean lattice of the
complemented elements of L. If ae L the elements a"**, with ne N,, are defined in L,
inductively, as follows: a®*”=g and a®*V*9=(g"**)**, We say that L has finite range
if, for every aelL, there is ke N, such that a**P(+9=gk*%) this is equivalent to
a**? e Cen(L).

Observation. Let LeBS and X its dual space.

(i) Let U e O(X). Identifying L and O(X) we have that

UeD*(L) if and only if US X —Max X;

UeC(L) ifand only if Min X c U< X —~Max X;

UeCen(L) if and only if U is an up set;

for allneNy,, U =X —(1})(X -U).

Therefore

D*(L) is principal if and only if X —Max X is closed (therefore clopen);

C(L)#0 if and only if Min X € X —Max X;

L has finite range if and only if, for every clopen up set V of X, there exists ke N
such that (T **1(V)=(11)*(V), that is (11)(V) € Cen(L).

(ii) The open up-down subsets of X are the sets of the form ), n,(11)"(A) where A is a
clopen up set if and only if every normal filter F of L is principal (i.e., there is a€ L such
that F={xeL|Ane N,) x=2a"*"}).

(iii) (X)<3 if and only if the poset of all prime ideals of L contains no 5-element chain.
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Proposition 3.11. Let LeB2 and X be its dual space. If Mid X is finite, then every
determination class of L is finite.

Proof. Suppose that Mid X is finite. We identify L and @(X). Now, let Uye O(X). A
clopen down set U is in the determination class of U, if and only if U-MidX =
Uo,—Mid X. Hence, since Mid X is finite, there is a finite number of elements in the
determination class of U,. O

Proposition 3.12. Let X be the dual space of LeBj, Suppose that there is an open set
V satisfying the following conditions

(i) MinXnMaxXcV;

(ii) V is contained in every clopen down set U such that Min X c U.

If every determination class of L is finite, then Mid X is finite.

Proof. Let us identify L and O(X). Suppose that Mid X is infinite. Either Mid X
does not satisfy, at least, one of the chain conditions or Mid X has an infinite antichain.
First, suppose that Mid X does not satisfy the descending chain condition, i.e., there are
y,€Mid X, with ne N, such that y,,, <y,. For each ne N, consider

I,=MinX U {y,+,} and A,=(Max X n(X—=V)U {y1,..., W}

which are closed subsets of X. For all xeI', and zeA,, we have z£x. The total order
disconnectedness and compactness provides, for each ne N, a clopen down set U, such
that I',cU,=X—A,. Now let m,n be distinct natural numbers. It is obvious that
U,#U,. Next notice that if xeMinX, then xeU, and xeU,. Also, if xe Max X —
Min X, then, by [5, Lemma 10.16], there is a clopen down set U such that MinXc U
and x¢ U. Hence, by (2), we have that x¢ V and then x¢ U,u U,,. Thus, U,—Mid X =
U,—Mid X. Therefore, the clopen down sets U,, with neN, are in the same
determination class, a contradiction.

Second, let us assume that Mid X does not satisfy the ascending chain condition or
that Mid X has an infinite antichain. Then there are y, € Mid X, with ne N, such that
Yn+15¥y.. For each neN, consider I',=MinXu{y,,...,y,} and A,=(MaxX
N (X —V)) U {y.+1}- Reasoning as before leads us once again to a contradiction. a

At this point we observe that if L is such that C(L)#9, then we may consider V=0
and so it is obvious that the sets U,,ne N, of last proof are in C(L). Thus we have the
following

Corollary 3.13. Let LeB? be such that C(L) #0 and let X be its dual space. If C(L) is
finite, then Mid X is finite.

Corollary 3.14. Let LeB2 be such that D* (L) is principal and let X be its dual space.
If every determination class of L is finite, then Mid X is finite.
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Proof. If D*(L) is principal, then X —Max X is clopen and so is ((X —Max X)
NAMinX). As f((X—-MaxX)nMinX)=X —(Min X nMax X), we have that MinX
N Max X is clopen and so it is open. The result now follows from Proposition 3.12, by
taking V=Min X n Max X. O

Corollary 3.15. Let Le B be such that L has finite range and Cen(L) is finite and let
X be the dual space of L. Then if every determination class of L is finite so is Mid X.

Proof. We identify L and O(X). Let I={UeO(X)|MinX cU}. For every Uel,
there is k(U)eN, such that U*¥"*9eCen(L). Consider o« ={U*"*?|Uel} and
V=n . Since Cen(L) is finite, so is «/. Thus V is an open subset of X. If U e I, then
V=n cU* < and

U0 = X — (1 DM X - U)2 X - (1) X —Min X)2Min X n Max X.

Therefore, V=n o 2Min X n Max X and, by Proposition 3.12, the set Mid X is finite.
d

Proposition 3.16. Let LeB. be such that L has finite range. Then the following
conditions are equivalent

(i) every normal filter of L is principal;

(ii) every open up-down subset of the dual space of L is closed;

(iii) Cen(L) is finite.

Proof. Let X be the dual space of L and identify L with O(X).

(1)=>(ii) Let T be an open up-down subset of X. Then, by Observation (ii), there is a
clopen up set A such that I'= U,,E no(T1)"(A4). Since I' has finite range, we have
I'=(11)*(A), for some ke N,. Thus T is closed in X.

(ii))=(i) This is obvious, by Observation (ii).

