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ABSTRACT

A systematic investigation has been carried out for
periodic solutions for standard-form Hamiltonian systems con-
taining a small parameter/the principal problem of dynamics/.
An efficient method of investigation of conditions for perio-
dicity of solutions has been developed, Besides fitting the
initial conditions of the action-angle variables, the idea of
fitting the values of the parameters of the problem is used.
Constructive conditions are obtained for the existence of
periodic solutions in both principal and degenerate cases,as
well as necessary conditions for their stab—ility;algoritlms
have been developed for constructing these solutions as ser-
ies in integer powers of the small parameter. To study parti-
cular periodic solutions /by high order resonances/, canoni-
cal transformations of the initial equations to a special
form are used.

1. Consider a one-degree nonautonomous Hamiltonian system
dI _ oH  dy _ _ 3H
dt Yy dt 3

1)

oo
H=HC(L,AB) + £ u%H (I,v,4,B,0,t)
[¢} o=1 g

Here H is the unperturbed Hamiltonian being a functi-
on of the position variable I and of the problem parameters
A,B, The Hamiltonian H in (1) is a holomorphous function of a

323

https://doi.org/10.1017/50252921100066215 Published online by Cambridge University Press


http://rfe.mil
https://doi.org/10.1017/S0252921100066215

small nonnegative parameter u in some vicinity of p = 0, The
functions H (1,v,A,B,Qt) are 2n periodic in the angular var-
iable ¢ and® 2t is a given fixed frequency, T =21/Q 1is the

period.
For y = 0 we obtain from (1) a generating periodic sol-
ution {11
9H
- = n0) (o) _ _ _o (o) =
I =a,¢=n t+w ,n = -5z qu (a'aO’BO)

(2)

Here w is an arbitrary constant, n(o) is the unperturbed fre-
quency, q, and q are integer numbers. The generating values
of the variable I and of the parameters A,B are designated as
a and ags Bo.

Let a+8 and w+y be the initial values of the variab-
les, and A = a°+u , B= B°+B are the parameter values for the

sought periodic solutions. According to:the proposed method,
the quantities §,y, and in certain conditions the quantities
o,B as well, are constructed as series in integer or fract-
ional powers of the small parameter u. The proof of existen-
ce of periodic solutions is basing on the analysis of the
periodicity conditions and of their resolvability with res-
pect to some two out of four small quantities v = (6,v,a,B)
(2].

Let us designate as f and f the constant and the condi-
tionally periodic parts, respectively, of the function
f(I1,V,A,B,Qt) being 2m periodic in ¢ and in Qt and calcula-
ted for the generating values of the parameters (2), i.e.

T
- 1 o
f(a,w,a,8) = & {) f(a,n(°)t+w,ao,so,m)dt, F=o0

The main forms of the existence conditions of periodic
solutions of the system (1) are obtained as a result of an
analysis of the main terms in the expansion of the periodi-
city conditions in powers of the small quantities v.

Besides the condition of commensurability of frequen-

cies n(o),Q, common here is the condition of H., Poincare [1]

-
a—gl— (a,w,a_,B ) =0 @)

to which one of the following four additional conditions
must be added:
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2_
(o) Y
an
1.1 P — # 0 —5— £ 0
IwW
v
(o) 3°H,
an
1.2 3B~ 4 o £0
aao 8w2
©) azil an (@) azﬁl
1.3 gn = saaw 72 Sa w1 O
ao a ao
(0) azig an©) 22E,
1.4 gn 56 5w 5B o sw 1O
Go ° ° %

In the conditions 1.2 and 1.3 the parameter a, can be
replaced by Bo'

Note also that for the periodic solutions determined by
the conditions (2),(3) and 1.2 - 1,4 the parameters A,B are
constructed as series in integer powers of the small parame-
ter wu.

