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if and only if it is the lower radical determined by a ring with zero multiplication.
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1. Introduction and preliminaries. Strong radicals were introduced in [3] and since
then they have been extensively studied by many authors. Recall that a radical α is said
to be left (respectively, right) strong if all left (respectively, right) α-ideals of every ring
R are contained in α(R). It is well known that the prime, locally nilpotent, generalized
nil and Jacobson radicals are all strong whereas the Brown-McCoy and strongly prime
radicals are not. The question whether the nil radical is strong was posed by Koethe in
1930 and is still one of the most challenging open problems in ring theory. For some
other concrete radicals, e.g. the uniformly strongly prime radical, it is also unknown
whether they are strong or not. Many studies concerned general strong radicals, e.g.
the left-right symmetry [8], lattices of such radicals [2] or strong radicals satisfying
some additional properties [5, 7].

In this paper we characterize strong radicals which are lower radicals determined
by sets of rings. The lower radical determined by a set of rings is in fact determined by
one ring. In the main result of this paper we prove that the lower radical determined
by a ring R is strong if and only if it is equal to the lower radical determined by the
ring R0 with zero multiplication on the underlying additive group of R. The class of
such rings R is strictly related to a class of rings studied in a quite different context by
Sands in [9, 10]. In the last section we study these classes. In particular we answer two
questions raised by Sands in [10].

All rings in this paper are associative but it is not assumed that each ring has an
identity element. For a given ring R we shall denote by R� the usual extension of R to
a ring with an identity. The ring of integers will be denoted by Z.

For any abelian group A we denote by A0 the ring with zero multiplication
whose additive group is equal to A. For a ring R, R0 will denote the ring with zero
multiplication defined on the underlying additive group of R.
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To denote that I is an ideal (left ideal, right ideal) of a ring R we write I � R
(I <l R, I <r R).

The fundamental results used on radicals of rings may be found in [12, 13]. With
some abuse of terminology we use the term “radical” to mean both “radical class” and
“radical property”.

We start with some general observations which will be used in the paper. Most of
them are known but we present them in a more uniform setting and include proofs for
completeness.

PROPOSITION 1. Suppose that R, Q are rings and N is an R-Q−bimodule. Then for
every radical α, α(N0) = M0 for some R-Q−subbimodule M of N.

Proof. Denote by ( R
0

N
Q ) the set {( r

0
n
q ) | r ∈ R, q ∈ Q, n ∈ N}. It is clear that ( R

0
N
Q ) is

a ring with respect to the usual matrix addition and multiplication. Clearly N0 can be
identified with ( 0

0
N
0 ) � ( R

0
N
Q ). Now α(N0) = M0 for some subgroup M of the additive

group of N, and so ( 0
0

M
0 ) = α(( 0

0
N
0 )). Since ( 0

0
N
0 ) � ( R

0
N
Q ), α(( 0

0
N
0 )) � ( R

0
N
Q ). This easily

implies that M is an R-Q−subbimodule of N. �

As a particular case of Proposition 1 one immediately obtains the following well
known result.

COROLLARY 2. For every radical α and arbitrary I � R, α(I0) = J0 for some ideal J
of R.

COROLLARY 3. (i) Suppose that N is an R-Q−bimodule and α is a radical. If, for a
subgroup M of the additive group of N, M0 ∈ α, then (R�MQ�)0 ∈ α.

(ii) If S is a subring of a ring R and S0 ∈ α, then (R�SR�)0 ∈ α. In particular if
L <l R, L2 = 0 and L ∈ α, then LR� ∈ α.

Proof. (i) Clearly M0 � (R�MQ�)0. Hence M0 ⊆ α(R�MQ�)0. Since R�MQ� is the
R-Q−bimodule of N generated by M, Proposition 1 gives (R�MQ�)0 ∈ α.

The statement (ii) is a clear consequence of (i). �

PROPOSITION 4. (i) Let M be a left (respectively, right) R-module. If for a radical α,
R0 ∈ α, then (RM)0 ∈ α (respectively, (MR)0 ∈ α).

