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SUMMARY

Diarrhoeal diseases are primary contributors to millions of deaths annually. Yet,
little is known about the evolutionary reasons for the differences in virulence
among gastrointestinal pathogens. Applying the comparative, cost/benefit
approach of evolutionary biology this paper proposes that waterborne trans-
mission should favour evolution towards high virulence. This hypothesis is
supported by a cross-specific test, which shows that waterborne transmission is
strongly correlated with the virulence of bacterial gastrointestinal pathogens of
humans. Alternative explanations of this correlation are not supported by
available data. These findings bear on public health policy because they draw
attention to a previously unrecognized long-range benefit gained from purification
of water supplies: diarrhoeal pathogens may evolve to lower levels of virulence.

INTRODUCTION

Severity of diarrhoeal diseases. During the last two decades diarrhoeal diseases
have been primary contributors to about 5—18 million deaths per year [1-4].
Although host factors such as nutrition and age are associated with the severity
of gastrointestinal infections (e.g. [5]), virtually nothing is known about the
evolutionary reasons for the great differences in virulence within and between
species of gastrointestinal pathogens. (In this paper 'virulence' refers to the level
of negative effect on the host.) This vacuum in our knowledge is critical because
only through a knowledge of the evolutionary determinants of pathogen virulence
can we predict its future evolution and the influences of human activities on this
evolution.

The health sciences have devoted relatively little attention to the evolution of
virulence presumably because of misunderstandings about the levels at which
natural selection acts. Until recent years authors writing on the subject generally
concluded unjustifiably that coevolution between host and parasite should lead to
very benign or commensal relationships (reviewed by [6]; I define ' parasite' as an
organism that lives in or on another organism and has a negative effect on the
fitness of that organism, and 'pathogen' as a subcellular or unicellular parasite.)
Because the errors of traditional thinking about virulence have been addressed
only relatively recently (see [7-10]), tests of tenable theory are just beginning.

The cost/benefit perspective and vector-borne transmission. This paper is one of a
series that investigates the evolution of virulence using the comparative method
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(sensu [1]). I first predict from theory situations in which extensive use of host
resources should provide the pathogen with exceptionally great fitness benefits
and exceptionally low fitness costs (fitness being measured by contribution of the
relevant genes into future generations, sensu [11, 12]). I then test these predictions
by comparing them with the actual relationships derived from the literature. The
first paper using this approach confirmed the prediction that pathogens
transmitted by biting arthropod vectors should be especially virulent [8].

Virulent genotypes should be favoured analogously by cultural vectors. A
cultural vector is defined as a set of characteristics that allow pathogens to be
transmitted from immobilized hosts when at least one of the characteristics is
some aspect of human culture [6]. The cultural vector considered in this paper
involves the transmission of gastrointestinal pathogens to susceptible hosts via
contaminated water.

A positive association between vector-borne transmission and virulence is
expected because evolution places two opposing pressures on pathogen genes that
contribute to extensive reproduction in hosts.

Like pathogens transmitted by arthropod vectors, waterborne pathogens
should incur relatively small fitness costs and large benefits from extensive
reproduction inside hosts. A person immobilized by a severe case of diarrhoea will
release pathogens into bedsheets, clothing and other objects that will tend to be
washed. When the contaminated wash water mixes with unprotected drinking
water, large numbers of susceptible people could become infected from the
pathogens released from an immobilized host (for documentation of this process
see [13-17]). In this case, the cultural vector includes the materials contaminated
by the immobilized host, the person removing this material, the contaminated
waters that flow into the drinking water, and agents contributing to this flow or
delivering the contaminated water to susceptible people. (This cost/benefit
argument is also applicable to pathogenicity due to enterotoxins and need not
assume that mutations enhancing waterborne transmission precede those
increasing pathogen virulence; see [6].)

The present paper tests a central prediction of this hypothesis: the virulence of
gastrointestinal tract pathogens should be positively correlated with their
tendencies for waterborne transmission. The test is restricted to bacteria because
their pathogenicity and modes of transmission are well documented and variable.
Pathogens species for which humans are dead-end hosts were excluded from the
test because the level of virulence in a dead-end human host is irrelevant to the
further transmission to other humans.

The test assumes that evolutionary changes in levels of pathogen characteristics
relevant to virulence will occur over time scales in which the waterborne cultural
vector has been present, that is, over years to millennia. This assumption seems
reasonable considering the rapid rates of evolutionary changes documented in
response to some cultural characteristics; for example, during the first 5 months
of an epidemic of Vibrio cholerae in Tanzania, resistance to tetracycline changed
from 0 to 76% of the isolates [18].
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RANKING OF MORTALITY AS AN INDICATOR OF VIRULENCE

General methods. Because negative and positive effects of disease manifestations
are often difficult to distinguish (see [8, 19]), mortality was used as an indicator of
virulence. The total number of infections resulting in death was estimated by the
following procedure. A literature search was initiated using medical texts and
computer-accessed databases. Searching continued using these sources and cited
references until 20 outbreaks yielding quantifications of mortality (see below) were
found or until a 20-h period of searching time provided no new leads. Any
outbreaks found inadvertently were also included, based on the assumption that
the increased accuracy resulting from increased sample size would outweigh any
potential biases associated with the subject matter of these papers. The data
therefore represent all relevant information of which I am aware.

For an outbreak to be included, the number of deaths needed to be explicitly
stated unless the qualitative description indicated that no deaths occurred. The
number of cases or an explicit estimate thereof was also required. Because
sporadic severe infections should tend to be reported more often than sporadic
nonlethal infections, mortality figures included only outbreaks involving at least
10 infections. To correct for frequencies of inapparent infections, mortality per
case was divided by infections per case (as indicated by bacteriological positivity).
In using these calculations I assume that any deviations between estimates and
actual values (e.g. infections per case) do not covary with the actual values of
mortality. This assumption was evaluated whenever possible by comparing
overall estimates with more restricted comparisons; for example, values from
different pathogens could sometimes be compared using data from the same
research group and the same epidemiological procedures.

To reduce effects of improved treatment on mortality, data gathered without
use of antibiotics or other effective treatments (e.g. hypotonic saline for cholera)
were used whenever possible. When such data were unavailable, direct
comparisons between pathogens were made during similar time periods. If
ambiguities in a ranking arose from differences in the effectiveness of treatment,
the involved pathogens were assigned tied ranks in a supplemental conservative
test. For some pathogens reliable estimates of mortality for untreated cases were
so limited that mortality figures were obtained from governmental or hospital
records, rather than outbreaks. Pair-wise comparisons were made within
geographic areas when possible.

To reduce variability due to the health status of infected individuals,
calculations excluded outbreaks within highly vulnerable groups (neonates,
patients with underlying disease, and residents in institutions for the mentally
handicapped and aged) and deaths attributed by authors to causes other than the
pathogen under consideration. Hospital outbreaks were also excluded because
transmission in hospitals often occurs by a different cultural vector, which seems
to enhance virulence [6].

When comparing ratios of symptomatic to asymptomatic infections, and when
comparing percentages of mortality, G tests were used with the Williams
correction in accordance with the recommendations of Sokal and Rohlf [20].

Vibrio cholerae. Mortality associated with untreated acute cases of classical
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cholera is generally between 50 and 75% [21]. The most reliable mortality figures
that I located involved 1243 hospitalized cases between 1895 and 1905 from the
Medical College and Campbell Hospital in Calcutta: 59 and 63 % of these cases,
respectively, were fatal [22]. These cases received supportive treatment but not
hypertonic saline, which was introduced around 1905 and substantially reduced
mortality rates. The patients were of different religious and racial groups, but the
rates from all groups were similar (the low figure was 56*5 % for 92 Europeans and
Eurasians, and the high was 61-6% for 814 Hindus [22]). Another apparently
reliable figure is 52% for the 7326 cases in the 1873 epidemic in the United States
[23]. The average of these three values (58%) was used as the estimate of
mortality from cases of untreated classical cholera. To obtain the mortality per
infection, this value was divided by the infections per severe case (i.e. one in need
of hospitalization).

Infections per severe case were estimated from frequencies of infection among
contacts of index patients. For classical V. cholerae 3-7 infections occurred for
every severe case (Table 1), yielding a mortality per infection of 15-7% (i.e. 58%
divided by 3-7).