Let the Hamiltonian system (1) be_such_that the function
does not contain resonant terms, i.e. Hl = Hl(w). This situ-

ation takes place in many problems of Celestial Mechanics,
e.g., in high-order resonances. In this case, as a result of
deeper analysis of periodicity conditions, new conditions
were obtained for the existence of periodic solutions, gene-
rated from the solutions (2). For these groups the common
condition is

3K
ow

) =0,

(?.,W,Go, BO

which must be supplemented by one of the following four con-

ditions:
4 (@) 2°K
2,1 3a £ 0 -5 # 0,
ow
3 (©) 32K
2,2 —4#t 0 ——5— # 0,
da oW
o
4p(0) %K ©) %%
en_° ______ _ 3am_ -~ __ £ 0
2.3 3 3adw 3a 30, 3W
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2% 2
an(°) 2"k an(") 3°K

2.4 - £ 0
aao 9 Boaw 9 Bo aaoaw ’
where 32~ . Bzi& 5 aﬁ
> = 1 I, + vy, + ——2
K dasw 1 aw2 1 ow !

and uIl, qul are purely periodic components of the first-or-
der perturbations in the sought solution.

Of interest is a more general case of degeneracy. When
resonant terms appear only in construction of perturbation of
a certain arbitrary order p. Using the method of canonical
transformations fe.g., the method of Deprit-Hori [3,4,51/,
the initial differential equations (1) in a sufficiently gen-
eral case can be reduced to a canonical system with a Hamil-
tonian

p-1 )

H = HO(I,A,B) + I uGHG(I,A,B) + z uOHo(I,w,A,B,Qt)
o=x o=p

4)

Periodic solutions of the transformed equations with the
Hamiltonian (4) are generated from the solutions (2) at small
values of u if, besides the conditions

(o)

qon (a,ao,Bo) = qQ ’ (a,w,a :B ) = 0 (5)

(o) 27H,
an
3.1 3o # 0, 3—2— # 0,
2_
() 3%Hp
an
3.2 ¥ 0, —3— % 0,
Emo ow
2 2—
3.3 Bn(o) 3 HP _ Sn(o) 3 HP £ 0
* E1v3 dadw aa Ja _ow !
2-— 2=
5, 20 28 I 37Hp -
aao BBOBW 984 Baoaw
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2. Periodic solutions determined by the conditions 1.1-1.4,
2,1 - 2.4 and 3.1 - 3.4 are represented by series in integer
powers of the small parameter y converging by its small value.

As a result of a deeper analysis of the periodicity
conditions, periodic solutions of the equations (1) were stu-
died; these solutions can be represented as series in fract-
ional powers of the snall parameter .

The conditions of existence of periodic solutions which
were obtained as a result of an analysis of tw and three
multiple roots of the corresponding periodicity conditions,

can be written down as an ensemble of conditions ei(z) and
z,u
02

( o)

1

(z,u)
<b‘j ) (6)

(z = (a,ao,eo), u = (a,w,ao,Bo), 2 #u; 1i,j =1,2,...,15)

The conditions ®§z), in their turn,are given in Table 1,

and the conditions ¢§z,u)

a formal substitution of wi to F§Z,J)’ i=20,1,2,3,4, of
arguments z to u, and of the quantities, in particular, zil?
i . p . ; . 3
to uf ). Here z{l) = (6}1),a{1). B{l)) and uil) = (2
(1) (1) ()
Yl 90~1 ’Bl

the multiplicity of the corresponding roots of the periodici-
ty conditions, are replaced by k u) . sSome formulae, allowing
to describe in detail the structure of the existence condi-
tions (6) are given in the Appendix.

are obtained from the conditions by

1 »

). The integer exponents k(z), characterizing

If the conditions (6) are fulfilled, then the differen-
tial equations (1) admit periodic solutions which can be re-
presented by series in, generally speaking, fractional powers
of the parameter u:

4
w (z) () i s
MCR'EE 5. I uki ky I(z,u,l,J)(t)
[;:1 4
y @wild) o n(o)(a)t+w + I W p Zousi,d)
C=1 4 ’
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Table 1: The conditions ej(z)

G =1,2,...,15)

Y
(z) o (z) _
°1 5z 70 oot
2
3 1Y
( (z o _ o (z)_,.(z) _
0705 -0, G2 nto kg TRy =2
) ) Yo 2%, (z)_, (2)
04 495 5z - O ;;2—*0' ¥y =0 k) =kg T =1
o %, 0 0 (z)_, (2)
00 5z -0 3 f0N k=k(?)= o
2 3
)] 3%y CRg
(z) o . o _ 0 (z) _
0 =2 = o, = 0, £ 0, 3
8 YA azz az3 k8
L3y 3
L (2) 4(2) ,(2) To _ o _ o} (z)_ . (z) _
0g 010011 5z - % - © -3 0, kgi'=ikp =2
%1 (z) _
q;l = 0, YA 0, k11 =1
2
3 3 Y 3 Yo
(z) o _ o _
0 —2 = 0, = 0, # 0,
12 3z azﬁ azs
oy () _
‘Pl = O’ 3z = 0: '412 f 0, klZ =3
2 3
Y ) 37y
(z) 5(2) 5(2) o _ o . )
0,57,0,77,0 — = 0, o, # 0,
13 *°14 +°15 3z 22 323
291 - (z)_, (2) _
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(...)