(ii) Suppose that α is a radical, I � R, J � Q with (R/I)0 ∈ α, (Q/J)0 ∈ α and M is
an R-Q−bimodule such that (IMJ)0 ⊆ α(M0). Then (RMQ)0 ⊆ α(M0).

Proof. (i) If M is a left R−module, then the maps fm(r) : R −→ M, where m ∈ M,
defined by fm(r) = rm, induce a canonical R-module epimorphism of ⊕m∈MR onto
RM. Clearly it is also a ring epimorphism of ⊕m∈MR0 onto (RM)0. Since R0 ∈ α, also
(RM)0 ∈ α. Dual arguments can be applied when M is a right R-module.

(ii) By Proposition 1, α(M0) = N0 for an R-Q−subbimodule N of M. Passing to
the factor bimodule M/N, we can assume that α(M0) = 0, so that IMJ = 0 and we
have to show that RMQ = 0. By (i) applied to the left R/I-module MJ we get that
(RMJ)0 ⊆ α(M0) = 0, and so RMJ = 0. Now applying (i) to the right Q/J-module
RM we obtain (RMQ)0 ⊆ α(M0) = 0, so that RMQ = 0. �

In what follows β denotes the prime radical.
We shall need the following known results, which easily follow from

Proposition 4 (i).
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COROLLARY 5. (i) (cf. [11]). Let α be a radical and R a ring with R/R2 ∈ α. Then
Rn/Rn+1 ∈ α, for every integer n ≥ 2. If R is nilpotent then R0 ∈ α and R ∈ α.

(ii) (cf. [5, Lemma 5]). If α is a radical and R is a β-radical ring such that R0 ∈ α,
then R ∈ α.

2. Main results. Recall that the lower radical lN determined by the class N of
rings is the smallest radical containing N . If N = {R}, then lN will be denoted by lR.

Observe that if N is a set, then lN = lR, where R = ⊕A∈N A.
A subring A of a ring R is called accessible (respectively, left accessible) if there

are subrings Ai, 0 ≤ i ≤ n, of R such that A = A0 � A1 � . . . � An = R (respectively,
A0 <l A1 <l . . . <l An = R). For a given ring R, lN (R) 	= 0 if and only if R contains a
nonzero accessible subring which is a homomorphic image of a ring in N [12, 13].

In what follows for a ring R and a set X we denote by MX (R) the ring of all
matrices over R indexed by elements from X that have finitely many nonzero entries.

If R is a ring with identity, then each ideal of MX (R) is of the form MX (I), for
some ideal I of R.

It is known [6] that for every ring A and every radical α, {R | R⊗ZA ∈ α} is again
a radical. For every ring R, R0 � R⊗ZZ0 and for every set X , MX (R) � R⊗ZMX (Z).

Consequently for every radical α and for every set X , α0 = {R | R0 ∈ α} and
αX = {R | MX (R) ∈ α} are also radicals.

PROPOSITION 6. (cf. [1]). IfN is a class of rings with zero multiplication, then lN ⊆ l0
N

and lN is left and right strong.

Proof. ClearlyN ⊆ l0
N . Hence, since l0

N is a radical, lN ⊆ l0
N . In particular, if L <l R

and L ∈ lN , then L0 ∈ lN . Now, by Corollary 3 (ii), (LR�)0 ∈ lN . Clearly LR� ∈ β, so
that by Corollary 5 (ii), LR� ∈ lN . Therefore lN is left strong. Dual arguments shows
that lN is right strong. �

PROPOSITION 7. Let α = lN , where N is a class of rings with zero multiplication.
Then, for every ring R and every set X, α(MX (R)) = MX (α(R)).

