Vol. 44 (1991) [391-396]

# FINITE TYPE PSEUDO-UMBILICAL SUBMANIFOLDS IN A HYPERSPHERE 

## Shi-jie Li

The notion of finite type submanifolds was introduced by B.Y. Chen. In this article we study 2- and 3-type pseudo-umbilical submanifolds in a hypersphere. Two theorems in this respect are obtained.

## 1. Introduction

A submanifold $M$ of a Euclidean $m$-space $E^{m}$ is said to be of finite type if each component of its position vector $X$ can be written as a finite sum of eigenfunctions of the Laplacian $\Delta$ of $M$, that is,

$$
\begin{equation*}
X=X_{0}+\sum_{t=1}^{k} X_{i_{t}} \tag{1.1}
\end{equation*}
$$

where $X_{0}$ is a constant vector and $\Delta X_{i_{t}}=\lambda_{i_{t}} X_{i_{t}}, t=1,2, \ldots, k$. If in particular all eigenvalues $\left\{\lambda_{i_{1}}, \ldots, \lambda_{i_{k}}\right\}$ are mutually different, then $M$ is said to be of $k$-type. A $k$-type submanifold is said to be null if one of the $\lambda_{i_{t}}, t=1,2, \ldots, k$, is null. It is easy to see that if $M$ is compact, then $X_{0}$ in (1.1) is exactly the centre of mass in $E^{m}$. A submanifold $M$ of a hypersphere $S^{m-1}$ of $E^{m}$ is called mass-symmetric in $S^{m-1}$ if the centre of mass of $M$ in $E^{m}$ is the centre of the hypersphere $S^{m-1}$ in $E^{m}$ (see [1] for details).

In terms of finite type submanifolds, a well-known result of Takahashi [6] says that a submanifold $M$ in $E^{m}$ is of 1-type if and only if it is either a minimal submanifold of $E^{m}$ or a minimal submanifold of a hypersphere of $E^{m}$. In the first case $M$ is of null 1-type and in the last case $M$ is mass-symmetric in $S^{m-1}$. In [3] it was proved that a compact 2 -type hypersurface of a hypersphere is mass-symmetric if and only if it has constant mean curvature. In [5] it was proved that every 2 -type pseudo-umbilical submanifold of $E^{m}$ with constant mean curvature is either spherical or null 2-type. And in [4] some examples were given for spherical 2-type pseudo-umbilical surfaces, which is mass-symmetric.

In this article we prove the following.

[^0]Theorem 1. Let $M$ be a pseudo-umbilical submanifold of a hypersphere $S^{m-1}$ in $E^{m}$. If $M$ is of 2-type, then $M$ is a non-null 2-type submanifold of $S^{m-1}$ with constant mean curvature. In particular, if $M$ is compact, then $M$ is mass-symmetric.

Theorem 2. Let $M$ be a pseudo-umbilical submanifold of a hypersphere $S^{m-1}$ in $E^{m}$ with constant mean curvature. If $M$ is of 3-type, then $\|D H\|$ is constant if and only if $\|D H\|^{2}$ is harmonic. In particular, if $M$ is closed, then $M$ is mass-symmetric.

## 2. Some basic formulas

Let $M$ be an $n$-dimensional (connected) submanifold of the unit hypersphere $S^{m-1}(1)$ of $E^{m}$ centred at the origin. Then the position vector $X$ of $M$ in $E^{m}$ is normal to $M$ as well as to $S^{m-1}(1)$. Let $A, h, D$ and $H$ denote the Weingarten map, the second fundamental form, the normal connection and the mean curvature vector of $M$ in $E^{m}$, respectively, and by $A^{\prime}, h^{\prime}, D^{\prime}$ and $H^{\prime}$ the corresponding invariants of $M$ in $S^{m-1}(1)$. A submanifold $M$ is said to be pseudo-umbilical if its Weingarten map with respect to the mean curvature vector is proportional to the identity map. It is clear that $M$ is pseudo-umbilical in $E^{m}$ if and only if so it is in $S^{m-1}$. We put $\alpha^{2}=\langle H, H\rangle$ and $\beta^{2}=\left\langle H^{\prime}, H^{\prime}\right\rangle$, where $\langle$,$\rangle denotes the inner product of E^{m}$. We have

$$
\begin{equation*}
H=H^{\prime}-X, \quad H^{\prime}=\beta \xi, \quad \alpha^{2}=\beta^{2}+1 \tag{2.1}
\end{equation*}
$$

for some unit normal vector $\xi$. Let $\left\{e_{1}, \ldots, e_{n}\right\}$ be an orthonormal tangent frame of $M$. For any vector $\eta$ normal to the submanifold $M$ we put

