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Abstract 

For positive integers n and k, with n>2k, let = uv, where each prime factor of u is less 

than k, and each prime factor of v is at least equal to k. It is shown that u<v holds with just 

12 exceptions, which are determined. If = UV, where each prime factor of U is at most 

equal to k, and each prime factor of V is greater than k, then U< V holds with at most finitely 
many exceptions, 19 of which are determined. It is conjectured that there are no others. 

Subject classification (Amer. Math. Soc. (MOS) 1970): 10A05, 10A25. 

1. Introduction 

In this paper our basic concern is with the product of the small prime factors in 
runs of consecutive integers. Let us fix a positive integer k and examine runs of 
consecutive integers having no prime factor greater than k. Such runs cannot be 
very long (see Ecklund and Eggleton (1972)). Indeed, a theorem of Stormer (1897) 
shows there are only finitely many pairs of consecutive integers with no prime 
factor greater than k. Moreover, it was proved independently by Sylvester (1892) 
and Schur (1929) that any run of k consecutive integers, each larger than k, 
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contains at least one multiple of a prime greater than k. This may be expressed as
follows:

THEOREM (Sylvester-Schur). For positive integers n andk, with n^2k, the binomial

coefficient I ) has a prime factor greater than k.

An elementary proof of the theorem in this form was given by Erdos (1934) and
a proof of a stronger theorem, also essentially due to Erdos, appears in Ecklund
and Eggleton (1972).

By a theorem of Mahler (1961), for any given real e>0 and positive integer k,

the largest divisor of I I consisting entirely of primes not exceeding k is less than

n1+e, provided n is sufficiently large. Note also that the largest power of 2 dividing

I I cannot exceed in. Thus with Mahler's Theorem we deduce the following

result, which contains more quantitative information than the Sylvester-Schur
Theorem, though it lacks an effective bound on k.

THEOREM. For positive integers n andk, let I I = UV, where the prime factors of
\kf

U do not exceed k and the prime factors of V are all greater than k. Then U< V
provided n is sufficiently large compared with k.

Of course (/and V depend on n and k in this theorem, but it is convenient not to
make this explicit in the notation.

When discussing the prime factors of runs of k consecutive integers, it is in fact
natural to distinguish between primes which could possibly divide two or more
members of the run, and those which are larger so can divide at most one member
of the run: in other words, to distinguish primes strictly less than k from those at
least as large as k. In this paper our main theme is the proof of the following fact.

THEOREM. For positive integers n and k, with n > 2k, let I J = uv, where the prime

factors ofu are all less than k and the prime factors ofv are all at least as large as k.
Then u>v holds in just 12 cases, namely

. a Q. f,°). Q. a Q. a Q-
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[3] Prime factorization of binomial coefficients 259

Using the notation I I = UV, as in the earlier theorem, we shall show as a

:orollary to part of the proof of the above theorem that there are only finitely
many cases with n^2k for which U> V. Seven cases where this occurs, in addition
to the 12 with u>v, are the following:

• (2
5

8)- (*)• ( 3 ) . C D -
In addition, we note that I I is a near miss, with V/U<l.O6.) However,

Mahler's Theorem does not give an effective upper bound on the solutions, and
ive are unable to prove completeness of our list for cases with k = 3,5,7, though
t is complete for all other values of k. We strongly conjecture that the list is also
:omplete for these three problematic values of k.

2. Plan of attack

For convenience, we shall frequently replace n by ck, where c ̂  2 is a rational

( ck\
\ — uv,

vhere the product separates prime factors less than k from those greater than or
:qual to k, then u> v holds in only 12 cases. To do this we divide the problem into
ive distinct parts, represented in Diagram 1.

( ck\
I > w2 by comparing

he binomial coefficient with the square of a simple overestimate for the product of
ts small prime factors. In Region II, where k is large and c is small, we show that
'ck\
,\<v2 by comparing the binomial coefficient with the square of an under-

\'c /
:stimate for the product of its large prime factors. In Region III, where k is small
ind c is large, we need to make a careful overestimate of u and compare it with the
rorresponding underestimate of v, showing that c is large enough for v to dominate,
n Region IV, where k and c are both relatively small, all cases are directly examined
>y computer. This checking is carried out for each k in the range 1 ^ k < 494. For
«rtain k < 24 it turns out that the lower bound on c (which we calculate to ensure
hat u < v) lies above the top of the search range for Region IV, obtained by extrapo-
ation of the lower bound used for Region III. Region V comprises these remaining
ases, which we finally eliminate by more sensitive systematic estimates of the size
)f u. In fact, to get the upper bound for Region V in three cases, we reduce the
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possible instances to occurrences of special configurations of numbers with no
large prime factors, and use the tabulation due to Lehmer (1964) to locate and
examine all such configurations.