Mortality data for untreated cases of el tor cholera are not available because the
el tor biotype became prevalent only during the last three decades. Mortality due
to el tor V. cholerae was therefore estimated as follows. The mortality per case of
el tor cholera in south and southeast Asia from 1961 through 1966 (15-3%) was
divided by the mortality per case of classical cholera in this geographic area during
the same period (i.e. 40-5%; both figures from [33]). To estimate mortality per
untreated case of el tor cholera, I multiplied the mortality per case of el tor relative
to classical cholera (15-3/40-5 = 0-38) by the fatality per untreated case of classical
cholera (58-0%; see above). In making this calculation, I assume that the
marginally effective treatment of cholera during this time period altered mortality
per case by the same ratio for both biotypes (for classical cholera the reduction was
about 58 to 4 1 % ; see above). The resulting mortality per untreated el tor case
(21-9%) was divided by 15-2, which represents the infections per severe case
(Table 1), yielding 1-44% as the mortality per infection. The difference in
virulence between classical and el tor V. cholerae is also apparent when the
biotypes occurred within a community, during adjacent years [26, 27] or
simultaneously [28]; Table 1; P < 0-05 for each difference.

Salmonella typhi. Data from a well-studied, localized outbreak of S. typhi in
rural Georgia [34] were used to estimate the infections per apparent case. Eleven
of the 80 S. typhi infections were asymptomatic. Two of these were probably
chronic carriers infected prior to the outbreak [34]. One-third of the remaining 69
symptomatic cases were found through a house-to-house canvass; thus, 1-13
infections were documented per symptomatic case (78 infections divided by 69
symptomatic cases), and the number of infections for each case normally
recognized by physicians was 1-70 (78 infections divided by 46 apparent cases).
When mortality figures from outbreaks were based on intense efforts to identify
all symptomatic cases they were therefore divided by 113 to obtain the mortality
per infection. For all other outbreaks, mortality per case was divided by 1-70
(Table 2).

The average of these figures (5-8%) is below the mortality per infection of
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Table 1. Frequencies of infections with el tor and classical Vibrio cholerae
categorized according to severity

Number of infections

Severe

31
29

7
5

10

82

5
0
3
2
9
1
1

21

Moderate-to-
asymptomatic

84
49
28
13
46

220

50
5

110
33
33
55
59

319

Location

Classical biotype
Dhaka, Bangladesh
Dhaka, Bangladesh
Chittagong, Bangladesh
Meheran, Bangladesh
Dhaka, Bangladesh
All classical

El tor biotype
Philippines
Calcutta, India
Chittagong, Bangladesh
Meheran, Bangladesh
Dhaka, Bangladesh
Matlab, Bangladesh
Dhaka, Bangladesh
All el tor

Reference

[24]
[25]
[26]
[27]
[28]

[29]
[30]
[26]
[27]
[31]
[32]
[28]

classical V. cholerae (see above). Restricting the comparison temporally and
geographically also yields a lower ranking of S. typhi relative to classical V.
cholerae. The mortality associated with the five oldest outbreaks of S. typhi in the
United States (18-6/1-70 = 9-7%; data from Table 2, 1885-94) is less than the
mortality associated with the 1873 epidemic of cholera in the US: 14-1% (52%
divided by 3-7).

Shigella spp. Case-fatality figures for S. dysenteriae 1, S. flexneri, and S. sonnei
are presented in Table 3. Data from S. boydii and other serotypes of S. dysenteriae
were insufficient for rankings of mortality and/or waterborne transmission.
Shigella dysenteriae type 1 was analysed separately from the other serotypes of S.
dysenteriae because its virulence is markedly different.

Infections per case were lowest for S. dysenteriae 1 and highest for S. sonnei (for
S. dysenteriae 1 versus S. flexneri, G = 6-53, P < 0-02; for S. flexneri versus 8.
sonnei, G = 17-42, P < 0-001; for S. dysenteriae 1 versus S. sonnei, G = 17-95, P <
0-001; data from Table 3).

Because these differences were derived from several studies, they might have
been influenced by differences in methods of detection, geographic location or year
of study. To reduce interpretive ambiguities pair-wise comparisons were made
within teams of researchers. Among contacts of index patients, Khan and
Shahidullah [31] found more infections per case of S. flexneri than S. dysenteriae
1 (G = 6-78; 2-tailed P < 0-01). Hardy and his associates found more infections per
case of S. sonnei than S. flexneri (G = 10-95, 2-tailed P < 0*001; data from Table
4): the results from the pair-wise comparisons are, therefore, consistent with the
overall differences.

To obtain mortality per infection the mortality per case for each outbreak in
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Table 2. Mortality associated with Salmonella typhi infections

Mortality (%)

Location References

Caterham and Redhill, [13J
England

Plymouth, Pennsylvania [13]
Waterbury, Connecticut [35]
Lowell-Laurence, [35]

Massachusetts
Springfield, Massachusetts [35]
Wesleyan, Connecticut [35]
Stamford, Connecticut [35]
Spanish-American War, [35]

U.S. camps
Baraboo, Wisconsin [35]
Montclair and Bloomfield. [35]

New Jersey
Lowell, Massachusetts [35]
Wateryille and Augusta, [35]
Maine

Cleveland, Ohio [35]
Ithaca, New York [35]
Basingstoke, England [35]
Scranton, Pennsylvania [35]
Texarkana, * [36]

Arkansas/Texas
Rockford, Illinois [37]
Troy, Pennsylvania [38]
Quincy, Illinois [37]
Hanford, California [39]
Michigan [40]
E. Lansing, Michigan [41]
Salem, Ohio [42]
Seneca Falls, New York [43]
Hanover, Germany [44]
Montreal, Quebec [44, 13]
Olean, New York [45]
Ecclefechan, Scotland [46]
Bournemouth, England [47]
Croydon, England [47]
DePue, Illinois [48]
St Boniface and St Anne, [49]

Manitoba

Deaths

21

114
12
61

25
4
22

4580

15
0

16
53

611
82
13
111
1

24
19
16
3
4
11

5
545
488
25
2-3
70
43
1
4

Cases

352

1604
50
323

150
25
386

20738

190
28

196
612

4578
1350
164

1155
36

199
229
202
93
51
82
882
100

2423
5014
248
62
718
310
12
54

Per
case

60

71
240
18-9

16-7
160
5-7
7-6

7-9
0

8-2
8-6

13-3
61
7-9
9-6
2-8

121
8-3
7-9
3-2
7-8
13-4
2-8
50
22-5
9-7
101
40
9-7
13-9
8-3
6-3

Per
infection

3-5

4-2
141
111

9-8
9-4
5-7
4-5

4-7
0

4-8
7-6

7-8
5-4
4-7
5-7
1-6

71
4-9
4-7
2-9
4-6
7-9
1-6
2-9
13-3
5-7
60
2-4
5-7
8-2
4-9
3-7

Year

1879

1885
1890
1890-1

1892
1894
1895
1898

1901
1902

1901-3
1902-3

1903-4
1903
1905
1906-7
1911

1912
1912
1913
1914
1917
1919
1919-20
1920
1926
1927
1928
1930
1936
1937
1939
1940

Table 3 was divided by the infections per case, which were 1-54 for S. dysenteriae
1, 2-22 for S.flexneri and 2-91 for S. sonnei (from Table 4), yielding 7-50, 1-32 and
O65% mortality, respectively. In the United States, mortality associated with S.
dysenteriae 1 was higher than that associated with the S. typhi outbreaks that
occurred earlier in the century (Tables 2 and 3). Similarly, in the United Kingdom,
mortality associated with S. dysenteriae 1 was generally higher than that
associated with S. typhi (Tables 2 and 3). Although these outbreaks did not occur
simultaneously the observed ranking is opposite to that expected from a temporal
change in the quality of care: the S. dysenteriae 1 outbreaks occurred after the S.
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Table 3. Percent mortality associated with infection by Shigella dysenteriae,
S. flexneri and S. sonnei

Deaths

15
2

19
10

XG
12

13000
27

55
0

12
0
6
8

1
0
1
2
0

1
0
4
0
0
0
3

1
0
0
0
1
0
0
1
0

Cases

108
38

186
45

XG
117

120000*
330*

418
11

noot
10

124
115

28
40

184
70
16

116
150
167
142
75
24
26

30
loot
24

> 100
15T
40
59

132
27

Mortality (%)

