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Abstract. Many astronomical systems require for their description in the frame of Einstein’s
theory of gravity not just one but several reference systems. In the first post-Newtonian ap-
proximation the Damour-Soffel-Xu (DSX) formalism presents a new and improved treatment of
celestial mechanics and astronomical reference systems for the gravitational N -body problem. In
the DSX-formalism the astronomical bodies are characterized by their Blanchet-Damour (BD)
mass- and spin-multipole moments. However, the time dependence of these moments requires
additional dynamical equations, usually local flow equations describing the internal motions
inside the bodies or additional assumptions about them. In this article the internal motion of
astronomical bodies will be adressed within the 1st post-Newtonian approximation to Einstein’s
theory of gravity. A concept of quasi-rigid bodies will be introduced; after that, astronomical
fluid and elastic bodies will be discussed.

Keywords. GRT, relativistic description of astronomical objects, post-Newtonian
approximation

1. Introduction
We are at the point where astronomical measurements will soon reach incredible accu-

racies; e.g., the astrometric satellite Gaia will measure angular distances with a precision
of about 10μas. At this level of accuracy not only the various astronomical reference
systems, but also the internal motion of astronomical bodies have to be described in the
framework of relativity, at least at the first post-Newtonian approximation. The prob-
lem of relativistic astronomical reference systems and the applications of the standard
IAU framework have been discussed by Soffel (2009) in detail. In this paper we discuss
the problem of internal motion of astronomical bodies. The discussion will be such that
several reference systems should be used to describe the motion of the whole system rela-
tivistically assuming e.g., that the astronomical body is member of an N -body system. A
(DSX) framework dealing with the celestial mechanics of N rotating bodies of arbitrary
shape and composition at the first post-Newtonian approximation to Einstein’s theory of
gravity has recently been introduced by Damour, Soffel & Xu (1991, 1992, 1993, 1994).
This framework employs a total of N + 1 different coordinate (reference) systems: one
global one that covers the entire model manifold to describe the motion of the whole
N -body system and one local system co-moving with each of the N bodies to describe
the local physics, especially the internal motion of the body under consideration. In
the DSX-framework the gravitational potentials (one scalar and one vector potential) of
some body in the outside region is described by a set of mass- and a set of spin-multipole
moments (Blanchet-Damour moments) in the corresponding local comoving system. If
(cT,X) denote the coordinates of some local A-system these BD-moments are defined
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by

MA
L (T )≡

∫
A

d3XX̂LΣ +
1

2(2l + 3)c2

d2

dT 2

[∫
A

d3XXLX2Σ
]

− 4(2l + 1)
(i + 1)(2l + 3)c2

d

dT

[∫
A

d3XXaLΣa

]
+ O(4) (l � 0),

SA
L (T )≡

∫
A

d3Xεab<cl X̂L−1>aΣb + O(2) (l � 1),

where L is a multi-index of l Cartesian indices: L = i1i2 · · · il ; both, the mass moments
ML and the spin moments SL are assumed to be symmetric and trace-free (STF); Σ and
Σa are the active gravitational mass and active mass current density which are defined
as Σ = c−2(T 00 + T bb) and Σa = c−1T 0a in the local coordinate system. Tαβ are the
contravariant components of the stress-energy tensor. The order symbol, O(n), in the
equation indicates that terms of order c−n have been neglected.

The two gravitational potentials, WA and Wa
A , appearing in the canonical form of the

local metric tensor (e.g., Damour, Soffel & Xu 1991) outside of body A can easily be
expressed in terms of the BD moments of A. For astronomical bodies of almost spherical
shape this expansion will converge rapidly.

In the DSX-framework the time dependence of the BD-moments has not been treated
in detail. It depends upon the internal dynamics of the astronomical body, which is the
main topic of this article.

For many astronomical bodies (e.g., stars) it is sufficient to assume the internal material
to be fluid. Corresponding Newtonian hydrodynamical and thermodynamical equations
can be found in many textbooks. Relativistic hydrodynamical and thermodynamical
equations have been discussed, e.g., by Chandrasekhar (1971), who, however, employs a
single coordinate system. Wu and Xu (2001) have discussed such equations in the problem
of multiple reference systems which might be relevant for close binary or multiple stellar
systems.