where I; s U/("')

mined sequentially by means of simple quadratures.

are periodic functions of time,deter-

A list of particular cases of existence of periodic so-
lutions of the Bamiltonian systems (1) can be extended as
much as one may like. Derivation of new conditions of exist-
ence must base on a detailed analysis of the periodicity con-
ditions and of the conditions of their resolvability.Thereby,
as we did earlier, the idea of selection of the problem para-
meters in form of corresponding series in integer or fracti-
onal powers of u can be efficiently used.

3. The alove-mentioned method of investigation of periodic
solutions allows to study the existence of periodic solutions
in vicinities of fixed points. Here it is advisable to use
mrmal forms of Hamiltonians [ 5]:

H= B (1,4,B) + B (LA, ) +..+v*" 25, (1,4,B) +

2n-
+ 020y, (1,4, B at) + 062" )
for the resonances (2n+l )n(o) = mQ,
= 2 k 2n-2
H= H (I,A,B) +u“By(L,4,B) +...+ u " "H, (I,A,B) +
2 2n+
+ %m0 (Ly,A,Bat) + 0@ ") @)

for the resonances 2(n+1)n(°) =md (n,m are integer numbers).

For the function H we hmve the following expressions,

depending on the type of resonance
H +
Hps = h2n+1 (ao. 8o ya® 3 cos(2n+l )w,

it (2n41)n®) = mg,
- _ n+l
Hz(n.'..l) = ol [gz(n+1)(a°: BO) +T2(n+1')(a°,80 os 2(n+1)W],

if 2(n+)n®) = na,

where h2n+1'g2(n+1)’T2(n+1) are constant coefficients of the

normal forms. The parameter u is introduced into (7), (8)
artificially, by a simple substitution of variables.
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The structure of the Hamiltonians (7 ), (8) corresponds
to (4); therefore, for an investigation of periodic solutions
here the conditions (5), 3.1 - 3.4 are valid. By means of
these conditions we obtain the following four groups of con-
ditions of existence of periodic solutions of canonlcal equa-
tions with the Hamiltonians (7),(8):

an(°) ah2n’+1 Bn(o) Bh2n+1

4.1 - £0
aao BBO 680 Bao
«# 0, (2nl)w# 1wk, (k =0,1,2,...)
hy 41 (.80 = 0, (204130 ,8,) = m
(o) a1 (o) 31 ,
4.2 g: ae2(n+1) _ 2181 aol2(n+1) £ 0
o (6] (o) (o)
L £ 0, 2(nfl)w # 7k
= (0) =
12(n+1)(a0,80) 0, 2(n#l)n (ao,Bo) m
n©)
4.3 ™ # 0, # 0, (Cn#¥l)w = kn
o)
h, .G@,8)#0, (20)0°)@ ,8 ) =m
2n+l Y0’ "o ! o’’o
n)
4.4 : . # 0, £ 0, (2n+l)w = kn
%o
(o) -
T2(n+1 )'(aor Bo) F 0, 2(n+l)n (Go, BO) m

4, The conditions 4.1 and 4.2 have allowed to establish ra-
ther readily the existence of plane periodic motions of a
nonspherical satellite in an elliptic orbit/in the vicinity
of a circular synchromous motion/in a central gravity field.
Periodic solutions were found in the cases of commensurability

of the main frequence n(o) and of the mean orbltal motion @
of the form n(o) = g— , n(o) = g— Q and n(o) 4 2. To these

solutions correspond the following generating values of the
eccentricity of the satellite's orbit e = e, and of the dyna-
mic compression a = oy

330

https://doi.org/10.1017/50252921100066215 Published online by Cambridge University Press


http://Ifa.mil
http://Ife.mil
https://doi.org/10.1017/S0252921100066215

= = 1. = =4. = =1
e—O,a—g,e—O,a—g,e o, o = 18

=Y

To these values of the parameters, correspond nonsymme-
tric periodic solutions.