Proof. Clearly N ⊆ αX . Hence, since αX is a radical, α ⊆ αX . This shows that
MX (α(R)) ⊆ α(MX (R)). Now MX (R)/MX (α(R)) � MX (R/α(R)) and so to get the
result it suffices to prove that if a ring A is α-semisimple, then so is the ring MX (A).
Suppose that α(MX (A)) 	= 0. Then MX (A) contains a nonzero accessible subring S
which is a homomorphic image of a ring from N . Obviously S is also an accessible
subring of MX (A�). The ideal S̄ of MX (A�) generated by S is nilpotent and, since A�

is a ring with identity, S̄ = MX (I) for some I � A. Applying Corollary 3 (ii) we get
that S̄0 ∈ α. Clearly I0 is a homomorphic image of S̄0, so that I0 ∈ α. However I is
nilpotent and so, by Corollary 5 (ii), I ∈ α. This is impossible as α(A) = 0. �

For a given ring R and a left R-module V , we denote by ( R
0

V
0 ) the set of 2 × 2-

matrices of the form ( r
0

v

0 ), where r ∈ R, and v ∈ V . This set is a ring with respect to
canonical matrix addition and multiplication. Similarly for every ring R and every
right R-module V one defines the ring ( R

V
0
0 ).

It is well known (cf. [8, Lemma 5]) that a radical α is left strong if and only if for
arbitrary L <l R, L ∈ α implies LR� ∈ α.

In what follows for a given set X we denote by |X | the cardinality of X .
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PROPOSITION 8. If for a given ring A the radical α = lA is left strong, then α ⊆ α0;
i.e, for every R ∈ α, R0 ∈ α.

Proof. Applying Corollary 2 one easily sees that it suffices to prove that if R 	= 0,
then α(R0) 	= 0. Let X be a set with |X | > |A| and let V = ⊕

x∈X Rx
�, where for

each x ∈ X , Rx
� = R�. Identifying R with ( R

0
0
0 ) we get that R <l ( R

0
V
0 ). The ideal of

( R
0

V
0 ) generated by R is equal to ( R

0
W
0 ), where W = ⊕

x∈X Rx and for each x ∈ X ,
Rx = R. Since R ∈ α and α is left strong, ( R

0
W
0 ) ∈ α. Consequently ( R

0
W
0 ) contains a

nonzero accessible subring S which is a homomorphic image of A. Obviously S is also
an accessible subring of ( R

0
V
0 ). Let I be the ideal of ( R

0
V
0 ) generated by S. Then for a

positive integer n, J = In ⊆ S. If there are 0 	= r ∈ R and v ∈ V such that ( r
0

v

0 ) ∈ J, then
( 0

0
rV
0 ) = ( r

0
v

0 )( 0
0

V
0 ) ⊆ J ⊆ S. Now |rV | = |⊕x∈X rRx

�| ≥ |X | > |A|. This is impossible
as |S| ≤ |A|. Consequently J ⊆ ( 0

0
V
0 ), which shows that I is nilpotent. Hence S is also

nilpotent and Corollary 5 (i) implies that S0 ∈ α. Therefore α(( R
0

W
0 )

0
) 	= 0. However

( R
0

W
0 )

0
is isomorphic to a direct sum of copies of R0. These obviously imply that

α(R0) 	= 0. �
Now we are ready to prove the main result of this paper.

THEOREM 9. For a ring A the following conditions are equivalent:
(i) lA is left strong;

(ii) lA = lN for a class N of rings with zero multiplication;
(iii) lA = lA0 .

Proof. Suppose that α = lA is left strong. We shall prove that α = lN , where N =
{R ∈ α | R2 = 0}. Obviously it suffices to show that if 0 	= R ∈ α, then lN (R) 	= 0. Let
X be a set with |X | > |A| and, for every x0 ∈ X , Tx0 the set of all matrices from MX (R)
whose entries outside the x0-column are equal to 0. Clearly Tx0 <l MX (R) and Tx0 �
( R

V
0
0 ), where V = ⊕

x∈X Rx and for each x ∈ X , Rx = R. Moreover MX (R) = ∑
x∈X Tx.

Obviously ( 0
V

0
0 ) � ⊕

x∈X R0
x. Hence, applying Proposition 8, one gets that ( 0

V
0
0 ) ∈ α.