For other astronomical bodies, such as the Earth or neutron stars, the elastic compo-
nents cannot be described by a fluid picture. Here, the formalism of relativistic elastome-
chanics can be employed. Within the DSX-framework such a formalism has been worked
out by Xu, Wu & Soffel (2001) and Xu et al., (2003, 2005). This formalism is based on a
displacement-field as is the ell known Newtonian formalism of elastomechanics. For appli-
cations in the field of geodynamics post-Newtonian equations for the displacement field
have been derived that generalize the well known Jeffreys-Vicente (Jeffreys & Vicence
1957) equations from Newtonian physics.

Both, the fluid and elastic material of astronomical bodies will be treated below. In
Newtonian celestial mechanics, however, dynamical equations are often drastically sim-
plified by assuming the astronomical bodies to be rigid (only three internal degrees of
freedom). For the construction of a solar system ephemeris such an assumption is a good
starting point. E.g., for the problem of Earth rotation in the Newtonian framework the
well known SMART solution (Bretagnon et al., 1997), which might serve as excellent
basis for treating the real problem of geodynamics, is based on ’rigid bodies’. It is well
known that rigid bodies with incompressible material elements do not exist in relativity
since in reality the sound speed always has to be finite. Nevertheless, quasi-rigid bodies
may be introduced by auxiliary conditions that simplify the post-Newtonian formalism
drastically. Such quasi-rigid relativistic bodies have been treated in Xu & Tao (2004) and
Tao & Xu (2003).
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2. Quasi-rigid bodies
For our model of a quasi-rigid astronomical body a certain relation for the internal

motion is formulated in the local system that is co-moving with the body under consid-
eration. We can define the quantities Σ̄ and Σ̄a by

Σ ≡ Σ +
ΣPN

c2 , where ΣPN ≡ 11
42

X2Σ̈,

Σ
a ≡ Σa +

Σa
self

c2 +
Σc

ext

c2 ,

Σa
self ≡ Σ

(
7
2
εadeΩd∂eZ

+ +
1
2
εedf ΩdXf ∂aeZ

+
)

,

Z+ ≡ G

∫
A

d3X ′Σ(TA ,X′)|X − X′|,

Σa
ext ≡

∑
l�0

Σ
l!

[
4εadeΩdXeX<L>GL (T ) +

1
l + 2

εaedX
<dL>HeL

− l + 10
2(l + 2)(2l + 5)

X̂LX2ĠcL +
l + 10

2(l + 2)(2l + 5)
∂T (ln Σ)X̂LX2GcL

]
,

where GL and HL are gravito-electric and gravito-magnetic tidal moments (e.g., Damour,
Soffel & Xu 1991). Now, a model of a 1PN quasi-rigid body can be constructed by means
of the following constraint:

Σ
a

+
1

2c2 Xa
[
∂T T bb − Σ∂T W + ∂T ΣPN + ∂a(Σa

self + Σa
ext)

]
= εabcΩbXcΣ + O(4).

In this equation Ωa might be considered as a formal parameter of our quasi-rigid body,
whereas in the Newtonian approximation Ωa is the angular velocity. Our constraint
equation has the following consequences: The 1PN spin vector (defined in Damour, Soffel
& Xu 1993) is given by

SPN
a = IabΩb + O(4),

where the 1PN moment of inertia tensor reads

Iab = Iba =
∫

A

d3X(δabX2 − XaXb)Σ + O(4).

The post-Newtonian MacCullagh relations then simply read

Mab = −Iab +
1
3
δabIcc + O(4).

As is well known such MacCullagh relations between components of the inertia tensor and
potential coefficients are very useful in geodynamics. Actually, with our constraint equa-
tion all relations for ’Newtonian rigid bodies’ are valid even at the first post-Newtonian
level except for one:

ṀL = εpq<al
ML−1>qΩp , l > 2.

This difference, however, might not be relevant in most situations since the relativistic
part of ML with L > 2 usually can be neglected.

3. Elastic and fluid bodies
Our formalism that describes the dynamics of elastic material based upon a displace-

ment field presents an application of the Carter and Quintana (Carter & Quintana 1972)
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formalism. Let sa denote the components of the displacement field that describes devia-
tions from an equilibrium configuration (the elastomechanical ground state). The post-
Newtonian Jeffreys-Vicente (J-V) equation for an almost spherical body then reads (Xu,
Wu & Soffel 2001):

