A MULTILINEAR YOUNG'S INEQUALITY

BY

DANIEL M. OBERLIN

Abstract

We prove an $(n+1)$-linear inequality which generalizes the classical bilinear inequality of Young concerning the L^{p} norm of the convolution of two functions.

Let G be, say, a locally compact abelian group. For a function f on G and $t \in G$, define the translate f_{t} of f by $f_{t}(x)=f(x-t), x \in G$. An n-linear operator M taking n-tuples of functions on G to functions on G is called a multilinear convolution (see [2], [3]) if

$$
M\left(\left(f_{1}\right)_{t}, \ldots,\left(f_{n}\right)_{t}\right)=\left(M\left(f_{1}, \ldots, f_{n}\right)\right)_{t}, t \in G
$$

We are interested in certain multilinear convolutions M defined as follows. Let λ be a locally finite Borel measure on G^{n}. If f_{1}, \ldots, f_{n} are continuous functions of compact support on G, put

$$
M\left(f_{1}, \ldots, f_{n}\right)(x)=\int_{G^{n}} f_{1}\left(x-x_{1}\right) \ldots f_{n}\left(x-x_{n}\right) d \lambda\left(x_{1}, \ldots, x_{n}\right), x \in G
$$

Our question about such M is the question of L^{p}-boundedness: taking L^{p} norms with respect to Haar measure, when do we have an inequality

$$
\left\|M\left(f_{1}, \ldots, f_{n}\right)\right\|_{r} \leqq C\left\|f_{1}\right\|_{p_{1}} \ldots\left\|f_{n}\right\|_{p_{n}} ?
$$

Along these lines, there is a general theorem with $r=1$ in [5]. The case with $G=\mathbf{R}$ and λ equal to Lebesgue measure on the unit sphere in \mathbf{R}^{n} is the subject of [4]. The case considered in this note occurs when λ is absolutely continuous with respect to Haar measure on G^{n} and has density K in $L^{q}\left(G^{n}\right)$. Thus

$$
\begin{aligned}
M\left(f_{1}, \ldots, f_{n}\right)(x) & =\int_{G^{n}} f_{1}\left(x-x_{1}\right) \ldots f_{n}\left(x-x_{n}\right) \\
& \times K\left(x_{1}, \ldots, x_{n}\right) d x_{1} \ldots d x_{n}, x \in G
\end{aligned}
$$

and the inequality

$$
\begin{equation*}
\left\|M\left(f_{1}, \ldots, f_{n}\right)\right\|_{r} \leqq\left\|f_{1}\right\|_{p_{1}} \ldots\left\|f_{n}\right\|_{p_{n}}\|K\|_{q} \tag{1}
\end{equation*}
$$

Received by the editors June 14, 1987, and, in revised form, September 15, 1987.
Partially supported by a grant from the National Science Foundation.
AMS Subject Classification (1985): 43A15.
(c) Canadian Mathematical Society 1987.
is a multilinear analogue of Young's inequality.
Theorem. Inequality (1) holds when the conditions below are met:
(a)
(b)

$$
\begin{gathered}
0 \leqq \frac{1}{r}, \frac{1}{q}, \frac{1}{p_{1}}, \ldots, \frac{1}{p_{n}} \leqq 1 \\
\frac{1}{r} \leqq \frac{1}{q}
\end{gathered}
$$

(c)

$$
n+\frac{1}{r}=\frac{1}{p_{1}}+\ldots+\frac{1}{p_{n}}+\frac{n}{q}
$$

(d)

$$
1-\frac{1}{q} \leqq \frac{1}{p_{j}} \text { for } j=1, \ldots, n
$$

Comments. (1) When $n=1$, this is Young's inequality. Then (b) and (d) are redundant.
(2) If the p_{j} are equal, then (d) is redundant.
(3) If G is compact or discrete, then the inclusions between L^{p} spaces on G show that (1) will hold in cases not covered by the theorem. But (b)-(d) are all necessary for a general result. For example, if $G=\mathbf{R}$, let

$$
\begin{gathered}
D=\left\{(x, x, \ldots, x)+\left(t_{1}, \ldots, t_{n}\right) \in \mathbf{R}^{n}: 0 \leqq x \leqq L, 0 \leqq t_{i} \leqq \delta\right\} \\
f_{1}=\ldots=f_{n}=\chi_{[0, \delta]}, K=\chi_{D}
\end{gathered}
$$