The existence of symmetric periodic solutions, determi-
ned by the conditions 4.3, 4.4 in dependence of the type of
resonance was also established from the coefficients of the
ormal form of the Hamiltonian of the problem; these Hamil-
tonians were constructed in [61].

5. The results obtained in 851-3 are valid for an investi-
gation of periodic solutions of Schwarzschild type of two-
degree autonomous Hmiltonian systems. For this purpose, it

is sufficient to use their reduction to a system of canonical
equations with one and a half degrees of freedom, i.e. to the
equations of the form (1).

The same approach allowed to obtain constructive condi-
tions of existence of periodic solutions in the vicinities
of stationary solutions of tw-degree autonomous Hamiltonian
systems, in particular, for the resonances 0:1, 1:1, 1:3,1:2,
etc. The conditions of existence of these periodic solutions
were written down by means of expressions for frequencies and
coefficients of normal forms of the Hamiltonians.

The results obtained allowed to study periodic soluti-
ons in the problem of motion of a point satellite in the eq-
uatorial plane of a rotating nonspherical planet., To these
solutions correspond satellite's periodic motions in the vic-
inity of the planet's libration points. Planet's dynamic co-
mpressions o,8 were used as active/varied/ parameters of
the problem. As a result, symmetric period solutions were
found in the vicinity of resonant curves f m/n(ao, Bo) = 0,
corresponding to the commensurabilitys of the frequencies of
the problem M:n = 1:2, 1:3, as well as nonsymmetric periodic
solutions in the vicinities of some particular points of the-
se resonant curves.

By means of the above-mentioned conditions, was proved
also the existence of periodic solutions in the restricted
circular problem of three point bodies. To this solution cor-
respond periodic motions of a point with a negligible mass
in the vicinity of the triangular libration point by the com-
mensurability of frequencies. Earlier, these motions were
studied by means of numerical and analytical methods in the
wrks of Henrard, Schmidt, et al. [7].

6. The restricted space of this report does not permit to
consider in detail similar problems of investigation of per-

iodic solutions of multidimensional Hamiltonian systems.Among
the works of this research branch, devoted to a study of

331

https://doi.org/10.1017/50252921100066215 Published online by Cambridge University Press


http://Ib.mil
https://doi.org/10.1017/S0252921100066215

existence, construction, and stability of periodic solutions
of HEamiltonian systems in particular and degenerate cases
/including the studies with an active use of the problem par-
ameters/ are the works [21,[9],[10] etc.

These same works in fact indicate pathways and approac-
hes to a more complete and thorough investigation of the pe-
riodicity conditions and of the periodic solutions themselves
in a large variety of degenerate cases, in particular, to a
study of periodic solutions of autonomous and nonautonomous
Hmiltonian systems of the second, third and arbitrary orders
in the vicinities of stationary and periodic reference solu-
tions. It seems thereby possible to use efficiently the res-
ults of construction of the Hamiltonian's normal forms both
for general-form sy stems and for specific problems of Cele-
stial Mechanics, stated in [51,[11], etc.

7. By means of the H.Pbincaré's classical conditions and of
the above-mentioned constructive elaboration, a systematic
study was done of periodic solutions in the plane and spatial
problems of the motion of two mutually gravitating bodies,
which either possess quasiconcentric density distributions
or are represented by homogeneous ellipsoids with small com-
pressions. Here new families of symmetric and nonsymmetric
periodic solutions were found both in general and in degene-
rate cases, with an application of the procedure of the prob-
lem parameters' fitting, in the nonrestricted as well as in
the restricted statements of the problem.

For these solutions, the motions of the centres of mass-
es are close to the Bulerian ones of the bodies with spheri-
cal ellipsoids of inertia. In a few orbital revolutions,each
body commits an integer number of revolutions around its own
centre of masses.[10].

The existence vas studied of periodic solutions in the
planetary versions of the problems of three and n rigid bodies
with small dimensions and with the ellipsoids of inertia close
to spheres. These solutions generalize the H.Poincaré's clas-
sical periodic solution in the problem of three point bodies
to a planetary sys tem of nonspherical rigid bodies [10]{12].

