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Stability of a dispersion of elongated particles
embedded in a viscous membrane
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We develop a mean-field model to examine the stability of a ‘quasi-2-D suspension’
of elongated particles embedded within a viscous membrane. This geometry represents
several biological and synthetic settings, and we reveal mechanisms by which
the anisotropic mobility of particles interacts with long-ranged viscous membrane
hydrodynamics. We first show that a system of slender rod-like particles driven by a
constant force is unstable to perturbations in concentration – much like sedimentation
in analogous 3-D suspensions – so long as membrane viscous stresses dominate.
However, increasing the contribution of viscous stresses from the surrounding 3-D fluid(s)
suppresses such an instability. We then tie this result to the hydrodynamic disturbances
generated by each particle in the plane of the membrane and show that enhancing subphase
viscous contributions generates extensional fields that orient neighbouring particles in
a manner that draws them apart. The balance of flux of particles aggregating versus
separating then leads to a wave number selection in the mean-field model.
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1. Introduction

Lipid molecules that comprise the cell membrane are free to flow within the 2-D surface
that represents the bilayer, but exchange momentum with the adjacent 3-D medium.
Insoluble surfactant monolayers and self-assembled polymer or nanoparticle layers have
similar flow physics, driven by this unique ‘quasi-2-D’ nature of momentum transport.
In their seminal work, Saffman & Delbrück (1975) approximated the membrane as a thin
Newtonian fluid layer sandwiched between and coupled to Stokes flow in adjacent 3-D
fluid phases. Proteins, ion channels, molecular motors or synthetic particles are embedded
in and constrained to move within this 2-D layer. Such a description reveals a subtle
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transition from 2-D to 3-D hydrodynamics: the interface decouples from the bulk fluid
in the ‘membrane-dominant’ limit when surface viscous stresses far exceed the traction
from the surrounding 3-D fluid. This limit is described by the 2-D Stokes equation and has
no solution for the steady translation of a cylinder: a consequence of the Stokes paradox
(Manikantan & Squires 2020). However, Saffman (1976) recognized that subphase viscous
stresses eventually catch up with surface viscous stresses beyond a critical length scale,
ultimately regularizing the divergence inherent to 2-D Stokes flow. Building on this
framework, the hydrodynamics of disks (Hughes, Pailthorpe & White 1981; Stone &
Ajdari 1998), spheres (Danov, Dimova & Pouligny 2000; Fischer, Dhar & Heinig 2006),
rods (Fischer 2004; Levine, Liverpool & MacKintosh 2004) and ellipsoids (Stone &
Masoud 2015) embedded in surface viscous interfaces are now firmly established, and
widely employed in quantifying lateral diffusion in membranes, monolayers and biofilms.

Most of these efforts, however, address flow around single particles. Correlated
diffusion and collective effects become relevant in biological membranes that contain
a high concentration of proteins (Bussell, Koch & Hammer 1995; Oppenheimer &
Diamant 2009). Recent efforts have highlighted the role of long-ranged hydrodynamics
in aggregating and assembling active (Oppenheimer, Stein & Shelley 2019; Manikantan
2020) and driven (Vig & Manikantan 2023) membrane-bound point particles. While a
point-particle description offers useful insight into this complex problem, real particles
have a finite size and orientability with anisotropic hydrodynamic mobilities (Fischer
2004; Levine et al. 2004) that lead to non-trivial dynamics (Camley & Brown 2013;
Shi, Moradi & Nazockdast 2022). Cellular processes such as signalling, trafficking and
curvature sensing are associated with the transport and reorganization of filamentous
proteins and rod-like domains (Simunovic, Srivastava & Voth 2013) on the plasma
membrane. Recent advances also enable synthetic assembly of catalytic (Dhar et al. 2006)
and DNA origami-based (Khmelinskaia et al. 2021) nanorods embedded in monolayers
and membranes, yet no description of their collective surface viscous interactions
yet exist.