If (1) holds it follows that

$$
\delta^{n} L^{1 / r} \leqq(\text { const. }) \delta^{\left(1 / p_{1}\right)+\ldots+\left(1 / p_{n}\right)}\left(L \delta^{n-1}\right)^{1 / q} \text { for } 0<\delta \leqq L<\infty
$$

Thus (b) and (c) must hold. To see that (d) holds, let

$$
\begin{gathered}
D=\left\{\left(x_{1}, \ldots, x_{n}\right):\left|x_{j}\right| \leqq L,\left|x_{i}\right| \leqq 1 \text { if } i \neq j\right\} \\
f_{j}=\chi_{[0, L]}, f_{i}=\chi_{[0,1]} \text { if } i \neq j, \text { and } K=\chi_{D}
\end{gathered}
$$

Then (1) implies

$$
L \leqq(\text { const. }) L^{1 / q} L^{1 / p_{j}} \text { for } L \geqq 1
$$

Thus (d) holds.
Proof of Theorem. Consider the closed convex subset K of \mathbf{R}^{n+2} defined by

$$
\begin{gathered}
K=\left\{k=\left(\alpha_{1}, \ldots, \alpha_{n}, \beta, \gamma\right): n+\gamma=\alpha_{1}+\ldots+\alpha_{n}+n \beta,\right. \\
\\
\left.0 \leqq \gamma \leqq \beta \leqq 1,1-\beta \leqq \alpha_{i} \leqq 1 \text { for } 1 \leqq i \leqq n\right\} .
\end{gathered}
$$

By the multilinear Riesz-Thorin theorem (see [1]), it is enough to show that (1) holds whenever

$$
\left(\frac{1}{p_{1}}, \ldots, \frac{1}{p_{n}}, \frac{1}{q}, \frac{1}{r}\right)
$$

is an extreme point of K. Thus we begin by looking at the geometry of K.
The first step is to show that if $0<\beta<1$, then k is not an extreme point of K. So fix $k=\left(\alpha_{1}, \ldots, \alpha_{n}, \beta, \gamma\right)$ with $0<\beta<1$. Write $I_{n}=\{1, \ldots, n\}$ and define subsets S and T of I_{n} by

$$
i \in S \text { if and only if } \alpha_{i}=1, i \in T \text { if and only if } \alpha_{i}=1-\beta
$$

Consider first the case $S \cup T=I_{n}$. For $t \in \mathbf{R}$, define

$$
\begin{gathered}
\beta(t)=\beta+t \\
\alpha_{i}(t)=\alpha_{i} \text { if } i \in S, \alpha_{i}(t)=\alpha_{i}-t \text { if } i \in T .
\end{gathered}
$$

Define

$$
\gamma(t)=\sum_{1}^{n} \alpha_{i}(t)+n \beta(t)-n=\sum_{1}^{n} \alpha_{i}+n \beta-n-\sum_{i \in T} t+n t=\gamma+|S| t .
$$

If there is $\delta>0$ such that

$$
\left(\alpha_{1}(t), \ldots, \alpha_{n}(t), \beta(t), \gamma(t)\right) \in K \text { for }|t|<\delta
$$

then it is clear that k is not extreme. By definition,

$$
n+\gamma(t)=\alpha_{1}(t)+\ldots+\alpha_{n}(t)+n \beta(t) \text { for all } t
$$

Also

$$
1-\beta(t) \leqq \alpha_{i}(t) \leqq 1 \text { if }|t|<\delta_{i} \text { for some } \delta_{i}>0 \text { and } 1 \leqq i \leqq n
$$

Thus it is only necessary to find $\delta_{0}>0$ such that for $|t|<\delta_{0}$

$$
\begin{aligned}
& 0 \leqq \gamma(t) \leqq \beta(t) \leqq 1, \text { or } \\
& 0 \leqq \gamma+|S| t \leqq \beta+t \leqq 1 .
\end{aligned}
$$