$$
\begin{align*}
& \widetilde{A}(\eta)=\sum_{i=1}^{n} h\left(e_{i}, A_{\eta} e_{i}\right)  \tag{2.2}\\
& \operatorname{tr}\left(\nabla A_{\eta}\right)=\sum_{i=1}^{n}\left\{\left(\nabla_{e_{i}} A_{\eta}\right) e_{i}+\operatorname{tr} A_{D_{\eta}}\right\} \tag{2.3}
\end{align*}
$$

where $\operatorname{tr} A_{D_{\eta}}=\sum_{i=1}^{n} A_{D_{e_{i}} \boldsymbol{\eta}} e_{i}$. Then we have the following useful formulas obtained in [1, 2].

$$
\begin{align*}
& \Delta H=\Delta^{D} H+\tilde{A}(H)+\operatorname{tr}\left(\bar{\nabla} A_{H}\right)  \tag{2.4}\\
& \operatorname{tr}\left(\nabla A_{H}\right)=\frac{n}{2} \operatorname{grad} \alpha^{2}+2 \operatorname{tr} A_{D H} \tag{2.5}
\end{align*}
$$

where $\Delta^{\boldsymbol{D}}$ denotes the Laplacian operator associated with the normal connection $D$.
By using the same method of the proofs of (2.4) and (2.5) given in [1, 2] we may obtain the following.

Lemma 2.1. Let $M$ be an $n$-dimensional submanifold of $E^{m}$. Then for any vector field $\eta$ normal to $M$ we have

$$
\begin{align*}
& \Delta \eta=\Delta^{D} \eta+\widetilde{A}(\eta)+\operatorname{tr}\left(\bar{\nabla} A_{\eta}\right)  \tag{2.6}\\
& \operatorname{tr}\left(\nabla A_{\eta}\right)=n \sum_{i=1}^{n}\left\langle\eta, D_{e_{i}} H\right\rangle e_{i}+2 \operatorname{tr} A_{D \eta} \tag{2.7}
\end{align*}
$$

From (2.4), (2.5) and Lemma 2.1, we may obtain the following.
Lemma 2.2. ([5]). If $M$ is a pseudo-umbilical submanifold of $E^{m}$, then we have

$$
\begin{equation*}
\Delta H=\Delta^{D} H+n \alpha^{2} H+\frac{4-n}{2} \operatorname{grad} \alpha^{2} \tag{2.8}
\end{equation*}
$$

## 3. Proof of Theorem 1

Let $M$ be a 2-type submanifold of $S^{m-1}(1)$ of $E^{m}$ centred at the origin. Then (1.1) becomes

$$
\begin{equation*}
X=X_{0}+X_{i_{1}}+X_{i_{2}}, \quad \Delta X_{i_{1}}=\lambda_{i_{t}} X_{i_{1}}, \quad t=1,2 . \tag{3.1}
\end{equation*}
$$

Since $\Delta X=-n H$, we have

$$
\begin{equation*}
\Delta H=b H+c\left(X-X_{0}\right) \tag{3.2}
\end{equation*}
$$

where $b=\lambda_{i_{1}}+\lambda_{i_{2}}, c=\lambda_{i_{1}} \lambda_{i_{2}} / n$.
If $M$ is pseudo-umbilical in $E^{m}$, then from Lemma 2.2 and (3.2) we have

$$
\begin{equation*}
\Delta^{D} H+n \alpha^{2} H+\frac{4-n}{2} \operatorname{grad} \alpha^{2}=b H+c\left(X-X_{0}\right) \tag{3.3}
\end{equation*}
$$

which implies

$$
\begin{align*}
& \frac{4-n}{2} \operatorname{grad} \alpha^{2}=-c\left(X_{0}\right)^{T}  \tag{3.4}\\
& \left\langle\Delta^{D} H, X\right\rangle-\left(n \alpha^{2}-b+c\right)+c\left\langle X_{0}, X\right\rangle=0 \tag{3.5}
\end{align*}
$$

where $\left(X_{\alpha}\right)^{T}$ denotes the tangent component of $X_{0}$.
Since $\left\langle\Delta^{D} H, X\right\rangle=\Delta(H, X\rangle=0$, (3.5) becomes

$$
\begin{equation*}
n \alpha^{2}-b+c=c\left\langle X_{0}, X\right\rangle \tag{3.6}
\end{equation*}
$$

Taking the gradient of both sides of (3.6), we have

$$
\begin{equation*}
n \operatorname{grad} \alpha^{2}=c\left(X_{0}\right)^{T} \tag{3.7}
\end{equation*}
$$

