Tetsuya Nagata<sup>1,2</sup>, Shuji Sato<sup>3</sup>, A. R. Hyland<sup>4</sup>, and Alan T. Tokunaga<sup>2</sup>

Dept. Physics, Kyoto Univ., Kitashirakawa, Kyoto 606, Japan Jinst. Astronomy, Univ. Hawaii, Honolulu, HI 96822, U.S.A. 4N.A.O.J., Mitaka, Tokyo 181, Japan M.S.S.S.O., Australian National Univ., ACT 2606, Australia

A near-infrared survey has been conducted of 0.55 square degrees around the Galactic center with the 1 m telescope of Siding Spring Observatory, Australia. From the detected sources, 39 objects which are bright (K<7.6) and red (H-K>1.4) and 11 objects slightly fainter (K^8) have been selected. Subsequently, their  $1-20~\mu m$  photometry and  $2-3.5~\mu m$  spectra at a resolution of  $\lambda/\Delta\lambda\sim150$  have been obtained with the IRTF atop Mauna Kea, Hawaii.

Many of the selected objects have strong  $\rm H_2O$  absorption at 1.9  $\rm \mu m$  and 2.7  $\rm \mu m$ ; they are presumably long-period variables. Other objects with weaker  $\rm H_2O$  feature and deep CO absorption at 2.3  $\rm \mu m$  are probably normal M-type giants and supergiants. The number of such objects is consistent with a usual exponential-disk model, and no particular concentration of supergiants is found from the present observation. In addition to these late-type stars, there are three early-type stars with hydrogen recombination lines, possibly young stellar objects. Furthermore, four objects have been found which show no spectral feature in the K band. These are the two brightest members of the "IR Quintuplet" sources (Kobayashi et al. 1983; Okuda et al. 1988) and two similar objects a few arcminutes away.

The bright objects can be used as background continua in studying interstellar extinction towards the Galactic center. Many objects show absorption features at 3.0 and 3.4  $\mu m$ . Since the central wavelength of the 3.0  $\mu m$  feature is shorter than that of the "ice" feature seen in the sources in molecular clouds (Willner 1984), their origin might be different. The 3.4  $\mu m$  feature is similar to that seen in IRS7 and other sources in the Galactic center (Butchart et al. 1986).

## References

Butchart, I. et al.: 1986, Astron. Astrophys., 154, L5.
Kobayashi, Y. et al.: 1983, Pub. Astr. Soc. Japan, 35, 101.
Okuda, H. et al.: 1988, this volume.
Willner, S. P.: 1984, in Galactic and Extragalactic Infrared
Spectroscopy, eds. Kessler, M. F. and Phillips, J. P., (Reidel, Dordrecht), P. 37.

195

M. Morris (ed.), The Center of the Galaxy, 195. © 1989 by the IAU.