We aim to address this gap by borrowing fluid mechanical insights from analogous
works on the dynamics of 3-D suspensions of settling particles. Such a 3-D problem was
first studied by Koch & Shaqfeh (1989) who showed that a dispersion of settling spheroids
is inherently unstable to concentration fluctuations. Elongated particles realign parallel to
the extensional axis of the hydrodynamic disturbance generated by its neighbours. The
orientation of each particle then dictates the direction and speed of settling due to the
anisotropy in its hydrodynamic mobility. Disturbance fields due to denser particle clusters
reorient neighbouring particles in such a way that they preferentially migrate towards
regions of already dense clusters, thereby amplifying concentration fluctuations. Using a
linear stability analysis, Koch & Shaqfeh (1989) showed that fluctuations with the longest
wavelengths are the most unstable in a homogeneous 3-D suspension of isotropically
oriented spheroids. In what follows, we will adapt such a mathematical framework to
examine orientation-dependent hydrodynamic interactions and microstructure within a
viscous membrane.

In § 2 we develop a mean-field description of a dilute quasi-2-D suspension of
driven membrane-attached slender particles by coupling their anisotropic mobilities to
long-ranged interfacial viscous hydrodynamics. In § 3, we analyse the linear stability of
such a system to concentration perturbations, revealing signatures of the resolution of the
Stokes paradox in collective dynamics. In § 4, we connect straining fields set up around
driven particles to suspension stability and reveal mechanisms for a length-scale selection
in this problem.
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Suspension stability within viscous membranes
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Figure 1. System geometry: elongated particles (L � a) are embedded within an infinitesimally thin 2-D
viscous layer atop a 3-D fluid subphase, and are all driven in the membrane plane by an external force F .

2. Theoretical formulation

2.1. Mean-field description
The geometry of our system is shown in figure 1. Slender rod-like particles of length
L and characteristic thickness a (with a � L), each with a unit orientation vector p =
(cos θ, sin θ), are embedded within a 2-D viscous layer atop a 3-D subphase. In a
mean-field description, we define a probability distribution ψ(x, p, t) such that the local
concentration c(x, t) is obtained by integrating ψ across all possible orientations p:

c(x, t) =
∫
ψ(x, p, t) dp =

∫ 2π

0
ψ(x, p, t) dθ. (2.1)

We will also define n as the number density of particles:

n = 1
A

∫
A

c(x, t) dx, (2.2)

where A is the area of the membrane. Rods are constrained to translate and rotate in the
plane of the membrane. Conservation of particles is then expressed by

∂ψ

∂t
+ ∇s · (ẋψ)+ ∇p · ( ṗψ) = 0, (2.3)

where ẋ and ṗ are translational and rotational velocities that capture probability flux. The
surface gradient operator in the plane of the membrane is defined as ∇s = (I − nn) · ∇,
where I is the identity tensor and n is the local normal to the 2-D manifold that represents
the membrane, and the orientational gradient operator simplifies to

∇p = (I − pp) · ∂
∂p

= θ̂
∂

∂θ
. (2.4)

Here, θ̂ is the azimuthal unit vector in the plane of the membrane. In this initial work,
we will restrict ourselves to planar membranes at z = 0, and so n = ẑ, where ẑ is the unit
vector in the z direction (figure 1).

2.2. Micromechanical model
We will explore the response of such a quasi-2-D suspension of elongated particles to an
externally applied force. For simplicity, the force F will be taken to be a constant and act
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in the same direction on all particles, akin to sedimentation in 3-D suspensions (Koch &
Shaqfeh 1989). This might represent tethered trans-membrane proteins that are driven by
the external environment or by the cytoskeleton; alternatively, this geometry represents
proteins or probes dragged through a membrane or a monolayer by an external force. The
translational velocity in (2.3) then has contributions from the self-mobility of each particle,
and from advection due to the disturbance field generated by neighbouring rods:

ẋ = us + ud. (2.5)

Phospholipids that make up biological membranes and monolayers are insoluble and
well-approximated as 2-D incompressible fluids (Manikantan & Squires 2020). The
disturbance field ud then solves the Boussinesq–Scriven equation (Scriven 1960) for the
stress balance within a viscous incompressible interface of surface viscosity ηs coupled
to 3-D Stokes flow in the adjacent bulk fluid of viscosity η and forced by F distributed at
concentration c(x, t):

∇sΠ = ηs∇2
s ud − η

∂v

∂z

∣∣∣∣
z=0

+ Fc(x, t), ∇s · ud = 0. (2.6a,b)

Here, Π is the surface pressure. Membrane flow is coupled to the 3-D flow field v in
the adjacent semi-infinite (z from 0 to −∞) subphase via the traction term and a no-slip
condition u = v at z = 0. This framework can be generalized to accommodate membrane
curvature and to the presence of 3-D fluids on either side of the membrane (Shi et al. 2022;
Shi, Moradi & Nazockdast 2024).