Per
case

13-8
5-3

10-2
220
120
10-3
10-8
8-2

12-2
0
11
0
4-8
70

3-6
0

0-4$
2-9
0

0-7
0
2-4
0
0
0
3-9

3-3
0
0
0
—
0
0
0-8
0

Per
infection

Shige

9-0
3-4
6-6

14-2
7-8
6-7
7-0
5-3

55
0
0-5
0
2-2
32

1-6
0
0-2
1-3
0

0-2
0
0-8
0
0
0
1-3

11
0

0
0
6-7
0
0
0-3
0

Year

lla dysenteriae

1905
1917-8
1919
1938
1938
1941
1968-9
1973

Location

type 1
Kobe, Japan
England
Dublin, Ireland
Michigan
Mecklenberg, Germany
Adair Co., Kentucky
Guatemala
St Martin Is., Bangladesh

Shigella flexneri
1905
1921
1921
1927
1927-9
128-9

1929-31
1933^1
1934
1936
1938

Kobe, Japan
Newcastle, England
Og More Vale, Wales
Smethwick, England
Denmark
Newcastle and Durham,

England
Bangalore and Poona, India
Bronx, New York
Jersey City, New Jersey
Yallaho
New Mexico

Shigella sonnei
1927
1926
1927-9
1928
1929

1929

1929-30
1930
1931
1931-2
1931
1933-4
1938
1939
1942

Skanderborg, Denmark
St Andrews, Scotland
Denmark§
Korsor, Denmark
Rask Molle, Denmark
Lahore, Pakistan
Newcastle and Durham,

England
Massachusetts
London, England
Rugby, England
Denton, England
Glasgow, Scotland
New York
Bedford, England
Tottenham, England
Cardiff, Wales

Reference

[50]
[51]
[52]
[53]
[54]
[55]
[56]
[57]

[50]
[58]
[59]
[60]
[61]
[62]

[63]
[64]
[65]
[54]
[66]

[61]
[67]
[61]
[61]
[61]
[68]
[62]

[69]
[70]
[71]
[72]
[73]
[64]
[74]
[75]
[76]

* The value from Levine et al. [56] represents Mendizibal's unpublished estimates of the
overall mortality in the epidemic prior to use of effective antibiotics (Sept. 1968- Aug. 1969).
Levine et al. presented the estimated numbers of deaths and cases (13000 and 120000) but not
the number of deaths and cases on which these estimates were based. The data from St Martin
Island included only cases prior to medical intervention.

t These values are numbers of cases estimated by the authors.
J Felsen et al. [65] stated that 15-20 % of cases were severe and 2 % of severe cases were lethal,

hence the mortality rate of 0-4%. 184 cases had been observed at the time of their report.
§ Excluding the outbreaks at Korsor, Rask Molle, and Skanderborg listed above.
*i Total number of infections.
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Table 4. Frequencies of total and asymptomatic Shigella infections

No. infections No. symptomatic Location Reference

Shigella dysenteriae 1

49
5

54

147
66

326
10

131
680

38
310
118
107
15

588

32
3

35

Bangladesh
Bangladesh

All S. dysenteriae 1

Shigella flexneri

97
44

111
2

52

306

United States
United States
United States*
Bangladesh
Bangladesh

All S. flexneri

Shigella sonnei

14
51
38
92

7
202

United States*
United States
England
United States
Scotland

All S. sonnei

[31]
[77]

[54]
[78]
[79]
[31]
[77]

[79]
[78]
[80]
[81]
[73]

* A small minority of these cases was apparently from Puerto Rico.

typhi outbreaks and were more severe. S. dysenteriae 1 was, therefore, ranked
above S. typhi.

The average mortality in the two outbreaks of S. dysenteriae 1 in the United
States (10-5%) was lower than that of the 1873 outbreak of cholera (14-1 %), in
accordance with the overall difference between these two pathogens, but the large
gap in time between these outbreaks weakens this comparison. The analysis of
mortality across all species therefore ranked classical V. cholerae above S.
dysenteriae 1 in one test and tied with S. dysenteriae in the second, more
conservative test.

A more restricted comparison between S. flexneri and S. typhi is also consistent
with the overall difference between these two species. During the 1920s and 1930s
S. typhi infections were more lethal than S. flexneri infections in both the United
States and the United Kingdom (Tables 2 and 3).

The mortality associated with S. flexneri was slightly lower than that of el tor
V. cholerae (see above). Data gathered in Bangladesh during the late 1970s and
early 1980s provide a temporally and geographically restricted comparison. For el
tor V. cholerae 11 of 158 infections required hospitalization (Table 1). About 21-9 %
of hospitalized el tor cases would be expected to die without treatment (see
preceding section on V. cholerae), yielding 1-5% mortality for untreated infections.
For S. flexneri 38-3 % of 141 infections were symptomatic (from Table 4). A 2-9 %
mortality for untreated cases (Table 3) yields 1-1% mortality for untreated
infections. The more restricted comparison is therefore consistent with the overall
comparison; however, because the difference is small, the cross specific analysis
was run both with el tor V. cholerae ranked above S. flexneri and, in the more
conservative test, with the two pathogens assigned a tied rank.

Campylobacter jejuni. No mortality occurred in the 21 outbreaks of C. jejuni
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Table 5. Mortality associated with infections by Shigella sonnei in outbreaks
during or after 1970

Mortality

Deaths

1
0
0
1
0
0
0
0
0
0

0
0
2
0
0

Cases

70
11

300
113
242
667
395

89
86
49

104
51

113
21
45

Per
case

1-4
0
0
009
0
0
0
0
0
0

0
0
1-8
0
0

Per
infection

10*
0
0
0-03
0
0
0
0
0
0

0
0
0-6
0
0

Year

1970
1970
1970
1971
1971
1971
1971
1971
1971
1971

1974
1973
1972
1972
1974

Location

Kentucky (M)
Utah
Albuquerque, New Mexico
Kansas (M)
Atlanta, Georgia
Florida
Maui, Hawaii
Anchorage, Alaska
Gastonia, North Carolina
Portsmouth, New

Hampshire
Vermont (M)
Chardon, Ohio
Wood County, Ohio
Washington, D.C.
Dubuque, Iowa

Reference

[84]
[84]
[85]
[86]
[87]
[87]
[88]
[89]
[89]
[90, 91]

[92]
[90]
[90]
[90]
[93]

* For this outbreak deaths per individuals exposed is given; multiplying the number of cases
by the average infections per case would have yielded more infections than the number of people
exposed.

that met the criteria for inclusion in the test; however, occasional deaths due to
C. jejuni have occurred [82, 83].

Because the importance of C. jejuni as an enteric pathogen has become
understood only since the mid-1970s, improved treatment and states of health
complicate interspecific comparisons. To assess whether the overall mortality per
infection was less than that for S. sonnei during a similar time period, S. sonnei
outbreaks from 1970 onwards were compiled (Table 5).

If high-risk populations (i.e. institutions for elderly and mentally handicapped)
are excluded, the mortality per S. sonnei infection was 0-05% (Table 5), which is
higher than the analogous figure collected from studied outbreaks of C. jejuni (no
deaths in about 4500 cases from 22 outbreaks). Including outbreaks from high-risk
populations yields a mortality of 0-11 % for S. sonnei (from Table 5) and 0-05%
[4 deaths/(6740 cases x 1-3 infections per case)] for C. jejuni.

Antibiotics have substantial effects against S. sonnei, but little if any against C.
jejuni [94-97]; consequently, if no infections had been treated, the observed
difference in mortality would if anything increase. On the basis of these
considerations, C. jejuni was ranked below S. sonnei.

Non-typhoid salmonella. Since the middle of this century the mortality
associated with reported cases of non-typhoid salmonella in the United States
ranged from about 5-3-0-4% [98-101]. The ratio of unnoticed infections to
reported cases of non-typhoid salmonella is estimated to be at least 100:1 [102,
103]. The mortality per infection was therefore approximately 0-004-0-053%.
This range is lower than that of S. sonnei but not distinguishable from C. jejuni
(see above). Direct comparisons of these two pathogens suggest similar prevalences
and deaths per capita [96, 83]. They were therefore assigned the same rank.
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Table 6. Modes of transmission for classical cholera (see Appendix for
abbreviations)

Location Year Mode Reference

Tockwith and Moor Monkton, England
Glasgow, Scotland
Moscow, Russia
Pocklington and York, England
Horsleydown
Albion Terrace, London, England
Rotherhithe, London, England
Manchester, England
Golden Square, London, England
London, England
York, England
Shoreditch, London, England
London, England
Baljik, Black Sea
Millbank Prison, England
Deptford, England
Eastern London, England
Southampton, England
Calcutta, India
Reval, Russia
Rural, India
Pondicherry
Tong King, Japan
Hamburg, Germany
Nietleben, Germany
Grimsby and Cleethorpes, England
Indian jail
Philippines
Sori, Italy
Berlin, Germany
Syriam, Burma
Tokyo, Japan
Romblon, Philippines
Changteh, China
Newcastle, UK
London, UK
Rotterdam and Utrecht, Netherlands
Assam, India
Bangladesh
Bangladesh
Meheran, Bangladesh