Consequently, for each x ∈ X , Tx ∈ α and, since α is left strong, MX (R) ∈ α. This
implies that MX (R) contains a nonzero accessible subring S which is a homomorphic
image of A. Obviously S is also an accessible subring of MX (R�). If S̄ is the ideal
of MX (R�) generated by S, then for a positive integer n, S̄n ⊆ S and S̄ = MX (I) for
an ideal I of R. Obviously if In 	= 0, then |S| ≥ |S̄n| ≥ |MX (In)| ≥ |X | > |A|. This is
impossible because S is a homomorphic image of A. Thus S̄n = 0, which implies that
S is nilpotent. Now from Corollary 5 (i) it follows that S0 ∈ α and, by Corollary 3 (ii),
S̄0 ∈ α. However S̄0 � MX (I0) and I0 is a homomorphic image of MX (I0). Therefore
I0 ∈ α and, from Corollary 5 (ii), we get that I ∈ α. Consequently α(R) 	= 0. Thus (i)
implies (ii).

Suppose now that (ii) is satisfied. Then A ∈ β and, applying Corollary 5 (ii), we
get that A ∈ lA0 . Consequently lA ⊆ lA0 . Applying Proposition 6, we obtain A0 ∈ lA, so
that lA0 ⊆ lA and (iii) holds.

The implication (iii) =⇒ (i) follows from Proposition 6. �
Note that the conditions (ii) and (iii) in Theorem 9 are left-right symmetric. Thus

A satisfies Theorem 9 if and only if lA is right strong.
As we have noted, for any set N of rings lN = lA, where A = ⊕R∈N R. Hence from

Theorem 9 we get that lN is left (right) strong if and only if lN = lA0 or, equivalently,
lN = l{R0|R∈N }.
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We conclude this section with a result on stable radicals. A radical α is called left
(respectively, right) stable [4] if for arbitrary I <l R (respectively, I <r R), α(I) ⊆ α(R).

A ring will be called torsion or divisible if its additive group satisfies the respective
property.

COROLLARY 10. For a given ring A the radical lA is left (right) stable if and only if
A is torsion and divisible.

Proof. It is not hard to check that l̄A ={R ∈ lA | R is torsion and divisible} is a
radical. Hence assuming that A is torsion and divisible we get that lA = l̄A. Now if
L <l R, then lA(L) is torsion and divisible and so is the ideal I of R generated by lA(L).
Hence I2 = 0 and Corollary 3 implies that I ∈ lA. This proves the “if” part.

Conversely, suppose that lA is left stable. Clearly lA is also left strong so that, by
Theorem 9, lA = lA0 . By Proposition 8, for every R ∈ lA, R0 ∈ lA. Let p be a prime
and Zp = Z/pZ. If pR 	= R, then R0 can be homomorphically mapped onto Zp

0, so
that Zp

0 ∈ lA0 . Since lA0 is left stable, this easily implies that the ring M2(Zp) of 2 × 2-
matrices over Zp is in lA0 . However it is clear that M2(Zp) contains no nonzero accessible
subrings with zero multiplication, and so lA0 (M2(Zp)) = 0. Thus pR = R, which shows
that R is divisible. If R is not torsion, then R0 can be homomorphically mapped onto
Q0, where Q is the field of rationals. However then stability of lA implies that the ring
M2(Q) of 2 × 2-matrices over Q is in lA0 , which is impossible. Thus each ring in lA is
torsion and divisible. �

3. On the class S = {A | lA = lA0}. From Theorem 9 we can deduce that
S = {A | lA is left strong}. In this section we study this class more closely.

It is clear that S = {A | for every radical α, A ∈ α if and only if A0 ∈ α} and S ⊆ β.
It is also clear that S contains the class C = {R | for every radical α, α(R) = α(R0)},
where α(R) = α(R0) means the equality of the underlying additive groups. Note that,
for every idempotent ring R ∈ β, R ⊕ Z0 ∈ S \ C. The class C was studied in another
context by Sands in [9, 10]. In [10] he obtained the following properties of C.

THEOREM 11 (i) ([10, Corollary, p. 499]). The class C is hereditary; i.e., if I � R
and R ∈ C, then I ∈ C.

(ii)([10, Theorem 8]). C = {R | for every I � R, I ∈ lI/I2}.
From Theorem 11 (ii), it follows that C = {R | for every I � R and arbitrary radical

α, I ∈ α if and only if I/I2 ∈ α}.
The following result can be obtained by extracting some arguments from the proof

of Theorem 8 in [10]. We apply a slightly different method.