The velocity us in (2.5) is the local response of a rod-like particle to a constant force F :

us = μ⊥(I − pp) · F + μ‖pp · F , (2.7)

with hydrodynamic mobilities μ⊥ and μ‖ for translation in directions perpendicular and
parallel to p, respectively. These mobilities can be determined by adapting standard
boundary integral methods to a slender rod. In short, this is achieved by evaluating
the disturbance velocity due to a line distribution of point-force solutions of the
Boussinesq–Scriven equation (2.6a,b), and then integrating the force density that satisfies
the boundary condition corresponding to particle motion parallel or perpendicular to
the force (Fischer 2004; Levine et al. 2004; Shi et al. 2022). These integrals can be
analytically performed in the asymptotic limits of membrane-dominant (ηs � ηL) or
subphase-dominate (ηs � ηL) systems. Specifically, the hydrodynamic mobilities of a rod
in a planar incompressible membrane when surface viscous stresses dominate (ηs/(ηL) →
∞) are (Fischer 2004)

μ‖ = log(8ηs/(ηL))− γE + 1/2
4πηs

, μ⊥ = log(8ηs/(ηL))− γE − 1/2
4πηs

, (2.8a,b)

where γE is Euler’s constant. Notably, drag on a rod-like particle depends only weakly on
its length and orientation unlike in 3-D fluids where μ3D

‖ ≈ 2μ3D
⊥ . However, the parallel

and perpendicular mobilities are not identical (μ‖ − μ⊥ → 1/(4πηs) as ηs/(ηL) → ∞)
and the resulting anisotropy, although weak, affects the suspension microstructure as we
see in §§ 3–4. By contrast, the mobilities for subphase-dominant systems (ηs/(ηL) → 0)
limit to

μ‖ = ln(0.48ηL/ηs)

πηL
, μ⊥ = 1

πηL
. (2.9a,b)

Perpendicular translation in a nearly inviscid membrane represents the most striking
difference with 3-D fluids: in-plane 2-D incompressibility displaces surface velocities (and
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Suspension stability within viscous membranes

therefore bulk streamlines) around the length of the rod giving rise to a perpendicular drag
that is linear in L. Mobility coefficients μ‖ and μ⊥ for intermediate values of ηs/(ηL)
can be evaluated numerically (Fischer 2004; Levine et al. 2004) and they monotonically
interpolate between (2.8a,b) and (2.9a,b); further, μ‖ is always greater than μ⊥.

Finally, the rotational flux in (2.3) captures reorientation due to non-uniform disturbance
fields. For slender rod-like particles, this is given by Jeffery’s equation (Jeffery 1922):

ṗ = (I − pp) · ∇sud · p. (2.10)

Thermal noise may contribute additional terms to ẋ and ṗ, or equivalently as diffusive
terms in the conservation equation (2.3). We ignore diffusion in what follows to highlight
the role of hydrodynamics alone. However, diffusion is straightforward to add to the
analysis below via an additional flux −D∇s(lnψ) or equivalently directly as a diffusive
term D∇2

sψ on the right-hand side of (2.3), where D is a diffusion constant. Diffusion
always acts to suppress large wavenumber fluctuations (Manikantan et al. 2014; Vig &
Manikantan 2023).

3. Linear stability

We wish to examine the linear stability of a dilute quasi-2-D suspension that is
homogeneous in concentration and isotropic in orientational distribution. The disturbance
field associated with such a base state is ud = 0. We perturb the probability distribution
around this base state as ψ(x, p, t) = n[ψ0 + εψ ′(x, p, t)] where ψ0 = (2π)−1, ud =
εu′

d and ṗd = εṗ′
d. Here, |ε| << 1 and primes represent perturbed quantities. The

corresponding local concentration is c = n[1 + εc′]. Plugging perturbed quantities into
(2.3) and recognizing the isotropic base state as well as 2-D incompressibility of the
membrane fluid field (∇s · u = 0) gives the probability conservation equation at O(ε):

∂ψ ′

∂t
+ ∇sψ

′ · us + ψ0∇p · ṗ′
d = 0 (3.1)