2635^

\

11.53

10

2 -

\

\

^Region V

\

. \ c

\ vc

Region IV

[—

Region III

. 4.68+2630/k

= 6.07+l940/k

\v
Region 1

k-M9
/

c- 11.53.

Region II

25 175 494 649

DIAGRAM 1. The regions for the various arguments used in the proof.

3. Region I: k and c both large

A basic estimate, given in Erdos (1934) and Erdos and Graham (1976), shows

that if pa is a divisor of I I, then pa^n. Hence

(1)

where ir(x) denotes the number of primes not exceeding x. By a result of Rosser
and Schoenfeld (1975), we have

(2)
log*

for x> 1.

Thus, if we anticipate the bound on k for Region I and take k ^ 649 and n = ck,
it follows that

(3) log M < 1.23165A: log dt/log k.
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( ck\
I, we use Stirling's

formula,

ivhere S is a real number depending on n, and satisfying O<S<1. With
md c> 11.53, it follows from (4) that

;5) ^ log (c£\ > clog c - ( c - l ) log ( c - 1 ) - 0.00641.

Fhe desired inequality is u < v, which is equivalent to

By (3) and (5), this certainly holds if

7) clogc-(c-l)log(c-l)-0.00641>2.46330(l+logc/logA;).

K routine calculation with k ^ 649 verifies that (7) holds for c > 11.53, so it follows
hat u<v (and indeed U< V) holds in the region determined by these bounds on
: and c. (Of course, we arrived at these particular bounds on k and c for Region I
)y successive approximation, with an eye to the bounds forced on us by our
nethods for dealing with Regions II and III. If we reduced the bound on c in
legion I, it would be at the expense of increasing the bound on k.)

4. Region II: k large, c small

( ck\
I = uv, the definition of v ensures that it is divisible by every prime

>etween (c— \)k and ck, for any c>2. Indeed, for any positive integer r^c, we
ee that v must be divisible by each prime which is between (c—l)k/r and ck/r
md which is at least as large as k. Let Pr denote the product of the set of primes p
atisfying (c — 1) k/r <p < ck/r and p^k, for any positive integer r < c. Then we have

8) V^UPr-
r*Sc

^ recent result of Schoenfeld, reported in a footnote added in proof in Schoenfeld
1976), gives a sharp upper bound on 6(x), which is the sum of the logarithms of
ill primes not exceeding x. This bound is

9) 6(x)= £ log/7<1.000081x forxjs l .

n order to estimate the product Pr we also need lower bounds on 6(x) for values
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of x up to about 104. Write

(10)

[6]

A short table of values of a, and associated lower bounds on x, is given by Rosser

and Schoenfeld (1962) and supplemented in Rosser and Schoenfeld (1975), where

the bound

01) 6(x)>0.990x for x>32057

is given. The best value of a available, when a lower bound on x is given, can be

deduced from these bounds of Rosser and Schoenfeld in conjunction with the

tabulations of Appel and Rosser (1961). However, since the latter are relatively

inaccessible, we present a table of values of a when the lower bound on x lies in

the interval up to 32057 (see Table 1). This table is based on direct computation

TABLE 1

Values of x0 and successive infima for a such that 6(x)><xx for all real

xo

2
3
5
7
11
13
17
29
37
41
59
67
71
97
101
127
149
163
223
227
229
347
349
367
419
431
557
563
569
587

a

0.231
0.358
0.485
0.486
0.595
0.606
0.662
0.703
0.722
0.761
0.792
0.807
0.816
0.828
0.843
0.8499
0.8694
0.8695
0.8780
0.8940
0.8980
0.9096
0.9130
0.9134
0.9160
0.9194
0.9208
0.9222
0.9264
0.9278