PROPOSITION 12. S = {A | for every radical α, A ∈ α if and only if A/A2 ∈ α}.
Proof. Assume first that A ∈ S and α is a radical. Clearly, if A ∈ α then A/A2 ∈

α. Suppose now that A/A2 ∈ α. It is routine to check that ᾱ = {R | R/R2 ∈ α} is a
radical. Since A ∈ ᾱ and A ∈ S, A0 ∈ ᾱ. Consequently A0 � A0/(A0)2 ∈ α. Hence the
assumption A ∈ S gives A ∈ α. This proves the inclusion ⊆.

Assume that A belongs to the right hand class. Clearly A ∈ β. Hence if for a
radical α, A0 ∈ α, then by Corollary 5 (ii), A ∈ α. Suppose now that A ∈ α. Then
(A/A2)0 � A/A2 ∈ α, so that A/A2 ∈ α0. Consequently A ∈ α0, which means that
A0 ∈ α. Therefore A ∈ S and the result follows. �
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From Theorem 11 and Proposition 12, C = {R | for every I � R, I ∈ S} and C is
the largest hereditary subclass of the class S.

Given a ring R, m(R) = {x ∈ R | RxR = 0} is called the middle annihilator of R.
A ring R is called M-nilpotent [9] if for every nonzero homomorphic image R′ of
R, m(R′) 	= 0. The class of M-nilpotent rings is contained in β and closed under
homomorphic images and ideals.

In [9], Sands proved that the class of M-nilpotent rings is contained in the class
C. Hence Theorem 11 (ii) gives the following extension of Corollary 5 (i): if R is an
M-nilpotent ring and, for a radical α, R/R2 ∈ α, then R ∈ α. To get this result one can
also apply the following arguments. By Corollary 5 (ii) it suffices to prove that R0 ∈ α.
If not then, applying Corollary 2, we can assume that α(R0) = 0. Let m1(R) = {x ∈ R |
R2xR2 = 0}. Clearly m1(R)/m(R) = m(R/m(R)). Applying Proposition 4 (ii) to the R-
Q−bimodule m1(R) we get that (Rm1(R)R)0 ⊆ α(R0) = 0. Hence m1(R) = m(R) and,
since R is M-nilpotent, R = m(R). Thus R3 = 0 and it suffices to apply Corollary 5 (i).

Note that if N is a class of rings contained in S, then lN = l{R0|R∈N }. Hence, by
Proposition 6, lN is left and right strong. In particular, the lower radical determined
by any class of M-nilpotent rings is left and right strong. This result was proved in
another context in [1].

In [10] Sands asked whether the class C is closed under extensions. Now we shall
answer this question. For this we need the following lemma.

LEMMA 13. For a given radical α and I � R, the following conditions are equivalent:
(i) (R/RIR)0 ∈ α;

(ii) (R/RI)0 ∈ α;
(iii) (R/I)0 ∈ α and R/R2 ∈ α.

Proof. Since (R/I)0 and R/R2 are homomorphic images of (R/RIR)0, we get that
(i) implies (iii).

Suppose now that (iii) is satisfied. Applying Proposition 4 (i) to the right R/I-
module R/RI , we obtain (R2/RI)0 ∈ α and, since R/R2 ∈ α, also (R/RI)0 ∈ α. Thus
(ii) follows. Assuming (ii) and applying Proposition 4 (i) to the left R/RI-module
R/RIR we get that (R2/RIR)0 ∈ α. This and R/R2 ∈ α imply that (R/RIR)0 ∈ α and
so (i) holds. �

PROPOSITION 14. Suppose that I � R. If RI ∈ S and R/I ∈ S, then R ∈ S.