We then impose normal modes with wave vector k and frequency ω of the form

ψ ′(x, p, t) = ψ̃(k, p, ω) exp(i(k · x − ωt)), (3.2)

where tildes represent corresponding Fourier variables, so that c̃(k, ω) = ∫
ψ̃ dp is the

associated local concentration. The associated hydrodynamic disturbance field can be
obtained by solving (2.6a,b) for the corresponding Fourier transform of the disturbance
velocity (Manikantan & Squires 2020):

ũd(k, p, ω) = (I − k̂k̂) · nF c̃
k2ηs + kη

, (3.3)

where k = |k| and k̂ = k/k is a unit vector. Then, using Jeffery’s equation (2.10), we find

˜̇pd = i(p · k)(I − pp) · (I − k̂k̂) · nF c̃
k2ηs + kη

⇒ ∇p · ˜̇pd = −2i(p · k)p · (I − k̂k̂) · nF c̃
k2ηs + kη

.

(3.4)

Plugging (3.2) and (3.4) into (3.1) gives

(−iω + ik · us)ψ̃ − 2iψ0(p · k)p · (I − k̂k̂) · nF c̃
k2ηs + kη

= 0, (3.5)

where us follows (2.7).
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We now non-dimensionalize over characteristic values of L for length, F for force, and
F/(4πηs) for velocities. We will take the direction of the force to be f̂ so that F = F f̂ .
Then,

(−ω + k · [μ‖pp + μ⊥(I − pp)] · f̂ )ψ̃ − 8Nψ0
(p · k)p · (I − k̂k̂) · f̂ c̃
k2
+ k

= 0, (3.6)

where 
 = ηs/(ηL) is the dimensionless Saffman–Delbrück length. Alternatively, 
 can be
interpreted as a Boussinesq number (Manikantan & Squires 2020) which characterizes
surface viscous stresses relative to 3-D viscous stresses from the adjacent subphase
fluid over the length L. Momentum transport is membrane-dominated when 
 → ∞ and
subphase-dominated when 
 → 0. The variable N = nπL2 is an effective area fraction
occupied by particles. The long-ranged description is valid only in the dilute regime, and
so N is at most O(1).

To proceed, we simplify our problem by considering only perturbations in concentration
along the direction perpendicular to the external forces: k · f̂ = 0. This is motivated
by the fact that these transverse perturbations are the most unstable in analogous 3-D
sedimentation problems (Koch & Shaqfeh 1989) and driven 2-D suspensions (Vig &
Manikantan 2023). Simplifying with this assumption and rearranging gives

ψ̃ =
(

8Nψ0
c̃
k2
+ k

)
(p · k)(p · f̂ )

(μ‖ − μ⊥)(p · k)(p · f̂ )− ω
. (3.7)

Integrating (3.7) across all orientations while noting that c̃(k, ω) = ∫
ψ̃ dp eliminates ψ̃

to reveal an implicit relationship for ω(k):

∫
(p · k)(p · f̂ )

(μ‖ − μ⊥)(p · k)(p · f̂ )− ω
dp = k2
+ k

8Nψ0

. (3.8)

The mobility coefficients μ‖ and μ⊥ are functions of 
, and ψ0 = (2π)−1 is the isotropic
base state distribution. For a given area fraction N, (3.8) thus represents a family of
dispersion relations parametrized by the Saffman–Delbrück length 
.

In a 2-D Cartesian plane representing the membrane, we can take f̂ = −ŷ and k̂ = x̂
without loss of generality. Simplifying (3.8) using p = (cos θ, sin θ) then gives

1
2π

∫ 2π

0

k sin θ cos θ
(μ‖ − μ⊥)k sin θ cos θ + ω

dθ = k2
+ k
8N


, (3.9)

which is an implicit integral equation for the dispersion relation k(ω). For normal modes
of the form exp[i(k · x − ωt)], perturbations are unstable if the imaginary part of ω is
positive.

