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A MULTILINEAR YOUNG’S INEQUALITY

BY
DANIEL M. OBERLIN

ABSTRACT. We prove an (n + 1)-linear inequality which gener-
alizes the classical bilinear inequality of Young concerning the I”
norm of the convolution of two functions.

Let G be, say, a locally compact abelian group. For a function f on G and
t € G, define the translate f, of f by f(x) = f(x — ), x € G. An n-linear
operator M taking n-tuples of functions on G to functions on G is called a
multilinear convolution (see [2], [3]) if

M- UD) = Mf, ... St € G

We are interested in certain multilinear convolutions M defined as follows. Let
A be a locally finite Borel measure on G". If f,, .. ., f, are continuous functions
of compact support on G, put

M, ..., [)x) = G,,fl(x —x) ... L(x — x)dNx,, ..., x,), x €G.

Our question about such M is the question of I”-boundedness: taking I norms
with respect to Haar measure, when do we have an inequality

IM(fi, . ) N, = CHALL, - 14,2

Along these lines, there is a general theorem with r = 1 in [5]. The case with
G = R and X equal to Lebesgue measure on the unit sphere in R” is the subject
of [4]. The case considered in this note occurs when A is absolutely continuous
with respect to Haar measure on G" and has density K in L9(G"). Thus

M, ..., X)) = G,,fl(x —x) ... filx — x,)
X K(xy, ..., x)dx, ...dx, x € G,

and the inequality

M 1Moo S = WA, - - ALK,
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is a multilinear analogue of Young’s inequality.

THEOREM. Inequality (1) holds when the conditions below are met:

111 1
(a) 0§_9—-’_’ 7— é 19
r q p Pn
(b) 1=
r q
1 1
© nA s =— 4.+ — 45
r )41 Py q
1
(d) l—l_S_—forj=1,...,n.
7 p
CoMMENTS. (1) When n = 1, this is Young’s inequality. Then (b) and (d) are
redundant.

(2) If the p; are equal, then (d) is redundant.

(3) If G is compact or discrete, then the inclusions between L? spaces on G
show that (1) will hold in cases not covered by the theorem. But (b)-(d) are all
necessary for a general result. For example, if G = R, let

D={(xx....,x)+({,...,.t,) ERW0O=x=L,0=1¢ =08},
h=...=f= X5 K = Xp-
If (1) holds it follows that
8"LY" = (const. )8 /P T T W) (g HhHVa for 0 < § = L < oo.
Thus (b) and (c) must hold. To see that (d) holds, let
D = {(xl,...,xn):lle =L x| =1ifi # j},
Then (1) implies
L = (const.)LYILV7 for L = 1.
Thus (d) holds.

PrROOF OF THEOREM. Consider the closed convex subset K of R" "2 defined
by

K={k=(,....,0,Bvn+y=a +... +a, + np,
0O=sy=B=1L1—-B=ag;=1forl =i = n}.

By the multilinear Riesz-Thorin theorem (see [1] ), it is enough to show that (1)
holds whenever
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( 1 1 1 l)

pl LR pn, q? r

is an extreme point of K. Thus we begin by looking at the geometry of K.
The first step is to show that if 0 << B < 1, then k is not an extreme point of

K Sofixk = (aj,...,a, B, y)with0 < 8 < 1. Write I, = {I,...,n} and
define subsets S and T of I, by

i€ Sifandonlyifa; =1,i € Tifandonlyifa, =1 — B.
Consider first the case S U T = I,. For t € R, define
Bt) =B +1
a(it) =a;ifi € S,0,(t) =a; —tifi €T.
Define
n n
¥(t) = gai(t)-i-nﬁ(t) —n = ?ai +nB —n — iezrt + nt =7y + |S|.
If there is § > 0 such that
(1), - - -, 0, (1), BD), ¥(1)) € K for 1] <8,
then it is clear that k is not extreme. By definition,
n+ y(@) = o) + ...+ )+ nB() for all ¢
Also
1 —B(¢) =a(t) =1if |t|] < §,forsomed, >0and 1 =i = n
Thus it is only necessary to find 8, > 0 such that for || < §,
0=v()=B(t)=1,o0r
O=y+|ISt=B+r=1.
Such a § exists if either
y=0and |S| =0,ory=8and|S| =1l,or0 <y < B.

Now recall that 0 = y = B since k € K. If y = 0, then |S| = 0 follows
from

n+y=a +...+a +nBandSUT=1,

Butif 0 <y =g, thena; +... +a, =@ — 1)1 — B) + 1,s0|S| = 1. Thus
k is not extreme in the case S U T = I,. If, on the other hand, S U T # I, fix /
with 1 — B8 < a;, < 1. Define

a(ty =o;ifi €S, 0;(t) =a; —tifi &€ Sandi # [,
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and o;(t) = a; — mt wherem = |S| + 1ify =0, m = [S|if y > 0.
Define

n

B(t) = B+ 1,y(t) = X a;(t) + nB(t) —n=7v+ (IS| + 1 — m).

1

Then, as before

(@ (D), ..., 0, (1), B@), ¥(1)) € K

for small |z]. Thus k is not extreme whenever 0 < 8 < 1.
Suppose now that k is extreme in K and we will check that (1) holds if

1 1 11
(L1

pl, pn, q, r
If =0, theny = 0and each a;is 1. Thus py = p, = ... = p, = 1,9 =
r = oo, and (1) is clear. So suppose 8 = 1. The set
{k € K:B =1}

is affinely isomorphic (by projection onto the first » coordinates) to

lIA

{(al,...,an):O Sq=1,2aq= 1}.

1

The extreme points of this set occur when one of the «; is 1 and the rest are zero.
So suppose p; = 1, p, = coif i # [, and ¢ = r = 1. Then

M £ 1 = TLI L [ = w1
i#*l

X

dx,.

'/(;nvl I K(x]’ sy xn) |H dx,'

i#l

Since

dx/ = ”KHp

-/; ’—L"" IK(x, ... x,)l I];[I dx;

inequality (1) is true in this case and the proof of the theorem is complete.
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