1838
1832
1847
1849
1849
1849
1849
1848-9
1854
1849
1849
1848-9
1853
1854
1854
1855
1866
1866
1870
1871

< 1885
NG
1885
1892
1893
1893

< 1895
1907
1911
1918
1920
1922
1926
1938-9

« 1850
1854
NG
1964-5
1964-74
1966-75
1968-69

c
w
w
c
w
w
w
w
w
w
w
w
w
w
w
w
w
w
w
w
w
w
c
w
w
wsf
f, fl
wsf
w
f
fl?
wsf
w
w
w
w
w
w
w
w
w

[16]
[16]
[16]
[16]
[16]
[16]
[16]
[16]
[16]
[16]
[16]
[108]
[16]
[16]
[16]
[16]
[108]
[108]
[15]
[15]
[15]
[15]
[15]
[15]
[15]
[15]
[15]
[15]
[15]
[15]
[15]
[15]
[109]
[15]
[22]
[15]
[108]
[110]
[17, 111]
[112]
[113]

Escherichia coli. Determination of mortality due to E. coli is complicated by the
broad spectrum of interactions between this species and humans. Calculation of
accurate mortality per infection is not feasible for the entire species because
frequencies of non-pathogenic infection are high and not accurately quantified.
Unbiased calculation of mortality due to ' enteropathogenic' E. coli is not feasible
because associations between these serotypes and pathogenicity are uncertain
[104]. Use of the traditional 'enteropathogenic' serotypes would probably strongly
bias the sample toward high virulence. Restriction of the analysis to invasive and
haemorrhagic serotypes [105] is not feasible because of insufficient data.

For enterotoxigenic E. coli, these problems are relatively unimportant. Genetic
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Table 7. Modes of transmission for el tor V. cholerae (see Appendix for
abbreviations)

93

Location

Celebes, Indonesia
Ubol, Thailand
Bacolod City, Philippines
Lucdo, Philippines
Rural New Territories, Hong Kong
Temple St., Hong Kong
North Kowloon, Hong Kong
Can Itom, Philippines
Calcutta, India
Kelantan, Malaysia
Chad and Cameroon
Mali and neighbouring areas
Airline flight through Bahrain
Italy
Sri Lanka
Bangladesh
South Africa
Portugal
Bangladesh
Kiribati
Tanzania

Nias, Indonesia
Bahrain
Congo
Moherong, South Africa
Gaza Strip
Truk, Micronesia

Year

1939
1960
1961
1962
1962
1964
1966
1967
1968
1969
1970
1970-1
1972
1973
1973-4
1973-4
1974
1974
1976-7
1977
1977-8,
1981, 1983
1978
1978-9
1978-9
1981
1981
1982

Mode

w
w
wsf
c
c
w, wf
f, c
w
nw
wsf, w
c
c
f
wsf
w
w
wh
wsf, w
w
wsf
w; c; c; c

w
wh
c
2
nw
f

Reference

[114]
[115]
[116]
[117]
[118, 119]
[120]
[118]
[212]
[122]
[123]
[124]
[125]
[126]
[124]
[127]
[32]
[128]
[129, 130]
[131]
[132]
[133, 134]

[135]
[136]
[137]
[138]
[139]
[140]

instructions for toxin production are either present or absent [106, 107] and many
outbreaks have been studied.

As with C. jejuni, no deaths from enterotoxigenic E. coli were reported in the
nine outbreaks conforming the criteria for inclusion in the test, but deaths have
occurred in vulnerable individuals and institutional settings in which attendants
act as cultural vectors (e.g. among infants in nursery wards; see [6]).
Enterotoxigenic E. coli was therefore assigned the same rank as C. jejuni and non-
typhoid salmonella.

RANKING OF TENDENCIES FOR WATERBORNE TRANSMISSION
General methods. If waterborne transmission was implicated for any portion of

the infections, the outbreak was assigned to the waterborne category; if
waterborne transmission was rejected as a possibility, or if an alternative mode
was clearly implicated while water was not, the outbreak was placed in the non-
waterborne category. If a food-borne outbreak resulted from contamination of the
food with water, the outbreak was included in the waterborne category because
such transmission conforms to the definition of a cultural vector (see Introduction).
Food-borne outbreaks in which water contamination was neither documented nor
suspected were counted as non-waterborne. Food-borne outbreaks generally do
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Table 8. Modes of transmission for Salmonella typhi (see Appendix for
abbreviations)

Location Year Mode Reference

Bristol, England
Salisbury, England
Croydon, England
Cowbridge, South Wales
Millbank Prison, England
Munich, Germany
Congleton
Frankfurt, Germany
Lausen, Switzerland
Caterham and Redhill, England
Burlington, Vermont
Plymouth, Pennsylvania
Zurich, Switzerland
Lowell and Lawrence, Massachusetts
Chicago, Illinois
Newark, New Jersey
Springfield, Massachusetts
Worthing, England
Hamburg, Germany
Marlborough, Massachusetts
Middletown, Connecticut
Lowell, Massachusetts
Stamford, Connecticut
Jersey City, New Jersey
Loraine, Ohio
Maidstone, England
Albany, New York
Williamstown, Massachusetts
Gelsenkirchen, Germany
U.S. Military camps, Spanish-American War
Newport, Rhode Island
Pittsburg and Allgeheny, Pennsylvania
Baraboo, Wisconsin
New Haven, Connecticut
Ithaca, New York
New York (typhoid Mary)
Patterson, New Jersey
Somerville, Massachusetts
Auxerre, France
Montclair and Bloomfield, New Jersey
Lowell, Massachusetts
Winchester and Southampton, England
Binghamton, New York
Waterville and Augusta, Maine
Cleveland, Ohio
Butler, Pennsylvania
Watertown, New York
Lawrence, New York
New Haven Co. Jail, Connecticut
Mt. Savage, Maryland
Millenocket, Maine
Winnipeg, Manitoba
Lincoln, England

1847
1852-3
1852-3
1853
1854
1860
1866
1870-5
1872
1879
1880s-90s
1885
1885
1890-93
1890-92
1892
1892
1893
1893
1894
1894
1894
1895
1896
1897
1897
1899
NG
NG
1898
1900
1900
1901
1901
1901
1910-14
1902
1902
1902
1902
1902
1902
1902
1902-3
1903
1903
1904
1904
1904
1904
1904
1904
1904-5

w
w
w
w
w
w
w
w
w
w
w
w
w
w
w
w
wm
w
w
mh
wsf
w
wm
w
w
w
w
fh
w
fl, c
w
w
w
w
w
fh
w
mh
w
m
w
wsf
w
w
w
w
w
wsf
nw
w
w
c, fl
w

[108]
[108]
[108]
[108]
[108]
[108]
[108]
[142]
[13, 35]
[13, 108]
[35]
[13, 35, 143]
[35, 142]
[13. 142, 144]
[35. 142]
[142. 144]
[35]
[145]
[142, 144]
[35]
[13. 35]
[144]
[35]
[144]
[144]
[143, 145]
[35. 144]
[35]
[35]
[35. 47, 143]
[35]
[35]
[35]
[35]
[35]
[146]
[35, 144]
[35]
[35]
[35]
[35]
[35]
[35. 144]
[35]
[35]
[35]
[35]
[35]
[35]
[35]
[35]
[35]
[145]
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Winnipeg, Manitoba
Springfield, Massachusetts
Basingstoke, England
Philadelphia, Pennsylvania
Steamer 'Northwest', Michigan
Scranton, Pennsylvania
Trenton, New Jersey (M)
Des Moines, Iowa
Cedar Falls, Iowa
Lincoln, Nebraska
Rockford, Illinois
Troy, Pennsylvania
Quincy, Illinois
Hanford, California
Michigan
Lansing, Michigan
Salem, Ohio
Seneca Falls, New York
Harrowgate, Tennessee
Lincoln, Massachusetts
Montreal, Quebec
Olean City, New York
Ecclefechan, Scotland
Malton, Yorkshire, England
Manteno, Illinois
DePue, Illinois
St Boniface and St Anne, Manitoba
New York City
Argentina/Scotland
Mexico

New Jersey
Florida
Texas
New York City
Sangli, India
Tennessee
San Antonio, Texas

Table 8. (cont.)
1904
1905
1905
1906
1906
1906-7
1907
1910
1911
1911
1912
1912
1913
1914
1917
1919
1919-20
1920
1924
1926
1927
1928
1930
1932
1939
1939
1940
1952
1964
early
1970s
1973
1973
1975
1975
1985-6
1977
1981

w
c, f
w
w
w
w
w
w
w
w
w
w
w
f
mh
w
w
w
m
mh
mh
w
w
w
w
m
f
fh
wf
w

sfh
w
f
f
w
f
fh

[35]
[35]
[35]
[147]
[35]
[35]
[35]
[148]
[149]
[150]
[37]
[38]
[37]
[39]
[40]
[41]
[42]
[43]
[151]
[13]
[13]
[45]
[46]
[145]
[152, 153]
[48]
[49]
[100]
[154]
[154]

[155]
[155, 156]
[157]
[157]
[158]
[159]
[160]

not involve cultural vectors because infected food handlers generally must be
mobile in order to contaminate food. If transmission occurred through
contamination of water within a household or institution, the outbreak was
counted as non-waterborne, because such transmission should rely upon host
mobility in a manner analogous to transmission through contamination of food by
food handlers.