Such a δ_{0} exists if either

$$
\gamma=0 \text { and }|S|=0, \text { or } \gamma=\beta \text { and }|S|=1, \text { or } 0<\gamma<\beta .
$$

Now recall that $0 \leqq \gamma \leqq \beta$ since $k \in K$. If $\gamma=0$, then $|S|=0$ follows from

$$
n+\gamma=\alpha_{1}+\ldots+\alpha_{n}+n \beta \text { and } S \cup T=I_{n}
$$

But if $0<\gamma=\beta$, then $\alpha_{1}+\ldots+\alpha_{n}=(n-1)(1-\beta)+1$, so $|S|=1$. Thus k is not extreme in the case $S \cup T=I_{n}$. If, on the other hand, $S \cup T \neq I_{n}$, fix l with $1-\beta<\alpha_{l}<1$. Define

$$
\alpha_{i}(t)=\alpha_{i} \text { if } i \in S, \alpha_{i}(t)=\alpha_{i}-t \text { if } i \notin S \text { and } i \neq l,
$$

and $\alpha_{l}(t)=\alpha_{l}-m t$ where $m=|S|+1$ if $\gamma=0, m=|S|$ if $\gamma>0$.
Define

$$
\beta(t)=\beta+t, \gamma(t)=\sum_{1}^{n} \alpha_{i}(t)+n \beta(t)-n=\gamma+(|S|+1-m) t
$$

Then, as before

$$
\left(\alpha_{1}(t), \ldots, \alpha_{n}(t), \beta(t), \gamma(t)\right) \in K
$$

for small $|t|$. Thus k is not extreme whenever $0<\beta<1$.
Suppose now that k is extreme in K and we will check that (1) holds if

$$
\left(\frac{1}{p_{1}}, \ldots, \frac{1}{p_{n}}, \frac{1}{q}, \frac{1}{r}\right)=k .
$$

If $\beta=0$, then $\gamma=0$ and each α_{i} is 1 . Thus $p_{1}=p_{2}=\ldots=p_{n}=1, q=$ $r=\infty$, and (1) is clear. So suppose $\beta=1$. The set

$$
\{k \in K: \beta=1\}
$$

is affinely isomorphic (by projection onto the first n coordinates) to

$$
\left\{\left(\alpha_{1}, \ldots, \alpha_{n}\right): 0 \leqq \alpha_{i} \leqq 1, \sum_{1}^{n} \alpha_{i} \leqq 1\right\}
$$

The extreme points of this set occur when one of the α_{i} is 1 and the rest are zero.
So suppose $p_{l}=1, p_{i}=\infty$ if $i \neq l$, and $q=r=1$. Then

$$
\begin{aligned}
\left|M\left(f_{1}, \ldots, f_{n}\right)(x)\right| & \leqq \prod_{i \neq 1}\left\|f_{i}\right\|_{\infty} \int_{G}\left|f_{l}\left(x-x_{l}\right)\right| \\
& \times\left[\int_{G^{n-1}}\left|K\left(x_{1}, \ldots, x_{n}\right)\right| \prod_{i \neq 1} d x_{i}\right] d x_{l} .
\end{aligned}
$$

Since

$$
\int_{G}\left[\int_{G^{n-1}}\left|K\left(x_{1}, \ldots, x_{n}\right)\right| \prod_{i \neq l} d x_{i}\right] d x_{l}=\|K\|_{1},
$$

inequality (1) is true in this case and the proof of the theorem is complete.

References

1. J. Bergh and J. Löfström, Interpolation Spaces, Springer-Verlag, Berlin, 1976.
2. R. R. Coifman and Y. Meyer, Fourier analysis of multilinear convolutions, Caldéron's theorem, and analysis on Lipschitz curves, Euclidean harmonic analysis (College Park, Md., 1979), pp. 104-122, Lecture Notes in Math. 779, Springer-Verlag, Berlin, 1980.
3. M. Murray, Multilinear convolutions and transference, Michigan Math. J. 31 (1984), pp. 321-330.
4. D. Oberlin, Multilinear convolutions defined by measures on spheres, Trans. Amer. Math. Soc., (to appear).
5. ——, The size of sums of sets, Studia Math. 83 (1986), pp. 139-146.

Florida State University
Tallahassee, FL 32306

