# Contents

List of contributors  

Introduction  

## 1 Context analysis  
1.1 Introduction  
1.2 Historical perspective of RFID  
1.3 RFID towards a networked society  
1.4 Standardization  
1.5 Circuit challenges for RFID systems  
1.6 Materials and technology  
1.7 Computer aided design (CAD) and optimization  
1.8 Conclusions  
Acknowledgment  
References  

## 2 RFID background  
2.1 RFID system architecture  
   RFID system general frame  
   RFID regulation  
   RFID technology  
2.2 Fundamentals and advances in RFID antenna design  
2.3 Smart RFID tagged objects: from conventional RFID to networked RFID systems and green solutions  
References  

## 3 Energy scavenging and storage for RFID systems  
3.1 Introduction  
3.2 Modeling vibrational energy harvesters  
   Electromagnetic generators  
   Piezoelectric generators  
   State of the art and benchmarks in vibrational energy harvesters  
3.3 Thermoelectric generators
3.4 Scavenging architectures for vibrational and thermoelectric energy harvesters 50
3.5 Scavenging architecture for RFID rectenna and voltage multiplier 52
   General purpose approach to the design of the rectenna 55
   Selection of rectenna components 57
   Antenna topology 57
   Rectifier topology 61
   Antenna(s)/rectifier(s) architecture 63
   Rectenna design results 64
3.6 Design of power conversion circuits 66
References 70

4 Technologies for RFID sensors and sensor tags 76
4.1 RFID sensor concept and constraints 76
   RFID sensor architecture 76
   Active and passive RFID tags 76
   RFID sensor technology for wireless sensor networks 77
   Power constraints 78
   Current technological challenges 80
4.2 SAW-based RFID sensors 82
   Basic principles of SAW RFID sensors 82
   Design of SAW RFID sensors 83
   Fields of application 85
4.3 CMOS-based RFID sensors 85
   System architecture of a CMOS RFID system 85
   Multi-standard analog frontend 87
   Ultra-low-power rectifier 87
   Tag-to-reader communication 92
   Reader-to-tag communication 92
   Clock generation and clock recovery 93
   Sensor interface 94
   Wireless sensing 94
   Timing constraint 95
   Time-domain comparator 97
   Digital-to-analog converter 98
   Temperature sensor 102
   Distance measurement 103
   Local positioning 103
   Modulated back-scattering with passive transponders 106
   Measurement setup for distance measurement 106
   User defined EPC custom command for distance measurement 106
   CMOS RFID system tests 109
4.4 Comparison of SAW and CMOS RFID sensors 111
References 111
5 Unconventional RFID systems 116

5.1 Introduction 116

Efficient and energy-aware approaches 119
RFID for location 120
RFID for household applications 121

5.2 Efficient and energy-aware approaches 121

Extending the coverage range of RFID systems 122
The radio link using multi-sine signals 123
Multi-sine power-link 124
Multi-sine data downlink 125
Multi-sine data uplink 127
Laboratory test beds and measurements 129
Measurement setup 1 129
Measurement setup 2 130
Measurement setup 3 132
Results discussion 134
Protocols for reduction of energy consumption 134
Proposed architecture and algorithm 135
Signal strength measurement 135
Preliminary measurements 137

5.3 UWB location based on passive sensors 139

5.4 RFID for household applications 143

A battery-less remote control system based on a multi-RFID scheme 143
Proposed system 144
The novel $N$-port microstrip network 146

References 150

6 Integrating tiny RFID- and NFC-based sensors with the Internet 152

6.1 Introduction 152

6.2 RFID-based networked prototypes 153

Semi-passive 153
Solar-powered UHF tag for localization 153
WISP-based 156
Concealable and flexible antennas for the WISP module 156
Multipacket reception for the RFID EPC Gen2 protocol 157
Chemical gas sensing 158
Passive 160
Paper-based ultra-high frequency sensor 160
Metallic structural strain sensor 161

6.3 NFC-based networked prototype 163

6.4 Using WSNs to interface with the internet 165
Crossbow WSN for location tracking 166
ZigBee 168
SWIM – smart wireless integrated module 168
Near-field certificate of authenticity reader 169
Contents

IPV6-enabling 6lowPAN 169
Extensions to mobile and pico-datacenter computing 172

6.5 Conclusion 172
References 173

7 Materials for substrates 176

7.1 Introduction 176
7.2 Substrate characterization 178
   Ring resonator method 178
   T resonator method 180
   Transmission line (TL) method for substrate loss 181
7.3 Fabrication method for various substrates 184
   Subtractive processes 184
      Milling 184
      Lithography 184
   Additive processes 185
      Inkjet printing 185
      Screen printing 188
   Mixed processes 189

Appendix 7A: The effective width and effective permittivity 191
References 193

8 Organic conductors and semiconductors: recent achievements and modeling 195

8.1 Introduction 195
8.2 Active devices for printed RFIDs 196
   Modeling tools for organic devices 196
   High frequency rectifiers based on organic Schottky diodes 197
   Basic devices and circuits based on organic TFT 200
8.3 Passive RFID components 203
   Graphene: the wonder material 203
      Basic properties of graphene 204
      Analogy of ballistic transport and electromagnetic waves: a rich concept 206
      Fabrication of graphene 207
   Modeling of the electromagnetics-quantum transport in graphene nanodevices 208
      Frequency domain: the combined Dirac–Poisson problem 209
      Time domain: the combined Dirac–Maxwell problem in the ballistic regime 213
   Graphene antennas for RFID and wireless applications 215
   Graphene in the microwave and mm-wave range 216
   Antenna design and modeling 219
Contents

Acknowledgment 223
References 223

9 RFID enabling new solutions 228
9.1 Introduction 228
9.2 Time-domain reflectometry (TDR)-based chipless tags 230
9.3 Spectral signature-based chipless tags 231
9.4 Amplitude/phase backscatter modulation-based chipless tags 232
9.5 Other solutions? 232
9.6 Novel RFID sensor 233
9.7 Basic theory 235
  Tag information encoding 236
  Received reader voltages 237
  Conversion products 239
  Information recovery 239
9.8 Applications 240
9.9 Conclusions 243
References 244

10 Energy-efficient off-body communication using textile antennas 248
10.1 Introduction 248
10.2 Basics of textile antenna design 248
  Textile materials/characterization 248
  Literature overview of textile antennas 249
  Design examples 249
    Dual-polarized textile patch antenna 249
    Textile antenna array 251
10.3 Off-body links relying on space–time coding and textile antennas 251
  Introduction 251
  Measurement setup 252
  Measurement results 253
    CDF and outage probability 254
    Bit error characteristics 255
    Real-time error performance 256
10.4 Off-body beam forming versus space–time coding 257
  Experimental setup 257
  Analysis of the received signals 260
    Beam forming power gain 260
    Time-dependent signal behavior 260
10.5 Energy-efficient channel tracking of off-body communication links 262
10.6 Application domains 264
10.7 Conclusions 265

Published online by Cambridge University Press
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.8 Future perspectives</td>
<td>265</td>
</tr>
<tr>
<td>Dynamic beam forming</td>
<td>265</td>
</tr>
<tr>
<td>Dominant eigenmode transmission</td>
<td>266</td>
</tr>
<tr>
<td>References</td>
<td>266</td>
</tr>
</tbody>
</table>

*Index* 268