Contents

[List of contributors] page xi

Introduction xiii

1 *Context analysis* 1
1.1 Introduction 1
1.2 Historical perspective of RFID 1
1.3 RFID towards a networked society 4
1.4 Standardization 6
1.5 Circuit challenges for RFID systems 7
1.6 Materials and technology 10
1.7 Computer aided design (CAD) and optimization 11
1.8 Conclusions 12
Acknowledgment 12
References 12

2 *RFID background* 17
2.1 RFID system architecture 17
 RFID system general frame 17
 RFID regulation 19
 RFID technology 23
2.2 Fundamentals and advances in RFID antenna design 27
2.3 Smart RFID tagged objects: from conventional RFID to networked RFID systems and green solutions 30
References 35

3 *Energy scavenging and storage for RFID systems* 38
3.1 Introduction 38
3.2 Modeling vibrational energy harvesters 41
 Electromagnetic generators 43
 Piezoelectric generators 44
 State of the art and benchmarks in vibrational energy harvesters 46
3.3 Thermoelectric generators 48
3.4 Scavenging architectures for vibrational and thermoelectric energy harvesters 50

3.5 Scavenging architecture for RFID rectenna and voltage multiplier 52
 General purpose approach to the design of the rectenna 55
 Selection of rectenna components 57
 Antenna topology 57
 Rectifier topology 61
 Antenna(s)/rectifier(s) architecture 63
 Rectenna design results 64

3.6 Design of power conversion circuits 66

References 70

4 Technologies for RFID sensors and sensor tags 76

4.1 RFID sensor concept and constraints 76
 RFID sensor architecture 76
 Active and passive RFID tags 76
 RFID sensor technology for wireless sensor networks 77
 Power constraints 78
 Current technological challenges 80

4.2 SAW-based RFID sensors 82
 Basic principles of SAW RFID sensors 82
 Design of SAW RFID sensors 83
 Fields of application 85

4.3 CMOS-based RFID sensors 85
 System architecture of a CMOS RFID system 85
 Multi-standard analog frontend 87
 Ultra-low-power rectifier 87
 Tag-to-reader communication 92
 Reader-to-tag communication 92
 Clock generation and clock recovery 93
 Sensor interface 94
 Wireless sensing 94
 Timing constraint 95
 Time-domain comparator 97
 Digital-to-analog converter 98
 Temperature sensor 102
 Distance measurement 103
 Local positioning 103
 Modulated back-scattering with passive transponders 106
 Measurement setup for distance measurement 106
 User defined EPC custom command for distance measurement 106
 CMOS RFID system tests 109

4.4 Comparison of SAW and CMOS RFID sensors 111

References 111
5 Unconventional RFID systems

5.1 Introduction
- Efficient and energy-aware approaches
- RFID for location
- RFID for household applications

5.2 Efficient and energy-aware approaches
- Extending the coverage range of RFID systems
 - The radio link using multi-sine signals
 - Multi-sine power-link
 - Multi-sine data downlink
 - Multi-sine data uplink
- Laboratory test beds and measurements
 - Measurement setup 1
 - Measurement setup 2
 - Measurement setup 3
- Results discussion
 - Protocols for reduction of energy consumption
 - Proposed architecture and algorithm
 - Signal strength measurement
 - Preliminary measurements

5.3 UWB location based on passive sensors

5.4 RFID for household applications
- A battery-less remote control system based on a multi-RFID scheme
 - Proposed system
 - The novel N-port microstrip network

6 Integrating tiny RFID- and NFC-based sensors with the Internet

6.1 Introduction

6.2 RFID-based networked prototypes
- Semi-passive
 - Solar-powered UHF tag for localization
 - WISP-based
 - Concealable and flexible antennas for the WISP module
 - Multipacket reception for the RFID EPC Gen2 protocol
 - Chemical gas sensing
- Passive
 - Paper-based ultra-high frequency sensor
 - Metallic structural strain sensor

6.3 NFC-based networked prototype

6.4 Using WSNs to interface with the internet
- Crossbow WSN for location tracking
- ZigBee
 - SWIM – smart wireless integrated module
 - Near-field certificate of authenticity reader
IPV6-enabling 6lowPAN
Extensions to mobile and pico-datacenter computing

6.5 Conclusion
References

7 Materials for substrates

7.1 Introduction
7.2 Substrate characterization
 Ring resonator method
 T resonator method
 Transmission line (TL) method for substrate loss
7.3 Fabrication method for various substrates
 Subtractive processes
 Milling
 Lithography
 Additive processes
 Inkjet printing
 Screen printing
 Mixed processes
Appendix 7A: The effective width and effective permittivity
References

8 Organic conductors and semiconductors: recent achievements and modeling

8.1 Introduction
8.2 Active devices for printed RFIDs
 Modeling tools for organic devices
 High frequency rectifiers based on organic Schottky diodes
 Basic devices and circuits based on organic TFT
8.3 Passive RFID components
 Graphene: the wonder material
 Basic properties of graphene
 Analogy of ballistic transport and electromagnetic waves:
 a rich concept
 Fabrication of graphene
 Modeling of the electromagnetics-quantum transport
 in graphene nanodevices
 Frequency domain: the combined Dirac–Poisson problem
 Time domain: the combined Dirac–Maxwell problem in the
 ballistic regime
 Graphene antennas for RFID and wireless applications
 Graphene in the microwave and mm-wave range
 Antenna design and modeling
Acknowledgment 223
References 223

9 RFID enabling new solutions 228
 9.1 Introduction 228
 9.2 Time-domain reflectometry (TDR)-based chipless tags 230
 9.3 Spectral signature-based chipless tags 231
 9.4 Amplitude/phase backscatter modulation-based chipless tags 232
 9.5 Other solutions? 232
 9.6 Novel RFID sensor 233
 9.7 Basic theory
 Tag information encoding 236
 Received reader voltages 237
 Conversion products 239
 Information recovery 239
 9.8 Applications 240
 9.9 Conclusions 243
References 244

10 Energy-efficient off-body communication using textile antennas 248
 10.1 Introduction 248
 10.2 Basics of textile antenna design 248
 Textile materials/characterization 248
 Literature overview of textile antennas 249
 Design examples 249
 Dual-polarized textile patch antenna 249
 Textile antenna array 251
 10.3 Off-body links relying on space–time coding and textile antennas 251
 Introduction 251
 Measurement setup 252
 Measurement results 253
 CDF and outage probability 254
 Bit error characteristics 255
 Real-time error performance 256
 10.4 Off-body beam forming versus space–time coding 257
 Experimental setup 257
 Analysis of the received signals 260
 Beam forming power gain 260
 Time-dependent signal behavior 260
 10.5 Energy-efficient channel tracking of off-body communication links 262
 10.6 Application domains 264
 10.7 Conclusions 265
10.8 Future perspectives 265
 Dynamic beam forming 265
 Dominant eigenmode transmission 266

References 266

Index 268