Combining (3.4) and (3.7), we obtain

$$
\begin{equation*}
\frac{4+n}{2} \operatorname{grad} \alpha^{2}=0 \tag{3.8}
\end{equation*}
$$

which implies that $\alpha$ is constant on $M$ and, moreover, by (3.7)

$$
\begin{equation*}
c\left(X_{0}\right)^{T}=0 \tag{3.9}
\end{equation*}
$$

In (3.9), if $c=0$, that is, if $M$ is of null 2-type, then by (3.6) and (3.3), we have $\Delta^{D} H=0$. Consequently, we have

$$
\begin{equation*}
0=\left\langle\Delta^{D} H, H\right\rangle=\frac{1}{2} \Delta \alpha^{2}+\|D H\|^{2}=\|D H\|^{2} \tag{3.10}
\end{equation*}
$$

Since we have shown above that $\alpha$ is constant on $M$, (3.10) and (2.1) imply that $D \xi=0$ and $\beta=$ constant. Put $\eta=\xi+\beta X$ and take the covariant derivative of $\eta$ in $E^{m}$ with respect to any vector $Y$ tangent to $M$, we have

$$
\begin{equation*}
\widetilde{\nabla}_{Y} \eta=\widetilde{\nabla}_{Y} \xi+\beta \widetilde{\nabla}_{Y} X=-A_{\xi} Y-\beta A_{X} Y=0 \tag{3.11}
\end{equation*}
$$

Thus the normal vector field $\eta$ on $M$ is constant. It implies that $M$ is in the intersection of $S^{m-1}$ and a hyperplane of $E^{m}$, that is, in a $S^{m-2}$ of $E^{m-1}$. Now we may consider $M$ as a pseudo-umbilical submanifold of $S^{m-2}$ which is still of null 2-type. Then by induction $M$ would be an open portion of $S^{n}$ in $E^{n+1}$, but which is not of 2-type. This is a contradiction.

Now we may assume that $M$ is of non-null 2-type, then from (3.9) we have $\left(X_{0}\right)^{T}=$ 0 . Consequently, we have

$$
\begin{equation*}
\operatorname{grad}\left\langle X-X_{0}, X_{0}\right\rangle=\left(X_{0}\right)^{T}=0 \tag{3.12}
\end{equation*}
$$

which implies that either $X_{0}=0$, or $X_{0} \neq 0$ and $M$ is in the intersection of $S^{m-1}$ and a hyperplane of $E^{m}$. But the latter case could not occur since by an argument similar to the one mentioned above it would lead to a contradiction. Consequently, if $M$ is compact, since in this case $X_{0}$ is the centre of mass of $M$ in $E^{m}$, then $M$ is mass-symmetric in $S^{m-1}$.

## 4. Proof of Theorem 2

Let $M$ be a 3-type submanifold of $S^{m-1}(1)$ of $E^{m}$ centred at origin. Then, as in Section 3, we have

$$
\begin{gather*}
X=X_{0}+X_{i_{1}}+X_{i_{2}}+X_{i_{3}}, \quad \Delta X_{i_{t}}=\lambda_{i_{t}} X_{i_{t}}, \quad t=1,2,3 .  \tag{4.1}\\
\Delta^{2} H=a \Delta H+b H+c\left(X-X_{0}\right) \tag{4.2}
\end{gather*}
$$

where $a=\sum_{t} \lambda_{i_{t}}, b=-\sum_{t<a} \lambda_{i_{1}} \lambda_{i_{4}}$, and $c=\lambda_{i_{1}} \lambda_{i_{2}} \lambda_{i_{3}} / n$.
If $M$ is a pseudo-umbilical submanifold in $E^{m}$ with constant mean curvature, then by Lemmas 2.2 and 2.1, we have

$$
\begin{align*}
\Delta H & =\Delta^{D} H+n \alpha^{2} H  \tag{4.3}\\
\Delta^{2} H & =\Delta\left(\Delta^{D} H\right)+n \alpha^{2} \Delta H  \tag{4.4}\\
& =\Delta^{D} \Delta^{D} H+\tilde{A}\left(\Delta^{D} H\right)+\operatorname{tr}\left(\bar{\nabla} A_{\Delta^{D}} D\right)+n \alpha^{2} \Delta^{D} H+n^{2} \alpha^{4} H
\end{align*}
$$

From (4.2)-(4.4), we have

$$
\begin{gather*}
\left\langle\Delta^{D} \Delta^{D} H, X\right\rangle+\left\langle\tilde{A}\left(\Delta^{D} H\right), X\right\rangle+n \alpha^{2}\left\langle\Delta^{D} H, X\right\rangle+n^{2} \alpha^{4}\langle H, X\rangle \\
\quad=a\left\langle\Delta^{D} H, X\right\rangle+\left(n \alpha^{2} a+b\right)\langle H, X\rangle+c-c\left\langle X_{0}, X\right\rangle \tag{4.5}
\end{gather*}
$$