Proof. Clearly R ∈ β. Hence if, for a radical α, R0 ∈ α, then by Corollary 5
(ii), R ∈ α. Suppose now that R ∈ α. Then R/I ∈ α and, since R/I ∈ S, (R/I)0 ∈ α.
Clearly R/R2 ∈ α. Consequently, by Lemma 13, (R/RIR)0 ∈ α. Applying Proposi-
tion 4 (ii) to the left R/RIR−module I/(RI)2 we get that RI/(RI)2 ∈ α. Since RI ∈ S,
by Proposition 12, RI ∈ α and (RI)0 ∈ α. By Lemma 13, R0/(RI)0 � (R/RI)0 ∈ α.
Consequently R0 ∈ α. The result follows. �

The following corollary shows in particular that the question of Sands’ quoted
above has a positive answer.

COROLLARY 15. Suppose that I � R.
(i) If I ∈ C and R/I ∈ S, then R ∈ S.

(ii) If I ∈ C and R/I ∈ C, then R ∈ C.

Proof. (i) By Theorem 11 (i), RI ∈ S. Hence, applying Proposition 14, we obtain
R ∈ S.
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(ii) Let J � R. Then J ∩ I � I and (J + I)/I � R/I . Since I ∈ C and R/I ∈ C, by
Theorem 11 (i), J ∩ I ∈ C and J/(J ∩ I) � (J + I)/I ∈ S. Hence (i) implies that J ∈ S.
Consequently R ∈ C. �

Now we obtain some results which allow us to answer another question raised by
Sands in [10].

For a given class M of rings, let lsM be the lower left strong radical determined
by M; i.e., the smallest left strong radical containing M. In [3, p. 379], it was proved
that if R ∈ lsM , then every nonzero homomorphic image of R contains a nonzero left
accessible subring which is a homomorphic image of a ring from M. Observe that this
implies that if R2 = 0 then R ∈ lsM if and only if R ∈ lM .

PROPOSITION 16.S = {R | for every left strong radical α, R ∈ α if and only if R0 ∈ α}.
Proof. The inclusion ⊆ is clear. Suppose now that R belongs to the right hand class.

Since β is left strong and R0 ∈ β, we get that R ∈ β. Consequently from Corollary 5
(ii) it follows that if, for a radical α, R0 ∈ α, then R ∈ α. Assume now that R ∈ α. Let
lsR be the lower left strong radical determined by {R}. Then R0 ∈ lsR and from the
remark made before the proposition, R0 ∈ lR ⊆ α. This proves the inclusion ⊇. �

PROPOSITION 17. {R | for every left strong radical α, α(R) = α(R0)} = {R | for every
left strong radical α and arbitrary I � R, I ∈ α if and only if I0 ∈ α}.

Proof. Denote the first of these classes by C1 and the second by C2. By Proposi-
tion 6, for every ring A, the radical lA0 is left strong. Hence it is clear that C2 = {R |
for arbitrary I � R, lsI = lI0}. Take any R ∈ C2 and let α be any left strong radical. By
Corollary 2, α(R0) = I0 for some I � R. Now lsI = lI0 ⊆ α, so that I ∈ α. Consequently
α(R0) ⊆ α(R). Now let I = α(R). Then lI0 = lsI ⊆ α and so I0 ∈ α. Thus α(R) ⊆ α(R0),
which shows that R ∈ C1.

Suppose now that R ∈ C1 and I � R. Since β is left strong and β(R) = β(R0) = R0,
we get that R ∈ β. Hence, by Corollary 5 (ii), I ∈ lI0 and, since lI0 is left strong, lsI ⊆ lI0 .
Conversely let A = lsI (R). Since R ∈ C1, A0 = lsI (R0). Thus A0 ∈ lsI and, since A0

is a ring with trivial multiplication, A0 ∈ lI . Applying now Proposition 4 (i) to the
left A−module I , we obtain (AI)0 ∈ lI . Obviously I ⊆ A, so that I2 ⊆ AI ⊆ I . Since
(I/AI)2 = 0, we obtain I0/(AI)0 � I/AI ∈ lI . Thus I0 ∈ lI , so lI0 ⊆ lsI and the result
follows. �

In [10, p. 503], Sands posed the problem of describing the class {R | α(R) = α(R0)
for every left strong radical α}. Combining Theorem 11 and Propositions 12, 16 and
17 one obtains the following solution to this problem.

COROLLARY 18. {R | α(R) = α(R0), for every left strong radical α} = C.
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