An applicati on is presented of the found periodic solu-
tions to a study of resonant phemomena in the motions of the
Moon, Mercury, and Venus. It is shown, in particular, that
the observed in the Venus' motion resonance is well described
by one of the found first-kind periodic solutions in a nonre-
stricted three-body problem /Venus being a nonspherical rig-
id body, and the Sun and the Earth - point masses/, with the
necessary stability conditions fulfilled for this solution
f101].
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APPEND IX

Ixpansion for Z and formulae for zf‘] ), zz(J ).

1 2
. k,.(z) . k.(z)
z-zl(‘)) uJ +ZZ(J) u'] +.0.0.,

.
|
[
~
N
~
it
[y

2
3 . 3% 2
3y _ o -1 Gy . 1 o _(J) 1
) == (53", 2y "(23_2_Z 2"t 5z
awo -1
x (577 )
- @) _ L (2)
J=2,3; ky'! = kg 1
2 3
. 3 _ 3y 3y
z1(‘])=2“-/2w1(3§0 ) ’Z(J)-('azl+]é,3o
z 3z
2
3‘Po -1
x ( )
822
i=4,5 k&) =x{®) o
2
. 3%y 2 3P .
Gor, _1 o _(j) 1 @) _
132(:21 )—23z zy +3_z 2y +‘P2 o,
. 3P 4
zé'])=-P( 2.7, 5= 6,7 kéz)=k7(z) 2
azf‘])
2
P 3P 3%y
G, o 2 _ "1 o . (3) _ G) _
P, (z ) 0, - + b4 0, z 0,
azl(J) CE
2
. 3%
(i) 1 o -1
z =-P, (5 - )
3 3' 2,2
j =8, ks(Z) 3
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. o Y .
(3) 1 o _(3) _ ) 3 -1
vV, (z Yy = & z + ¢ 0, z = v, ( — )
3(%; 6.3 1 1 2 4 azl(J)
- (z) (z) _
i =9,10; k%) = 1g’ =2
G) Gy, 1 a3% Gy, N
ug (21 ) = 2y ¢ 3 % *tiz-)=0
3z
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3) _ _ 3 -1
22" = Gy )
(z) !
_ z
j=11; k3 =1
. 1
) _ W1 G) _ 1 ,-1
2 -Yolm T 7 s m )
j=12; x2) -3
() 3) %, 1/3
2977 =0, 2370 = L= ¥y 5 =) ]
2z

3 =13,14,15; k) - k2 =2 =1

3 2

. 33y 3 3%, .2 By .

) 1 o _(J) 1 1 _(@3) 2 _(j) -
p(z8)y =L _ 2, + L z + —220) 4y <o,
3% 6 73 1 2.2 1 3z "1 3

. P
(J) _ _ 3 1
227 TR TEy )
1
Polynomials P4(z1(3)), v4(z1(j)), u4(z1(j))

Gy 1 P 1 0 P g 2y (5)?
P, (z ) = 5 z + = z + = zZ
4%y oz A 3T 3 A1 T 77 1

3 .
* 323 z]fJ) * iy
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] l,) £1% .
V4 (Z{j )) = 1 (J) 1 )

ir Taz 1 * 3z Z10 7 YV,
4 .2
24y 4 22y 2
(J) 1 o (J) 1 1 )
u ") = g7 o Zq 3T 22 % oYy

2. Kpressions for the functions Fiz’j) , 1 =0,1,2,

For j = 1,4,5,11,13,14,15:

. 31
(z,3) _ (z,3) _ 1 (i)
Fo = I Fl =35z %A1 t 1y,
SCIERINES QU COIN 2°L ()2 2L (5
"a_zz +§';2_z1 tiz BTt
For j = 2,3,6,7,9,10:
. 31,
(z,3) _ (z,3) _ (J)
Fs =1 Fy = az
2
) 31 . 3°1 .
(z,53) _ _ 1 Gy ;1 1 (J) _
Fy S % otz ¢ I -
For j = 8, 12:
. ) 3 .
(z,3) _ (z,3) _ Pe))
Fo L F1 =35z A ’

2
rEd) . 11 O WL W C

3. Expressions for wi, I. (i =0,1,2)

1
?H aﬁl
] = - —2 =
b, T( +9;- Q), L =Tz,
3 3 Ly
|b1 = Hl Hl dtl a—Hl" T ,
Ba a
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