In (4.5), we have

$$
\begin{gather*}
\left\langle\Delta^{D} H, X\right\rangle=\Delta\langle H, X\rangle=0, \quad\left\langle\Delta^{D} \Delta^{D} H, X\right\rangle=\Delta\left\langle\Delta^{D} H, X\right\rangle=0  \tag{4.6}\\
\left\langle\widetilde{A}\left(\Delta^{D} H\right), X\right\rangle=\left\langle\Delta^{D} H, \tilde{A}(X)\right\rangle=\left\langle\Delta^{D} H, \sum_{i} h\left(e_{i}, A_{X} e_{i}\right)\right\rangle  \tag{4.7}\\
=-n\left\langle\Delta^{D} H, H\right\rangle=-n\|D H\|^{2}
\end{gather*}
$$

Thus (4.5) implies

$$
\begin{equation*}
\|D H\|^{2}=-\left(n^{2} \alpha^{4}-n \alpha^{2} a-b+c\right) / n+c\left(X, X_{0}\right\rangle / n . \tag{4.8}
\end{equation*}
$$

Taking the Laplacian of both sides of (4.8), we obtain

$$
\begin{equation*}
\Delta\|D H\|^{2}=c \Delta\left\langle X, X_{0}\right\rangle / n=-c\left(H, X_{0}\right\rangle . \tag{4.9}
\end{equation*}
$$

Consequently, $\|D H\|^{2}$ is harmonic if and only if $c\left(H, X_{0}\right)=0$, that is, (i) $c=0$, or (ii) $c \neq 0$ and $\left\langle H, X_{0}\right\rangle=0$.

In Case (i), $M$ is of null 3-type and by (4.8) $\|D H\|^{2}=-\left(n^{2} \alpha^{4}-n \alpha^{2} a-b\right) / n$ which is a constant.

In Case (ii), from (4.2) we have

$$
\begin{equation*}
\left\langle\Delta^{2} H, X_{0}\right\rangle=a\left\langle\Delta H, X_{0}\right\rangle+b\left\langle H, X_{0}\right\rangle+c\left\langle X-X_{0}, X_{0}\right\rangle . \tag{4.10}
\end{equation*}
$$

Since we have

$$
\begin{equation*}
\left\langle\Delta H, X_{0}\right\rangle=\Delta\left\langle H, X_{0}\right\rangle, \quad\left\langle\Delta^{2} H, X_{0}\right\rangle=\Delta\left\langle\Delta H, X_{0}\right\rangle=\Delta^{2}\left\langle H, X_{0}\right\rangle \tag{4.11}
\end{equation*}
$$

(4.10) implies $\left\langle X-X_{0}, X_{0}\right\rangle=0$. With an argument similar to the one mentioned in the proof of Theorem 1, we may conclude that $X_{0}$ must be the origin of $E^{m}$. Then (4.8) gives $\|D H\|^{2}=-\left(n^{2} \alpha^{4}-n \alpha^{2} a-b+c\right) / n$ which is a constant. In particular, if $M$ is closed (that is, $M$ is compact and without boundary), then because $\lambda_{i_{1}}, \lambda_{i_{2}}$ and $\lambda_{i_{3}}$ are positive, $M$ cannot be null. Moreover, in this case, because $X_{0}$ is the centre of mass of $M$ in $E^{m}, M$ is mass-symmetric in $S^{m-1}$.

## References

[1] B.Y. Chen, Total mean curvature and submanifolds of finite type (World Scientific, Singapore, New Jersey, London, Hong Kong, 1984).
[2] B.Y. Chen, '2-type submanifolds and their applications', Chinese J. Math. 14 (1986), 1-14.
[3] B.Y. Chen, M. Barros and O.J. Garay, 'Spherical finite type hypersurfaces', Algebras, Groups and Geometries 4 (1987), 58-72.
[4] O.J. Garay, 'Spherical Chen surfaces which are mass-symmetric and of 2-type', J. Geom. 33 (1988), 39-52.
[5] S.J. Li, '2-type pseudo-umbilical submanifolds', Bull. Soc. Math. Belg. Ser. B 43 (1991), 69-74.
[6] T. Takahashi, 'Minimal immersions of Riemannian manifolds', J. Math. Soc. Japan 18 (1966), 380-385.

Department of Mathematics
South China Normal University
Guangzhou
China


[^0]:    Received 26 November 1990
    Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/91 \$A2.00+0.00.