Figure 2(a) shows the growth rate σ = Im[ω] as a function of wavenumber
obtained by numerically evaluating roots of (3.9) with a secant method. The 
 → ∞
limit is reminiscent of analogous 3-D suspensions, where the system-spanning mode
corresponding to k = 0 is the most unstable (see Koch & Shaqfeh 1989; Manikantan et al.
2014). To obtain the growth rate at k = 0 analytically, we expand the integrand in (3.9) as
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Figure 2. (a) Growth rates σ of unstable modes at various 
 = ηs/ηL for a dimensionless number density of
N = nπL2 = 1. (b) Maximum growth rate σm, and (c) most unstable wavenumber km and largest wavenumber
k0 as a function of 
. Dashed lines in (c) are asymptotic limits from (3.14a,b).

a Taylor series in k:

k
2πω

∫ 2π

0
sin θ cos θ

[
1 − (μ‖ − μ⊥)k

ω
sin θ cos θ + · · ·

]
dθ = k2
+ k

8N

. (3.10)

Integrating term by term and simplifying gives

−(μ‖ − μ⊥)k2

ω2 + O(k4) = k2
+ k
N


. (3.11)

From (2.8a,b), the dimensionless mobility difference in the membrane-dominated regime
(
 → ∞) is μ‖ − μ⊥ → 1, which gives ω2 = −N + O(k2) or

σ(k → 0, 
 → ∞) =
√

N. (3.12)

In fact, this turns out to be the maximum value of the growth rate across all k and 
.
Increasing subphase viscous stresses (decreasing 
) always acts to suppress the

instability. Notably, the k = 0 mode is stable for finite η, reflecting a boundary layer at
infinity that regularizes the singularity in 2-D Stokes by accounting for subphase viscous
stresses (Saffman 1976). For finite 
, (3.11) gives ω2 ∼ −kN
(μ‖ − μ⊥) or σ = Im[ω] ∝√

k. In other words, the growth rate goes to zero as k → 0 for all values of 
 except in
the limit 
 → ∞. The most unstable mode then corresponds to a finite value of k which
suggests a mechanism for wavenumber selection. The most unstable wavenumber km can
be determined by taking the derivative of (3.9) with respect to k and numerically solving
the implicit integral equation corresponding to ∂ω/∂k = 0. Figure 2(b,c) shows km and
the corresponding growth rate σm as a function of 
. Note that the maximum growth rate
σm asymptotes to the 
 → ∞ limit as predicted by (3.12), and monotonically decreases
upon decreasing 
. The wavenumber km corresponding to fastest growth of perturbations,
however, varies non-monotonically with 
 and peaks at 
 = O(1): in § 4 we propose a
mechanism of instability that clarifies the length scale selection underlying km and its
dependence on 
.
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Finally, a key parameter is the largest unstable wavenumber k0 which reveals the length
scale of shortest unstable modes. Setting ω = 0 in (3.9) gives

k2
0
+ k0 = 8N


μ‖ − μ⊥
. (3.13)

Solving this quadratic equation for positive k0 yields the curve in figure 2(c). Note that this
ω = 0 limit is only valid for k /= 0. The range of unstable modes increases monotonically
with 
. The high and low 
 limits can be found analytically using (2.8a,b) and (2.9a,b):
μ‖ − μ⊥ asymptotes to 1 and 4
[ln(0.48/
)− 1] in these limits, respectively, giving

k0(
 → ∞) =
√

8N, k0(
 → 0) = 2N
− log(
)− 1.73

. (3.14a,b)

These are shown as the dashed curves in figure 2(c).

4. Instability mechanism and length-scale selection

The mechanism of instability can be understood by examining the disturbance flow
created in the plane of the membrane by a point force and the effect of this flow on
realigning neighbouring particles. We again follow classic 3-D suspension works (Koch &
Shaqfeh 1989) to examine relative alignment of pairs of particles under a pseudo-steady
approximation where particle positions are held at a fixed distance. In a dilute suspension,
any given particle creates a point-force velocity disturbance (shown as the arrow pointing
downward in figure 3a,b). Neighbouring particles tend to align parallel to the direction of
the extensional component (shown in magenta around each particle) of the fluid motion
caused by the point force at the centre. Such a picture helps identify microstructural
configurations that favour accumulation or separation.

We can evaluate the local extensional flow and the principal axes of extension around
each particle from the hydrodynamic disturbance field due to the point force. The
dimensionless velocity at a point r in the plane of the membrane due to a point force
at the origin is (Fischer 2004; Levine et al. 2004; Manikantan & Squires 2020)

u(r) = π

[(
H1(d)

d
− 2

πd2 − Y0(d)+ Y2(d)
2

)
rr
r2

+
(

H0(d)− H1(d)
d

+ 2
πd2 − Y0(d)− Y2(d)

2

)(
I − rr

r2

)]
· f̂ , (4.1)

where r = |r| is the dimensionless distance, and d = r/
. Here, Hν and Yν are Struve and
Bessel functions of the second kind or order ν, respectively. Note that 
 is renormalized by
the distance r in the far-field description: in other words, at constant ηs and η, the system
switches from membrane-dominated to subphase-dominated at large enough length scales.