For some outbreaks, authors or agencies (e.g. the Centre for Disease Control of
the US Public Health Service) stated a mode of transmission without presenting
the evidence for their conclusions. For these outbreaks, I trusted the published
conclusions unless the available data raised serious doubts; such outbreaks were
excluded from the analysis. Other details of the literature search were as described
for quantification of mortality.

V. cholerae. During the last two decades, several investigators have concluded
that cholera outbreaks involved waterborne transmission (see Tables 6 and 7):

4 HYG 106
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Table 9. Modes of transmission for Shigella dysenteriae (see Appendix for
abbreviations)

Location Year Mode Reference

England
Missouri
Michigan
Kentucky
Giohor, Somalia
Guatemala
El Coco, Guatemala
Pueblo Nuevo, Guatemala
El Salvador
Dhaka, Bangladesh
Tamil Nadu, India
St Martin Island, Bangladesh

1917-18
1934
1939
1941
1964
1969
1969
1969
1969-70
1972
1972
1973

w
nw?
nw ?
nw
w?
w?
nw ?
w
wf?
w
w
w?

[51]
[171]
[53]
[55]

[172]
[167]
[173]
[173]
[174]
[175]
[176]
[57]

however, many of these conclusions have been questioned by Feachem [141], who
proposed that although the outbreaks may have involved contaminated water,
non-waterborne transmission is consistent with the results. Because of the
uncertainties associated with these arguments the percentages of waterborne
outbreaks were calculated in two ways. In the first calculation I assumed that
water played a role in transmission in all of the outbreaks for which waterborne
transmission was supported. In the second calculation I excluded these outbreaks
from the waterborne category, but counted them as non-waterborne only if
epidemiological evidence for non-waterborne transmission existed.

The difference between the percentages in Tables 6 and 7 indicates that classical
V. cholerae has been waterborne more often than el tor V. cholerae. Sommer and
Woodward's [113] data show a similar difference within a single community where
a classical outbreak was followed by an el tor outbreak in successive years.

Salmonella typhi. Seventy-four percent of the S. typhi outbreaks involved
waterborne transmission (Table 8). This percentage places 8. typhi slightly below
classical V. cholerae in terms of waterborne transmission.

The available data permit some temporally and geographically restricted
comparisons between S. typhi and classical V. cholerae. Prior to 1900 the
percentage of waterborne outbreaks in the United States and western Europe were
virtually the same for these pathogens (17 out of 20 from Table 8, and 16 out of
19 from Table 6). In the United States improvements in water purification began
near the turn of the century [35, 144] and continued through the mid-century [44,
161, 162]. Classical V. cholerae infections virtually vanished from the United States
after the initial improvements in water supplies; S. typhi outbreaks did not
vanish, but the proportion of waterborne outbreaks become rarer as the water
supplies were purified (P < 0-01, Cochran-ordered x2 = 8-34, 1 D.F. [163]; Table
8; outbreaks were grouped chronologically, maximizing the number of groups
under two constraints: null hypothesis frequencies were > 5 and the standard
deviation of outbreaks per group was minimized).

Data from England permit a more temporally and geographically restricted
comparison. Between 1843 and 1847 water supply improvements in 24 towns
reduced the death rates from typhoid by up to about 50 %; cholera death rates
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Table 10. Modes of transmission for Shigella flexneri (see Appendix for
abbreviations)

Location Year Mode Reference

97

Wakefield, England (M)
Meurthe-Moselle, France
Claybury, England (M)
Aberdeen, Scotland
Ogmore Vale, Wales
Smethwick, England
Newcastle and Durham, England
Yugoslavia
St Louis, Missouri
England (A)
Elgin. Illinois (M)
Matane, Quebec
St Gerome, Quebec
Locke, California
Yallaho
Connecticut
New York, New York
Georgia (M)
Vermont (M)
New York (M)
Newton, Kansas
Philippines
Germany
Guam
Yugoslavia
Yugoslavia
Hungary
Utah
Omaha, Nebraska
California
North Carolina
Hawaii
Yugoslavia
Texas
Hawaii
Florida
Washington
North Carolina (M)
Utah (M)
Cleveland, Ohio
Willowbrook and Rosewood, New York
New Mexico
Alaska
Roxboro, North Carolina
Lufkin. Texas (M)
Tululasak, Alaska
Scotland
Caribbean cruise ship
Hawaii
Arkansas
Connecticut
California
Washington
Connecticut
Minnesota

1913
1918
1919
1919
1921
1927
1928-9
1931
1934
1934
1935
1935
1935
1936
1936
1937
1939
1940
1940
1940
1942
1945
1945
1947
1951
1954
1954
1956
1961-2
1964
1964
1964
1962-4
1965
1965
1966
1968
1968
1968
1969
1969
1969
1970
1970
1970
1970
1972
1973
1973
1973
1973
1975
1976
1981
1981

c
w
nw
m
w
w
nw
w
f
w
f
w
w
w
w
w
f
nw
nw
nw
w
w
w
w
w
w
w
w
nw
f
w
f
w; w; w
f
f
m
f
f
c
c
nw
c
w
c
c
w
nw
w
f
f
sfh
f
w
f
f

[177]
[178]
[179]
[180]
[59]
[60]
[62. 181]
[182]
[183]
[184]
[185]
[186]
[187]
[187]
[54]
[188]
[55]
[66]
[66]
[66, 78]
[189]
[190]
[191]
[192]
[193]
[193]
[194]
[195]
[196]
[197]
[197]
[197]
{193[
[197]
[197]
[197]
[197]
[198]
[199]
[200]
[201]
[202]
[202]
[203]
[203]
[84]
[204]
[205]
[155]
[155]
[155]
[206]
[206]
[207]
[207]
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Table 11. Modes of transmission for Shigella sonnei (see Appendix for
abbreviations)

Location Year Mode Reference

St Andrews, Scotland
Skanderborg, Denmark
Korsor, Denmark
Glasgow, Scotland
London, England
Scotland
Surrey, England
New Mexico
Bedford, England
England
New York
Norway
Penrith, England
Carlisle, England
Cardiff, Wales
Somerset, England
Ukraine
England
Leicester, England
Oxford, England
Ohio
Mansfield, Australia
Albany Co., New York
Yugoslavia
Iowa
Montrose, Scotland
Vermont
Ohio
Kansas City, Kansas
Lexington, Kentucky
Russelville, Arkansas
Jersey City, New Jersey
Medford, Oregon
Prineville, Oregon
Frederic Co., Maryland
South Carolina
Maui, Hawaii 1972
Texas
Albuquerque, New Mexico
Le Seur Co., Minnesota
Kansas
California
Pennsylvania
Portsmouth, New Hampshire
Turkey Creek, Florida
Kahului, Hawaii
Gastonia, North Carolina
Anchorage, Alaska
England
Washington, D.C.
Wood Co., Ohio
Stockport, Iowa
St Louis, Missouri

1926
1927
1928
1928
1930
1931
1935
1938
1938
1939

< 1941
< 1941

1942
1942
1942
1942

apxl945
1948
1950
1951
1954
1958
1959-60
1963
1965
NG
1967
1968
1968
1969
1969
1969
1969
1969
1969
1969
1970
1970
1970
1970
1971
1971
1971
1971
1971
1971
1971
1971
1971-2
1972
1972
1972
1972

m
m
m
c
fh
nw
nw
nw
m
c
m
w
m
m
c
w
w
f
w
e
f
nw
w
w
w
w
w
f
c
f
c
fh
w
w
w
c
f
fh. c
fh
f
c
a
f
c
f
f
c
w
c
c
c
w
w