(ii)=(iii) We prove that the Boolean lattice Cen(L) satisfies the ascending chain
condition and, that, consequently, Cen(L) is finite. Let U,,ne N, be clopen up-down
subsets of X such that U,SU,,,. Consider the open up-down set I'=| ), .y U,. The set
I' must be closed. Now, since X is compact and {U ,,|neN } is a chain, we have I'=U,,
for some se N. Therefore, Cen(L) satisfies the ascending chain condition.

(iii) = (ii) Let I be an open up-down subset of X and I={Ue0(X)| X —U<=T}. For
each Uel, there is k(U)e N such that (1])*Y(X —U)eCen(L). Let Vy=(1|)*V(X -U).
The centre of L contains {V,|U eI}, which must be finite. Consider A=y, Vy. This is
a clopen up-down set contained in I'. Now let xeI'. The set X —I' is a closed down set
and x¢ X —I'. Then, by [5, Lemma 10.16], there is a clopen down set U such that
X-I'<cU and x¢U, ie, xeX—U and Uel. Thus xe A and I'=A. Therefore, I is
closed in X, as required. O
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Corollary 3.17. [2, Theorem 4.3] Let LeBZ be such that D*(L) is a principal ideal.
Then L has PC if and only if

(i) every normal filter of L is principal;

(ii) every determination class of L is finite;

(iii) there is no 5-element chain in the poset of prime ideals of L.

Proof. This is an immediate consequence of Theorem 3.9, Observation (ii) and (iii),
Proposition 3.11 and Corollary 3.14. O

In [2, Corollary 4.4], Beazer characterizes the distributive double p-algebras with
finite range and D*(L) principal that have PC. In the next corollary, we show that
requiring D* (L) principal is not necessary. In fact we are able to describe, in the same
algebraical way, all the distributive double p-algebras with the finite range that
have PC.

Corollary 3.18. Let Le B be such that L has finite range. Then L has PC if and only

if

(i) Cen(L) and every determination class are finite;

(ii) there is no 5-element chain in the poset of all prime ideals of L.

Proof. It follows from Theorem 3.9, Observation (ii) and (iii), Propositions 3.11 and
3.16 and Corollary 3.15. ad

Corollary 3.19. Let Le B2 be such that its p-algebra reduct is Stone. Then L has PC if
and only if conditions (i) and (ii) in the statement of Corollary 3.18 hold.

Proof. We start by noticing that if the p-algebra reduct of L is Stone, then L has
finite range and then we apply Corollary 3.18. O

In [2, Corollary 4.5] not only conditions (i) and (ii) are required but also is the
existence of an element te D* (L) such that D*(L)<(t**]. However, we observe that if L
is a distributive double p-algebra whose p-algebra reduct is Stone and Cen(L) is finite,
there is always an element te D*(L) such that D*(L)=(t**]. In fact, if we identify L
and O(X), then I={U** | UeD™*(L)} is contained in Cen(L) and so I is finite. Next, for
each I'el we choose Ure D*(L) such that U*=T". Hence V= UreD*(L) and, for
every Ue D*(L), we have that U< U**< V** Therefore D* (L)< (V**], as required.

In [3], Blyth and Varlet showed that a distributive lattice L has PC if and only if L is
finite and I(J(L)) £ 1. Therefore the next corollary corresponds to Theorem 4.9 of [2].

Corollary 3.20. [2, Theorem 4.91 Let LeB2 be such that C(L)=0. Then L has PC if
and only if

(i) every normal filter of L is principal;

(ii) C(L) is finite and I(J(C(L))) £ 1.
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Proof. First we prove that Mid X is finite and I(X)<3 if and only if C(L) is finite
and I(J(C(L)))=1. Let us assume that Mid X is finite and /(X)<3. By Proposition 3.11,
we have that C(L) is finite as C(L) is a determination class. Suppose that I(J(C(L)))> 1.
Let U,, with 15n<3, be elements of J(C(L)) such that U,cU,cU,. For n=2,3,
consider the closed down set V,=|(U,~U,_,)uMinX. Each V, is open, since
V,=X—(MaxXuY, for some Y, =MidX and MidX is finite and so is Y,. Thus
V,e C(L). Obviously, U,=V,u U, _,, for n=2,3. As U,eJ(C(L)), for 1 £n<3, we have

MinXCUl,U3EX—MaXX,U2=V2 and U3=V3.

Next let x,eU; ~Min X. Since U,cU,=V,=((U,—-U,)u Min X), there is x,eU, -
U, such that x; <x,. Similarly, there is x;eU;—U, such that x,<x5;. On the other
hand, every element of X contains a minimal one and it is contained in a maximal one.
Therefore, I(X) =4, which is a contradiction.

Conversely, suppose that C(L) is finite and [(J(C(L))) £1. By Corollary 3.13, it follows
that Mid X is finite. Suppose that /(X)>3. Let x,, with 1 £n<35, be elements of X such
that x, <x,<x3;<x,<xs. For ne{2,3,4}, consider the closed down set U,=({x,)u
Min X. Now each U, is open, since U,=X —(Max X u Y,) for some Y,=Mid X. Thus, it
is obvious that U,e J(C(L)), for ne{2,3,4}, and U,cU;<U,, a contradiction.

Finally, the result follows from Theorem 3.9 and Observation (ii). O

Corollary 3.21. [2, Corollary 4.10] Let LeB2 be such that L has finite range and
C(L)#9. Then L has PC if and only if

(i) Cen(L) is finite;

(ii)) C(L) is finite and I(J(C(L))) £1.

Proof. This is an immediate consequence of Corollary 3.20 and Proposition 3.16.

a
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