The velocity field in the plane of the membrane from (4.1) asymptotes to that
corresponding to the 2-D stokeslet in the membrane-dominated regime (
 � r):

u(r, 
 � r) →
[
− log

( r



)
I + rr

r2

]
· f̂ . (4.2)

The mechanism of the instability is tied to the reorientation of neighbouring particles when
placed in such a disturbance field. Specifically, rod-like particles align with the extensional
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Suspension stability within viscous membranes

(a) (b)

Figure 3. Mechanism of the instability: a point force generates in-plane velocity u (grey streamlines). The
magenta streamlines depict the symmetric part of the local, linear flow field around particles at a distance
r. Particles are shown in their most favoured orientation, with their long axis parallel to the extensional
component of the flow field generated by the point force. (a) For 
 � r (membrane-dominated regime),
neighbours always reorient such that they are drawn towards the point force, thereby increasing particle density.
(b) By contrast, at much longer length scales r � 
 (subphase-dominated regime), particles that fall within
the shaded region reorient such that they are drawn away from the point force, reducing particle density and
stabilizing the suspension. For a fixed ηs and η, the system transitions continuously from membrane-dominated
to subphase-dominated at large enough distances.

axis of the local flow. The rate-of-strain tensor in the membrane-dominated case is

E(
 � r) = ∇sud + ∇suT
d

2
= (r · f̂ )I

r2 − 2rrr · f̂
r4 . (4.3)

Using f̂ = −ŷ and r = rr̂ = (r cosφ, r sinφ) where φ is measured relative to the positive
x direction diagonalizes the rate-of-strain tensor in the (r̂, φ̂) basis as

E(
 � r) = sinφ
r

[
1 0
0 −1

]
. (4.4)

The eigenvectors of E are the principal directions of extension. We see from (4.4) that
the principal axis of extension is parallel to r̂ – i.e. along the line connecting the particle
to the point force – in the upper half-plane (φ > 0) and perpendicular to r̂ in the lower
half (φ < 0). Figure 3(a) shows particles in such a preferred alignment: the anisotropic
mobility of each elongated particle then draws it towards the point force, leading to a
net tendency for particles to accumulate and amplify concentration fluctuations. This is
analogous to the classic 3-D instability in the suspension of a rod (see Koch & Shaqfeh
1989). Note also from (4.4) that the eigenvalues of E(
 � r), corresponding to the local
rates of extension λext, peak at φ = ±1

2π and vanish at φ = 0: rods on the same horizontal
line thus do not reorient in response to the disturbance due to the other.

The in-plane extensional field surrounding a point force changes dramatically upon
increasing the contribution from the subphase (decreasing 
). The membrane velocity field
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in the surface-inviscid limit (
 � r) is

u(r, 
 � r) → 2

rr
r3 · f̂ . (4.5)

Note that (4.5) is not simply a 2-D slice of the flow due to a point force in the bulk
3-D fluid: surface incompressibility requires that u be divergence-free in the plane of the
membrane. The rate-of-strain tensor is no longer easily diagonalizable in the (r̂, φ̂) basis;
however, E still reveals key features when expressed in the (x̂, ŷ) basis:

E(
 � r) = 2

r2

⎡
⎣ sinφ(3 cos2 φ − 1) cosφ

(
3 sin2 φ − 1

2

)
cosφ

(
3 sin2 φ − 1

2

)
sinφ(3 sin2 φ − 2)

⎤
⎦ . (4.6)

First, principal rates of extension scale with 
, consistent with a weakening instability
as seen in § 3. Additionally, neighbouring particles along the wave vector (on the same
horizontal line as the point force, or along φ = 0) experience a non-zero rate of extension
along a principal direction θext = 3π/4 (figure 4). Coupled to the anisotropic mobility of
rods, local extension therefore reorients rods in a manner that draws them away from the
reference particle if initially placed in a region near φ = 0, which acts as a stabilizing
mechanism. Note also from (4.6) that E is diagonal in the (x̂, ŷ) basis when 3 sin2 φ = 1

2 ,
i.e. for a critical angle φc = ± sin−1(1/

√
6). This corresponds to principal axes that are

aligned with x̂ or ŷ and reveals a transition from configurations that draw neighbouring
particles towards the point force (when |φ| > |φc|) or away from it. This also suggests a
mechanism for wavenumber selection as seen in the stability analysis in § 3: the critical
length scale emerges from a balance of fluxes of particles driven out from within the region
|φ| < |φc| vs drawn in from regions where |φ| > |φc|.