[67]
[61]
[61]
[215]
[70]
[734]
[216]
[66]
[74]
[75]
[217]
[218]
[219]
[220]
[76]
[221]
[222]
[223]
[224]
[80]
[81]
[225]
[226]
[193]
[227]
[228]
[227]
[227]
[199]
[229]
[200]
[200]
[229, 230]
[200, 230]
[200]
[202]
[86, 88, 231]
[84]
[85, 231]
[85, 231]
[86]
[232]
[232]
[90]
[87, 232]
[232]
[89]
[89, 233]
[234]
[90]
[90]
[233]
[233]
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New Jersey
Chardon, Ohio
California
Illinois
Dubuque, Iowa
Vermont
Iowa
Washington
Florida
Pennsylvania
Montana
Oregon
Washington
Puerto Rico
Hawaii
Pennsylvania
Illinois
Virginia

Table 11. {cont.)
1972
1973
1973
1973
1974
1974
1974
1974
1974
1974
1974
1975
1976
1976
1977
NG
1978
1981

w
c
f;f
f
w
c
f
f
w
w
f; w
f
f
w
f
fh
f
f

[233]
[90]
[155]
[155]
[93]
[92]
[235]
[235]
[235, 236]
[235]
[157]
[155]
[206]
[206]
[159]
[237]
[238]
[207]

were more markedly reduced, by more than 90% in at least two communities
[108].

The difference between S. typhi and classical V. cholerae with regards to long-
term carriage may be one factor resulting in the more abrupt decline in classical
V. cholerae than in S. typhi following water purification. Long-term excretion of
classical V. cholerae is extremely rare. Virtually all cases and carriers generally
cease excretion within days to a few weeks [15, 24, 27], the longest documented
duration being about 40 days [15]. In contrast, approximately 2-5% of S. typhi
cases continue excretion for several months to many years after symptomatic
recovery [144, 164, 47]. Since carriers are known to contribute to non-waterborne
transmission (e.g. [146]), S. typhi's greater carriage rates help explain its
persistence after water purification.

On the basis of these considerations, S. typhi was ranked as less waterborne than
classical V. cholerae; however, because of the uncertainty associated with this
ranking, S. typhi and classical V. cholerae were assigned tied ranks in the more
conservative cross-specific test.

Shigella spp. Like classical V. cholerae and S. typhi, the frequency of
S. dysenteriae declined strongly in industrialized countries as drinking water was
purified. In countries with persistently contaminated water (e.g. Guatemala; see
[165]) S. dysenteriae 1 has continued to cause disease generally at low-to-moderate
prevalences [166-169]. When it was introduced into the United States during a
massive Central American epidemic (Table 3), the secondary spread (i.e. in the
absence of waterborne transmission) was insufficient to maintain the pathogen;
the number of new infections from a given infection was approximately 0-4
(calculated from [170]).

Because of the paucity of information about modes of transmission for S.
dysenteriae 1, some tentative identification of modes of transmission were included
in the analysis (signified by a question mark in column 3 of Table 9). Four of the
five outbreaks with reliable identification of transmission mode were waterborne,
placing S. dysenteriae 1 between classical V. cholerae and S. typhi. On the basis of
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all 12 outbreaks listed in Table 9, S. dysenteriae 1 would be less waterborne than
S. typhi. In the conservative comparison all three species were therefore assigned
tied ranks.

The greater waterborne transmission of 8. dysenteriae 1 relative to S. jlexneri
(Tables 9 and 10) is supported by a more restricted study in Bangladesh showing
that contaminated water was a risk factor for S. dysenteriae 1 but not S. flexneri
[208].

When outbreaks are combined over all years, the percentage involving water
was significantly greater for 8. flexneri than for S. sonnei (P = 0-02, G = 5-4). One
might argue, however, that the lower percentage of waterborne outbreaks
associated with S. sonnei is unreliable because of the disproportionate number of
S. sonnei outbreaks during the last two decades, when water supplies were
relatively pure. This hypothesis can be evaluated by taking time periods into
account. If a pathogen is often waterborne but can be maintained without
waterborne transmission, the percentage of outbreaks involving water should
decline as water supplies are improved (e.g. see the preceding analysis of 8. typhi).
If, however, a pathogen is generally not transmitted by water, the proportion of
waterborne outbreaks might not decrease perceptibly as the purity of drinking
water increases (e.g. if a pathogen could be transmitted only by direct contact
purification of water should not directly affect its proportion of waterborne
outbreaks).

S. sonnei survives longer than 8. flexneri on surfaces exposed to air [75, 209, 84,
84] but apparently not in water [210, 205]. The two species have similar durations
of excretion per infection [211, 212, 81], but the frequency of asymptomatic
infections, which are associated with low excretion rates of shigella [213, 214], are
higher for 8. sonnei than for S. flexneri (Table 4). On the basis of these
characteristics and the differences between the species in mortality (Table 3), the
degree of waterborne transmission should have declined more strongly through
this century for 8. flexneri than for S. sonnei. The decline in waterborne S. flexneri
was statistically significant (P < 0-05, x2 = 4-51, Table 10; grouping as described
above for S. typhi). Analogous analyses of S. sonnei outbreaks (Table 11) yielded
nonsignificant trends in the opposite direction, whether based on the same
temporal divisions used for S. flexneri (P < 0-3; x2 — 1'65); or the same rules for
temporal division (P < 0-3; x2 = 0-62).

To compare directly waterborne transmission of these two species, the combined
data from both species were divided according to the median outbreak. The degree
of waterborne transmission prior to the median is significantly greater for S.
flexneri than for S. sonnei (54 versus 24%, P < 0-02, G = 5-62), but no significant
difference between the species existed after the median outbreak (21 versus 27 %,
P > 0 5 ; 0 = 0-26).

The data in Tables 10 and 11 are insufficient for a highly temporally and
geographically restricted comparison early in this century when waterborne
outbreaks were relatively common, but moderately restricted comparisons are
consistent with the overall trend; for example during the second quarter of this
century, 43% of the S. flexneri outbreaks in western Europe and North America
involved waterborne transmission compared with 13% of the S. sonnei outbreaks
(G = 3*71, 1-tailed P < 0-05). On the basis of the preceding analyses, S. sonnei was
considered less waterborne than S. flexneri.
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The ranking of S. dysenteriae 1 as the most waterborne shigella and S. sonnei as

the least is consistent with a recent study of the effects of handwashing on
transmission of shigellosis. Infection through direct contact, contact with fomites,
and contamination by food handlers and water handlers are the routes of
transmission that should be reduced by handwashing. Infection through
contamination of drinking water outside of the house should not be reduced to the
same degree by handwashing if it is reduced at all. Among family contacts of index
cases in Dhaka, Bangladesh, handwashing reduced S. dysenteriae 1 by 33%
relative to controls, 8. flexneri by 67%, and other Shigella by 87% [239]. About
half of the ' other Shigella' in Dhaka at about this time were S. sonnei; the other
half were S. boydii and the relatively benign serotypes of S. dysenteriae [240, 77].

Campylobacter jejuni. Outbreaks of C. jejuni are classified according to
waterborne transmission in Table 12. To permit comparison with S. sonnei, the
proportion of outbreaks of S. sonnei attributable to water was calculated for all
outbreaks of this species during the 1970s and 1980s (from Table 11). As this
percentage (24-3%) is above the analogous figure for C. jejuni (10-7%), C. jejuni
was ranked below S. sonnei.

Enterotoxigenic Escherichia coli. Waterborne transmission was implicated in
20% of the 15 outbreaks due to enterotoxigenic E. coli (Table 13). This percentage
is less than both the overall and the more recent percentages for S. sonnei (see
above) and greater than the percentage for C. jejuni. Enterotoxigenic E. coli was,
therefore, ranked between these two pathogens.

Non-typhoid salmonella. Of the 258 outbreaks of non-typhoid salmonella for
which the CDC [175] could ascribe modes of transmission, only 1-6% were
ascribable to water. The corresponding figure from the United States for 8. sonnei
during this time period is 29'5 % (based on the 44 outbreaks in Table 11 referenced
by CDC, Reller et al., Rosenberg et al. or Weissman et at). This percentage for non-
typhoid salmonella is also less than the percentage for C. jejuni in the United
States (15-4% of 26 outbreaks) and enterotoxigenic E. coli (25% of 4 outbreaks).
Non-typhoid salmonella was therefore ranked as the least waterborne pathogen.