Xo

593
599
601
607
809
821
853
1423
1427
1429
1433
1447
1451
1481
1973
1987
1993
2237
2657
2659
3299
3301
3307
3449
3457
3461
3511
3527
3529
3533

a

0.9291
0.9367
0.9380
0.9383
0.9409
0.9449
0.9455
0.9480
0.9517
0.9541
0.9550
0.9573
0.9576
0.9600
0.9609
0.9618
0.9629
0.9632
0.9654
0.9669
0.9688
0.96952
0.96962
0.96973
0.97097
0.97107
0.97130
0.97306
0.97427
0.97475

x0

5381
5387
5393
5399
5407
5413
5639
5641
7451
7477
7481
7487
7499
7517
8597
8623
8627
8663
11777
11779
11783
11801
11807
11813
11821
11897
11923
11927
12097
12373

a

0.97526
0.97577
0.97628
0.97642
0.97693
0.97749
0.97867
0.97886
0.97903
0.97970
0.98011
0.98092
0.98094
0.98110
0.98129
0.98189
0.98199
0.98228
0.98291
0.98337
0.98346
0.98376
0.98405
0.98418
0.98420
0.98441
0.98487
0.98500
0.98509
0.98513

*o

14387
14401
14407
14533
19373
19379
19381
19387
19417
19421
19423
19427
19681
19687
19697
19913
19961
20873
20879
20887
20897
21481
21487
21491
31957
32051
32057

a

0.98551
0.98576
0.98578
0.98608
0.98628
0.98669
0.9868973
0.9868979
0.98720
0.98760
0.98791
0.98821
0.9884167
0.9884169
0.98862
0.98872
0.98878
0.98897
0.989074
0.989077
0.989080
0.989268
0.989548
0.989835
0.989845
0.989984
0.990
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of 6(x)/x for the primes up to 32057, and uses (11) to cover the region beyond this 
point. 

Recall that the desired inequality is u < v, which is equivalent to 

02) 

From (4) we have 

(13) 
1 (ck\ 
•^logL | < c l o g c - ( c - l ) l o g ( c - l ) for C > 1 . 

Now, using (8) and (13), if m^c<m+1 for some integer 2, the inequality (12) 
is certainly satisfied if 

,, , m , \ 8m ^ 1 a(r) 
(14) | log(m + l) _ l 0 g i » ) + - £ — S - < 2 — , 

\ m+l ) m + l r j £ m r r^m r 

where 8 = 1.000081 comes from (9), and a(r) is the value of <x in (10) which holds 
for x ^ mk/r. By successive approximation using Table 1, we obtain a lower bound 
on the value of k for which (12) certainly holds when m^c<m + \. This infor
mation, for 2 < m ^ l l , is given in Table 2. The left boundary of Region II is 
determined by this data (see Diagram 1). Thus (12) is established over a range 
of c which reaches (and overlaps) the range covered by Region I. The method 
clearly establishes U< V at the same time. 

TABLE 2 

Values of m and k0(m) such that inequality (14) is satisfied if k>k0(m) 

m k0(m) m k0(m) 

2 175 7 398 
3 153 8 433 
4 206 9 494 
5 278 10 571 
6 300 11 649 

5. Region JTJ: k small, c large 

By expressing in the form uv = n(n — 1)... («—k+l)/kl a good overestimate 

for u can be obtained as follows. For any prime p< k, let \(p) be the maximum 
exponent of the powers of p occurring as factors of any of the integers 
n,n — \,...,n—k+\. Thus 

(15) AQO = max{/*(a): pΉ\\a, n>a>n-k}. 
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Also let ap be the corresponding largest multiple of pMp\ that is,

(16) ap = ma.x{a:pMp)\a, n>a>n-k}.

We consider the set of these multiples of maximum powers of small primes,

(17) S(n,k)={ap:p<k),

where the cardinality of S(n,k) is at most ir(k— 1), and may be less since it is
possible that ap = aq occurs for distinct primes p,q.

For any prime p<k,we define the intrinsic exponent K(P, n,k)o{pin the product
n(n—l)...(w — k+1) to be the maximum exponent K for which pK is a factor of
n{n— l)...(/j — k+l)/ap. Note that if n — ap^i>n — k — ap and i^O, then pp\\ap + i
implies /^| | / , since no i can contain p to a higher power than X(p). Thus ic(p,n,k)
is equal to the maximum exponent for which p" divides the product

( k— 1 \
- ) 1S

integer. Now let P(n, k) denote the intrinsic part of the product«(« — 1)... (n — A: +1),
defined by

(18) P(n,k)= n pK{v-n-k).
p<k

Then we have just shown that

(19) P(n,k)\(k-\)\

If A: is composite, all prime factors of A:! are less than k, so u^P(n,k)U(S)lkl,
where 11(5) is the product of the integers in S(n,k). Taking the largest possible
elements for S(n,k), and the greatest possible number, and using (19) to provide
the bound P(n, k) s? (A: -1) ! , we get

