Contents

List of contributors
page xi

Introduction
xiii

1 Context analysis

1.1 Introduction
1

1.2 Historical perspective of RFID
1

1.3 RFID towards a networked society
4

1.4 Standardization
6

1.5 Circuit challenges for RFID systems
7

1.6 Materials and technology
10

1.7 Computer aided design (CAD) and optimization
11

1.8 Conclusions
12

Acknowledgment
12

References
12

2 RFID background

2.1 RFID system architecture
17

 RFID system general frame
17

 RFID regulation
19

 RFID technology
23

2.2 Fundamentals and advances in RFID antenna design
27

2.3 Smart RFID tagged objects: from conventional RFID to networked RFID systems and green solutions
30

References
35

3 Energy scavenging and storage for RFID systems

3.1 Introduction
38

3.2 Modeling vibrational energy harvesters
41

 Electromagnetic generators
43

 Piezoelectric generators
44

 State of the art and benchmarks in vibrational energy harvesters
46

3.3 Thermoelectric generators
48
Contents

3.4 Scavenging architectures for vibrational and thermoelectric energy harvesters 50
3.5 Scavenging architecture for RFID rectenna and voltage multiplier 52
 General purpose approach to the design of the rectenna 55
 Selection of rectenna components 57
 Antenna topology 57
 Rectifier topology 61
 Antenna(s)/rectifier(s) architecture 63
 Rectenna design results 64
3.6 Design of power conversion circuits 66
References 70

4 Technologies for RFID sensors and sensor tags 76
4.1 RFID sensor concept and constraints 76
 RFID sensor architecture 76
 Active and passive RFID tags 76
 RFID sensor technology for wireless sensor networks 77
 Power constraints 78
 Current technological challenges 80
4.2 SAW-based RFID sensors 82
 Basic principles of SAW RFID sensors 82
 Design of SAW RFID sensors 83
 Fields of application 85
4.3 CMOS-based RFID sensors 85
 System architecture of a CMOS RFID system 85
 Multi-standard analog frontend 87
 Ultra-low-power rectifier 87
 Tag-to-reader communication 92
 Reader-to-tag communication 92
 Clock generation and clock recovery 93
 Sensor interface 94
 Wireless sensing 94
 Timing constraint 95
 Time-domain comparator 97
 Digital-to-analog converter 98
 Temperature sensor 102
 Distance measurement 103
 Local positioning 103
 Modulated back-scattering with passive transponders 106
 Measurement setup for distance measurement 106
 User defined EPC custom command for distance measurement 106
 CMOS RFID system tests 109
4.4 Comparison of SAW and CMOS RFID sensors 111
References 111
5 Unconventional RFID systems

5.1 Introduction 116

Efficient and energy-aware approaches 119
RFID for location 120
RFID for household applications 121

5.2 Efficient and energy-aware approaches 121

Extending the coverage range of RFID systems 122
The radio link using multi-sine signals 123
Multi-sine power-link 124
Multi-sine data downlink 125
Multi-sine data uplink 127
Laboratory test beds and measurements 129
Measurement setup 1 129
Measurement setup 2 130
Measurement setup 3 132
Results discussion 134
Protocols for reduction of energy consumption 134
Proposed architecture and algorithm 135
Signal strength measurement 135
Preliminary measurements 137

5.3 UWB location based on passive sensors 139

5.4 RFID for household applications 143

A battery-less remote control system based on a multi-RFID scheme 143
Proposed system 144
The novel N-port microstrip network 146

References 150

6 Integrating tiny RFID- and NFC-based sensors with the Internet

6.1 Introduction 152

6.2 RFID-based networked prototypes 153

Semi-passive 153
Solar-powered UHF tag for localization 153
WISP-based 156
Concealable and flexible antennas for the WISP module 156
Multipacket reception for the RFID EPC Gen2 protocol 157
Chemical gas sensing 158
Passive 160
Paper-based ultra-high frequency sensor 160
Metallic structural strain sensor 161

6.3 NFC-based networked prototype 163

6.4 Using WSNs to interface with the internet 165

Crossbow WSN for location tracking 166
ZigBee 168
SWIM – smart wireless integrated module 168
Near-field certificate of authenticity reader 169
Contents

IPV6-enabling 6lowPAN
Extensions to mobile and pico-datacenter computing

6.5 Conclusion
References

7 Materials for substrates

7.1 Introduction
7.2 Substrate characterization
 - Ring resonator method
 - T resonator method
 - Transmission line (TL) method for substrate loss
7.3 Fabrication method for various substrates
 - Subtractive processes
 - Milling
 - Lithography
 - Additive processes
 - Inkjet printing
 - Screen printing
 - Mixed processes
Appendix 7A: The effective width and effective permittivity
References

8 Organic conductors and semiconductors: recent achievements and modeling

8.1 Introduction
8.2 Active devices for printed RFIDs
 - Modeling tools for organic devices
 - High frequency rectifiers based on organic Schottky diodes
 - Basic devices and circuits based on organic TFT
8.3 Passive RFID components
 - Graphene: the wonder material
 - Basic properties of graphene
 - Analogy of ballistic transport and electromagnetic waves: a rich concept
 - Fabrication of graphene
 - Modeling of the electromagnetics-quantum transport in graphene nanodevices
 - Frequency domain: the combined Dirac–Poisson problem
 - Time domain: the combined Dirac–Maxwell problem in the ballistic regime
 - Graphene antennas for RFID and wireless applications
 - Graphene in the microwave and mm-wave range
 - Antenna design and modeling
Contents

| Acknowledgment | 223 |
| References | 223 |

9 RFID enabling new solutions

9.1 Introduction 228

9.2 Time-domain reflectometry (TDR)-based chipless tags 230

9.3 Spectral signature-based chipless tags 231

9.4 Amplitude/phase backscatter modulation-based chipless tags 232

9.5 Other solutions? 232

9.6 Novel RFID sensor 233

9.7 Basic theory

- Tag information encoding 236
- Received reader voltages 237
- Conversion products 239
- Information recovery 239

9.8 Applications 240

9.9 Conclusions 243

References 244

10 Energy-efficient off-body communication using textile antennas

10.1 Introduction 248

10.2 Basics of textile antenna design 248

- Textile materials/characterization 248
- Literature overview of textile antennas 249
- Design examples 249

- Dual-polarized textile patch antenna 249
- Textile antenna array 251

10.3 Off-body links relying on space–time coding and textile antennas 251

- Introduction 251
- Measurement setup 252
- Measurement results 253

- CDF and outage probability 254
- Bit error characteristics 255
- Real-time error performance 256

10.4 Off-body beam forming versus space–time coding 257

- Experimental setup 257
- Analysis of the received signals 260

- Beam forming power gain 260
- Time-dependent signal behavior 260

10.5 Energy-efficient channel tracking of off-body communication links 262

10.6 Application domains 264

10.7 Conclusions 265