THE OVERALL TREND AND ALTERNATIVE HYPOTHESES
The overall trend. The positive correlation between mortality and waterborne

transmission is statistically significant (P < 0-01, rs = 0-98 Spearman rank test;
Table 14). Exclusion of the outbreaks whose modes of transmission were
challenged (see Vibrio cholerae section of ' Ranking of tendencies for waterborne
transmission') reversed the ranking of el tor V. cholerae and S. flexneri, but still
yielded a significant correlation (P < 0-01, rs = 0-97).

One might argue that campylobacter and salmonella should not be included in
this test because they are prevalent in animal reservoirs. A statistically significant
correlation between mortality and waterborne transmission still exists, however,
even if these two pathogens are excluded (P < 0-01, rs= 1-0 using ranks of
Table 14).

One could argue that the quantifications of waterborne transmission in Table 14
were gross overestimates of the actual levels of waterborne transmission due, for
example, to preferential reporting of waterborne outbreaks in the literature. If so,
waterborne transmission among the most waterborne pathogens in Table 14 might
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Table 12. Modes of transmission for Campylobacter jejuni (see Appendix for
abbreviations)

Location Year Mode Reference

California
England (A)
Sweden
Bennington, Vermont
Colorado
Somerset, England
Cumbria, England
Bradford, England
Belgium
Lincoln, England
Long Sutton, England
Maidstone, England
Yorkshire, England
Aberdeen, Scotland
Kincardinshire and North Angus, Scotland
Luton, England
Breda, Netherlands
Netherlands
Tokyo, Japan
Goteborg, Sweden
Freiburg, Germany
Connecticut
Wyoming
Connecticut
California
Netherlands
Essex, England
Kent, England
Blackburn, England
Cumbria, England
England
Alberta
Oregon
Arizona
Georgia
Kansas
New York
DeDrakenver/Fort Collins, Colorado
Maine
Minnesota
England
England
Colorado
Maine
Maryland
Michigan
Minnesota
Vermont
Wisconsin
Rotterdam, Netherlands
Switzerland
Vermont
England
Switzerland

1976
1976
1978
1978
1978
1978
1978
1978
1979
1979
1979
1979
1979
1979
1979
1979
1979
1979
1979
1979-80
1979-81
1980
1980
1980
1980
1980
1980
1980
1980
1980
1980
1980
1980-1
1981
1981
1981
1981
1981
1981
1981
1981
1982
1982
1982
1982
1982
1982
1982
1982
1982
NG
1983
1983
1985

m
nw
w
w
m ; d ; f
m
m
m
f
m
m
m
m
m
m
m
f
f
f
f
f
f
w
w
f
f
m
m
m
m
f
m
m
m; m
m
m
f
w
m
m
w
m
f; f
m
m
m
f
m
m
f, d
m
m
m
c

[241]
[242]
[243]
[95]
[244]
[245]
[246]
[246]
[247]
[245]
[245]
[245]
[245]
[245]
[248]
[249]
[250]
[251]
[252]
[253]
[254]
[255, 256]
[257]
[94]*
[94]*
[94]*
[245]
[245]
[245]
[245]
[258]
[259]
[256]
[256]
[256, 260]
[261, 262]
[256]
[263]
[256]
[264]
[265]
[266]
[267, 268]
[256]
[256]
[256]
[256]
[256]
[269]
[270]
[271]
[272]
[273]
[274]

* Cited by Blaser & Reller, 1981 [94],
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Table 13. Modes of transmission for enterotoxigenic Escherichia coli (see
Appendix for abbreviations)

Location Year Mode Reference

Arizona
Mexico
Mexico
Virginia/Maryland (A)
Texas
Japan
Oregon
Mexico
Mexico
Wisconsin
Texas
England
France/U.S.

1972-3
1973
1974
1974
1974-5
1974-5
1975
1975
1977
1980
1981
1983
1983

c
f
f
c
f
w; w; f
w
f
f
f
f
f
m

[276]
[277]
[278]
[279]
[280]
[281]
[282]
[283]
[284]
[285]
[286]
[287]
[288]

Table 14. Ranking of mortality and tendencies for waterborne transmission across
species

Mortality Waterborne outbreaks

Pathogen

V. cholerae, classical biotype
Shigella dysenteriae type 1
Salmonella typhi
V. cholerae, el tor biotype
Shigella ftexneri
Shigella sonnei
Enterotoxigenic E. coli
Campylobacter jejuni
Non-typhoid salmonella

15.7
7-5
5-8
1-44
1-32
0-65

< 01
< 01
< 01

rank

1
2
3
4
5
6
8*
8*
8*

83-3
80-0
74-0
50-0
48-3
27-8
200
10-7
1-56

rank

1
2
3
4
5
6
7
8
9

* See text for discussion of ranking.

be too rare to favour the evolution of increased virulence. The disappearance of
classical V. cholerae immediately following the first major improvements in water
purification (see ' Rankings of tendencies for waterborne transmission', subsection
Salmonella typhi) and the dramatic decline the prevalence of S. typhi and S.
dysenteriae during decades of water purification [6], however, support the
importance of waterborne transmission as indicated in Table 14.

The correlation between mortality and waterborne transmission does not prove
that the two are linked evolutionarily. One could hypothesize that other variables
correlated with both waterborne transmission and mortality cause the correlation
shown in Table 14.

Temporal correlates. Time is one possible correlate of waterborne transmission
and mortality. The more virulent pathogens would tend to be noticed earlier when
water supplies were generally more contaminated. Mortality at this time might
also be inflated by variables such as poor nutrition. As noted in the preceding
sections, temporally and geographically restricted comparisons confirm virtually
every comparison. In the conservative test referred to throughout this paper, tied
rankings were given to pathogens whose virulence or mortality could not be
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distinguished in temporally and geographically controlled comparisons. The
resulting correlation was still statistically significant (P < O01, rs = 097).

Fly-borne transmission. Another possible correlate of waterborne transmission
and mortality is the degree of transmission by flies that contaminate objects and
food. One could argue that fly-borne transmission favours virulent genotypes,
using an argument analogous to that used for biting, terrestrial arthropods (see
Introduction).

Flies have long been suggested as important transmitters of gastrointestinal
pathogens, often on the basis of associations between fly abundance and disease
prevalence (e.g. [289-292]). Such evidence is weak because environmental
conditions favouring growth of fly populations may correspond to those favouring
transmission by other routes. Flies did seem to contribution to transmission in two
outbreaks of shigellosis, when S. sonnei and especially S.flexneri were the common
Shigella species [293-295].

Flies harbour all of the pathogen species in Table 14 [15, 289, 290, 296-298],
except possibly C. jejuni, which has been recognized only recently as a common
pathogen of humans [242]. In Thailand, enterotoxigenic E. coli, the relatively
benign non-01 V. cholerae, and Shigella sp. were isolated from flies [299], which
were tested for all genera in Table 14 except Campylobacter. In Bangladesh, E. coli
was isolated from most body washes and excreta of flies; S. flexneri and V. cholerae
(almost certainly not the classical biotype) were isolated rarely from body washes
and never from fly excreta. None of the other pathogens in Table 14 were isolated.

In general, fly-borne transmission seems strongly dependent on infectivity with
low doses (e.g. as in Shigella species) and the ability of organisms to grow on food
(e.g. as in Salmonella typhimurium, [300]). The data do not support the idea that
the relatively benign gastrointestinal bacteria (e.g. E. coli, Shigella sonnei, and
non-typhoid salmonella are less fly-borne than the same virulent bacteria (see also
[300]).

Aqueous inocula. One might hypothesize that the relationship between mortality
and waterborne transmission results from the aqueous medium (e.g. diluting
stomach acidity) or the large dosages ingested in water. This alternative can be
evaluated by comparing mortality of waterborne outbreaks with non-waterborne
outbreaks of the same pathogen.

Snow [16] provided detailed case: fatality data on four of the cholera outbreaks
in Table 6. The outbreaks involving transmission by contact were not associated
with a lower mortality than the waterborne outbreaks: deaths occurred in 5 of 11
cases and 8 of 11 cases in the two non-waterborne outbreaks (in Moor Monkton
and Pocklington/York respectively) as compared with 38 of 80 cases and 25 of 45
cases (in Rotherhithe and Manchester respectively).

The waterborne outbreaks of S. typhi had a slightly but not significantly greater
mortality than the non-waterborne outbreaks: 5-7 + 2-4 (S.D.) VS. 4-4+1-2 (P P
0-05. Mann-Whitney U test; data from Tables 2 and 8); however, even if the non-
waterborne value were used in Table 14, the ranking would remain unchanged.