Principal directions of extension for arbitrary 
, obtained by numerically evaluating the
eigenvectors of E from the general velocity field in (4.1), are shown in figure 4(a). This
further clarifies the emergence of a ‘stabilizing region’ in terms of preferred orientations
for finite 
. Particles placed in this region are drawn away from the reference particle,
contributing to a suppression of the instability. The 
/r → ∞ limit avoids this region
entirely as seen mechanistically in figure 3 and quantitatively as a discontinuity in θext(φ)
in figure 4(a). This reflects the singularity of 2-D Stokes flow at infinity, and the subphase
viscous contribution introduces a boundary layer that regularizes this discontinuity. In
doing so, θext takes on values that fall within the shaded patch in figure 4(a) that represents
a stabilizing region, where particle orientations are such that they are drawn away from the
reference particle. This mechanism also explains the stabilization of the k = 0 mode for
finite 
 in § 3: for any η and ηs (and since k is parallel to x̂ for transverse perturbations),
particles along the horizontal line (φ = 0) will always fall in the stabilizing region at a
large enough value of r.

The associated eigenvalues of E are local rates of extension λext: while these principal
rates always peak at φ = ±1

2π and their magnitudes decrease upon decreasing 
, they do
not always vanish at φ = 0 (figure 4b,c). Indeed, λext(r, φ = 0) peaks when r ∼ 
. For a
pair of particles placed in the same horizontal line, the reorientation that favours particle
separation is thus strongest at distances comparable to the Saffman–Delbrück length.

5. Conclusion

In this paper, we developed a mean-field model to examine hydrodynamic collective modes
of elongated particles embedded in viscous membranes or monolayers. We focused on a
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Figure 4. (a) Principal axes of stretch θext corresponding to preferred orientation of a neighbouring particle as
a function of azimuthal position φ around a reference particle for 
/r = 0.1 (dotted line), 1 (dash-dot) and 10
(dashed line). The shaded patch denotes the set of orientations that draws particles away from each other: this
region is not accessed in the limit of 
 → ∞ (solid line), whereas 
 → 0 maximizes this window for a range
of relative positions |φ| < |φc| = sin−1(1/

√
6). (b) Principal rates of extension λext corresponding to cases

shown in (b). (c) The principal rate λext does not vanish at φ = 0 for finite 
, and peaks when r ∼ 
.

linear stability analysis around a homogeneous and isotropic quasi-2-D suspension of such
particles. We discover a unique mechanism for stabilization of such a system, reflecting
aspects of the Stokes paradox in 2-D viscous flows and its regularization via 3-D subphase
stresses. We then tie this mechanism to the interplay between anisotropic particle mobility
and long-ranged hydrodynamics in the plane of the membrane.

More generally, this mean-field framework opens a rich avenue of fluid dynamical
problems and tools to examine microstructure on biological or synthetic membranes. The
method can be readily adapted to membranes with curvature using modified Green’s
functions (Shi et al. 2022, 2024), to active particles on membranes via a stresslet
solution (Oppenheimer et al. 2019; Manikantan 2020), and to systems with weakly
non-Newtonian membrane rheology using tools such as the Lorentz reciprocal theorem
(Vig & Manikantan 2023). We have illustrated the ‘deep’ subphase limit: confining the
3-D fluid has been shown to amplify bulk stresses (Camley & Brown 2013; Shi et al. 2024)
and modify membrane flow fields in manners that favour aggregation (Manikantan 2020).
This modification is also straightforward within the mean-field description developed here.
Our findings also open up opportunities to examine nonlinear dynamics in these systems by
computationally solving the mean-field model and through efficient particle simulations of
crowded systems. Building on these insights, we anticipate that the present work will spur
new directions of fluid dynamical studies into active and passive quasi-2-D suspensions.
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