ρ∗
D2sa

Dτ 2 = WG,aδρ∗ + ρ∗(δW ),a − 1
2
ρ∗(V

2
),ab ṡ

b − (δp),a + (2μsb
a);b

+
1
c2

{
ρ∗

[
−1

2
(V

2
),abs

bV
2 − V

a
(V

b
s̈b) + 4WG ,[aV

b]
ṡb − (δW ),T V

a

+4(δWa),T + W,aW ,bs
b − 8V

b

,(cW [a),b]s
c
]
− δṗV

a
}

+ O(4),

where the variables with a bar are in rotating coordinates (angular velocity: Ωa), ρ is
the mass-energy density (ρ∗ = ρ + pc−2), μ denotes the shear modulus, WG is the PN
geopotential WG = W + 1

2 V
2
, V

a
the rotation velocity, W and W

a
the scalar potential

and vector potential of the metric tensor; δp, δρ, δW are the Eulerian variation of p, ρ and
W , respectively. For c → ∞, the above equation reduces to the Newtonan J-V equation.
Boundary and junction conditions of this relativistic J-V equation have been discussed
in Xu et al. (2003). The PN J-V equation and related equations have been expanded in
terms of generalized spherical harmonics so that the partial differential equations become
a set of ordinary differential equations (Xu et al., 2005) to simplify further calculations.

A fluid body might be viewed as a special case of an elastic body. Correspond-
ing hydrodynamical equations have been discussed by Xu and Wu (2001) within the
DSX-formalism for applications to multiple stellar systems. In the DSX-framework, the
hydrodynamic equations (energy equation and Euler equation) take the form

∂

∂T
Σ +

∂

∂Xa
Σa =

1
c2

∂

∂T
T bb − 1

c2 Σ
∂

∂T
W + O(4),

∂

∂T

[(
1 +

4W

c2

)
Σa

]
+

∂

∂Xb

[(
1 +

4W

c2

)
Tab

]
= Fa(T,Xa) + O(4),

where

Fa = ΣEa +
1
c2 BabΣb , Ea = ∂aW +

4
c2 ∂T Wa, Bab = −4(∂aWb − ∂bWa).

In the case of a non-perfect fluid the stress-energy tensor in local coordinates reads

Tαβ = εUαUβ + phαβ − 1
3
βθhαβ − λσαβ +

2
c2 Q(μUν ) ,

where ε is the density of total mass-energy, p the isotropic pressure, λ and β are the
coefficients of shear and bulk viscosity, Uα is the 4-velocity, hαβ the usual projection
operator into the fluid’s rest space, Qα the heat flux vector, σαβ the shear tensor and
θ = Uμ

;μ the expansion scalar. When λ = β = κ = 0, Tαβ describes a perfect fluid. ε,
θ, Uα , hαβ and σαβ can then be explicitly expressed in terms of Σ, Σa , W and Wa .
Qα also depends upon temperature T . If the heat flux is taken into account then Tαβ

depends upon Σ, Σa , W , Wa , T , λ, β and κ. For reasons of brevity, here we only show
the hydrodynamic equations for a perfect fluid

Σ̇ + Σa
,a =

1
c2

(
2Σ̇dΣd

Σ
− Σ̇ΣdΣd

Σ2 + 3ṗ − ΣẆ

)
+ O(4),
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∂

∂T

[(
1 +

4W

c2

)
Σa

]
+

∂
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[(
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4W
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)(
ΣaΣb

Σ

(
1 +

ΣcΣc

Σ2c2 +
2p

Σc2

)

+pδab

(
1 − 2W

c2

))]
= Σ∂aW +

4
c2

[
Σ∂T Wa − Σb (∂aWb − ∂bWa)

]
+ O(4).

The post-Newtonian expansion scalar reads

θ = Uμ
;μ =

∂V a

∂Xa
+

1
c2

[
∂V a

∂Xa

(
W +

V 2

2

)
+ 3

dW

dT
+

1
2

d

dT
V 2

]
+ O(4).

Note that θ = 0 does not imply that ∂V a/∂Xa = 0 (incompressible fluids only exists
in Newtonian hydrodynamics, not in the general relativistic hydrodynamics). For more
details the reader is referred to Xu and Wu (2001).

4. Discussion
Three different models for the dynamics of an astronomical body for an extension of

the DSX-framework have been introduced: elastic bodies, fluid bodies and quasi-rigid
bodies. Such models have been introduced in the local coordinate system that is co-
moving with the body under consideration and can be used in situations where multiple
reference systems should be introduced. Several problems still have to be treated, e.g., for
the problem of geodynamics an expansion of relevant functions in terms of generalized
spherical harmonics has not yet been done for an oblate ground state, which is important
for a relativistic theory of precession-nutation.
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