Only two outbreaks of S. dysenteriae 1 with mortality data were ascribed a mode
of transmission : the waterborne outbreak [51] was associated with a slightly lower
mortality than the outbreak in which water was not implicated [55]. The
mortality associated with the waterborne outbreak of S.flexneri (in Ogmore Vale,
Smethwick and Yallaho) was lower than that of the outbreak in which water was
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not implicated (in Newcastle/Durham; see Table 3). None of the S. sonnei
outbreaks in Table 3 were documented as waterborne; those for which a mode was
ascribed were associated with an average mortality of 0-36 + 079% (S.D.), which
is below the corresponding figure for non-waterborne outbreaks as well as for all
outbreaks of S. flexneri (see above).

Comparisons of mortality in waterborne and non-waterborne outbreaks are not
useful for the remaining pathogens because their mortality rates were essentially
zero; either untreated mortality was zero in both waterborne and non-waterborne
outbreaks (e.g. C. jejuni, enterotoxigenic E. coli) or the outbreaks involved
effective treatment (e.g. el tor V. cholerae).

The evidence therefore does not support the argument that the higher mortality
associated with waterborne disease results from ingesting pathogens in an aqueous
medium.

Desiccation resistance. One could hypothesize that variation in desiccation
resistance caused the correlation in Table 14 by diverting pathogen resources from
reproduction. A negative association between waterborne transmission and
desiccation resistance does exist among Shigella sp. [6] and between el tor and
classical V. cholerae [26, 301, 302]. These associations, however, are also consistent
with the cultural vectors hypothesis, because contact transmission, desiccation
resistance, and benignness should favour each other evolutionarily.

The desiccation resistance hypothesis is weakened by current knowledge about
virulence genes and growth of bacterial cultures. Virulence depends directly on the
presence of genes for adhesiveness, toxin production, and invasiveness and other
genes which regulate or complement these characteristics [105, 303, 304—309].
When such genes are transferred from Shigella sp. to Escherichia coli, the latter
develops the former's virulence characteristics [303]. Similarly, transfer experi-
ments show that one of V. cholerae'& plasmids increases fluid accumulation,
although it did not contain the gene for cholera toxin, and did not increase
intestinal colonization [310]; the virulence enhancement, therefore, did not result
from a diversion of resources from desiccation resistance to colonization ability.

When el tor and classical V. cholerae are grown in culture the less virulent el tor
predominates [311, 312], even in aqueous media [312] and in vivo when the
hypothesized competitive benefits of toxin production [6] were eliminated through
intestinal ligation [311]. These greater growth rates of the more benign pathogens
are contrary to the desiccation hypothesis and consistent with the cultural vectors
hypothesis given a biochemical cost of virulence, which occurs among V. cholerae:
the classical biotype has nontandem chromosomal duplication of the cholera toxin
operon and produces greater concentrations of cholera toxin than the el tor
biotype, which usually has only a single copy [312, 313].

Data from Shigella spp. provide further support of the cost of virulence genes.
When S.flexneri are grown in cell free culture, mutants lacking functional genes for
cell invasiveness outcompete invasive genotypes [314]; however, when grown in
cell culture Shigella spp. containing virulence plasmids both infected cells at
greater rates and had greater haemolytic activity than strains without virulence
plasmids [307]. The most lethal serotype, S. dysenteriae 1, more negatively
affected host protein synthesis and intracellular multiplication than did the less
virulent S. flexneri and S. sonnei [315]. This inhibition presumably results from the
much greater production of cytotoxin by S. dysenteriae 1 [315].
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These considerations indicate that virulence among gastrointestinal bacteria

has specific genetic bases and is not simply a consequence of variation in
desiccation resistance.

Taxonomic relationships. The taxonomic division of the pathogens also needs to
be considered. If taxonomically similar species were clustered with regards to
mortality and degrees of waterborne transmission then one might argue that a
higher taxonomic division was a more appropriate unit of grouping. The
taxonomically related pathogens, however, do not appear to be clustered any
more than would be expected by a random grouping: classical and el tor V.
cholerae differ substantially from each other, as do S. typhi and non-typhoid
salmonella. The Shigella species are relatively evenly distributed according to
mortality rates. 8. flexneri and 8. sonnei are similar in terms of both mortality and
waterborne transmission, but among the entire group of taxonomically similar
pathogens one such adjacent ranking of taxonomically similar pathogens is
probable if the rankings are independent of taxonomic relatedness. Shigella sp.
and Escherichia coli are so similar taxonomically that polynucleotide hybridization
fails to distinguish them [316], yet the four species in these genera span nearly the
entire range of mortality. The tribe to which these two genera and Salmonella sp.
belong show a similarly broad distribution in mortality and waterborne
transmission.

RELEVANCE OF THE CORRELATION

The preceding analyses suggest that virulence of gastrointestinal bacteria is
evolutionarily linked to waterborne transmission. This result draws attention to
the need for controlled field studies to determine whether purification of drinking
water decreases frequencies of virulent species of pathogens and virulence genes
within species of pathogens.

Recent evaluations of intervention studies have concluded that it is less cost
effective to combat diarrhoeal diseases through water purification than through
increases in water quantity or improving excreta disposal [317-319]. The results
of this study emphasize the need to distinguish between, rather than lump
together, the various diarrhoeal pathogens when making conclusions. Where
severe pathogens such as classical V. cholerae, Salmonella typhi, and Shigella
dysenteriae predominate, purification of water should reduce morbidity and
mortality more strongly than where more benign pathogens such as el tor V.
cholerae, Shigella sonnei, and enterotoxigenic E. coli predominate. In accordance
with the arguments presented in this paper, studies implicating greater
effectiveness of water quantity or improved excreta over water purification
typically occur in areas where the latter group of pathogens predominates. The
correlation between increased benignity and increased effectiveness of methods
other than water purification is well illustrated by Khan and Shahidullah's [239]
study of shigella (see the Shigella spp. subsection under 'Ranking of tendencies for
waterborne transmission').

Resolution of these relationships should eventually improve allocations of
economic resources for control of disease. As suggested above, disadvantages of
contaminated water generally have been assessed in terms of prevalences of
particular pathogen species or short-term effects on morbidity and mortality (e.g.
[317, 318]). The results of this paper suggest an additional long-term cost: the
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average virulence per infection should increase over evolutionary time scales
because pathogen genotypes of greater virulence will be favoured over more
benign genotypes. Once pathogens have evolved increased virulence the costs of
this virulence will be suffered not just until the contamination is remedied, but
rather throughout a period determined by (i) the relative prevalences of the
different genotypes and (ii) the differences between the fitness of the genotypes in
the corrected environment.

In this regard, the failure to consider evolutionary effects may result in
underestimates of the long-term net benefits of pure water and, as a consequence,
underestimates of the appropriate level of economic investment in water
purification. The recent advocacy of increasing water quantity rather than water
quality [317, 318] might have grave long-term effects: provisioning of con-
taminated water might favour the most virulent genotypes, reversing the general
tendency observed during decades of water purification, for replacement of the
most deadly pathogens (classical V. cholerae, Salmonella typhi, and Shigella
dysenteriae 1) by less virulent pathogens [6]. Determinations of appropriate
allocations of economic resources [4, 317, 318, 320], therefore, need to be
temporally broadened to consider evolutionary effects of investments in
alternatives such as treatment, vaccination, excreta disposal, increasing quantities
of water and provisioning of pure water.
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Appendix. Abbreviations used in tables

Symbol Meaning

w ingestion of contaminated water

f ingestion of contaminated food not directly or indirectly waterborne

nw vehicle not identified or multiple vehicles other than water

wsf seafood contaminated by water

m milk-borne or cheese-borne transmission with no evidence of contamination of
milk by water

mh milk-borne or cheese-borne transmission with contamination of milk by milk
handlers
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wm milk-borne or cheese-borne transmission with contamination of milk by water

wf other foods contaminated by water

fh foods contaminated by food handlers who were infected or in contact with

infected materials

c spread by direct person-to-person contact or fomites

fl contamination by flies

d direct contact with dogs

NG information not given

(M) outbreak occurred in an institution for mentally subnormal, aged or inform

(A) geographic location ascribed based on authors' addresses

; separates modes associated with different outbreaks

, separates different modes identified within a single outbreak
Numbers in front of abbreviations indicate the number of outbreaks attributable to that
mode of transmission. When no number is given, the symbol represents only one outbreak.
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