(20) u ̂  n(n — 1)... (n — IT +1 )/k fork composite,

where n = n(k— 1). Similarly, if k is prime, the product of prime factors of A:!
which are less than k is (A:— 1)!, and the corresponding estimates lead to

(20') « S S H ( « - 1 ) ...(«-77+1) for A: prime,

where n = ir(k— 1) as before.
It is now clear from (20) and (20') that the desired inequality u<v follows if

(21) (A;-l)!/i(n-l)...(«-77+l)<A:(n-7r)(n-77-l)...(«-A:+l)

for k composite,
and if

(21') A:!«(n-l) . . . («-7r+l)<(«-77)(«-7r-l) . . . (n-A:+l) for A: prime.
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If k>2*{k-1), the left members of (21) and (21') are of lower degree in n than
the right members: this actually holds for all k except k = 4, 6 and 8. So for each k,
apart from these three exceptions, we can determine the smallest value of n = ck
such that the corresponding one of (21) and (21') holds. To deal with cases not
covered in Regions I and II, we computed this smallest n for &<649, and for
simplicity determined the following linear bound from our data, so (21) and (21')
hold if

(22) n = cfc>6.07A:+1940 for 25 < k < 649.

This determines the boundary of Region III. For k < 25, the corresponding lower
bounds are given in Table 3. Apart from the three cases in which the method does
not apply, it is evident that (22) is actually a justified bound except when k = 1,9,
14, 18, 19, 20, 21 and 24.

TABLE 3

Values of k and nx(k) such that inequalities (21) and (21') are satisfied

k

2
3
4
5
6
7
8
9

n^k)

3
9
—
128
—.

5055
—

4504

k

10
11
12
13
14
15
16
17

»i(*)

207
356
1847
1860

21121
1823
557
835

k

18
19
20
21
22
23
24
25

2137
2639
8865
2618
1180
1620
3236
1615

As indicated in the Introduction, we are also interested in determining all

instances of I I with n^2k for which U> V. When k is composite, these are just

the instances for which u > v. When k is prime, (20') is replaced by

(20") U^n(n-\)...(n—n)lk for A: prime,

where -n = n(k. — X) as before. We can ensure that U< V by requiring

(21") (k-l)\n(n-l)...(n—n-)<k(n—it-1)...(«-£+1) for A: prime.

The linear bound

(22') « = c/t^4.68A:+2630 for 25 < A: =* 649

corresponds to the bound (22), and ensures that (21") holds. The left member of
(21") is of lower degree in n than the right member for every prime k> 7. So apart
from k = 3, 5 and 7 (where our methods do not yield an explicit bound), the lower
bounds on n for validity of (21") for odd prime k ̂ 23 are given in Table 4.
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TABLE 4

Values of k and n2(k) such that inequality (21")
is satisfied if n>nz(k)

k

3
5
7
11

—

329926

k

13
17
19
23

36846325
10748
69626
8702

6. Region IV: k and c both small

To investigate the Region IV, where k ̂  1 is subject to the upper bounds in

Table 2, and c ̂  2 is subject to the upper bound (22), a simple computer-assisted

search was carried out. In practice, for c we used the bound (22'), so that instances

for which U> V holds were also determined. All the instances listed in the Intro-

duction were found this way. (Indeed, the near miss I I is the only other instance

in the region with V/U< 1.1).

7. Region V: k^24, c large

Here we sharpen the techniques applied to Region III. The intrinsic part P(n, k)
of the product n(n-l)...(n-k+l) was denned in (18). We now also define the
extrinsic part Q(n, k) of this product, by

(23) Q(n, k) = 11(5) / n PMp),
I P<k

where FI(5) is the product of all the integers in S(n,k), given in (17). Thus Q{n,k)
is the product of prime factors greater than or equal to k in the numbers ap.
With 77 = Tr(k— 1), we can now write

r>A\ n(nl)...(nTT+l) P(n,k)
(24) u ̂  - ^ — ~ for k composite,

and k times this bound for k prime. Since I j = uv, the desired inequality u<v

certainly holds if

(25) n(n-l)...(n—ir+l)<(n-n)(n-iT-l)...(n-k+l)-R(n,k),
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where

(26) R(n,k) =

We use (25) to deal with the troublesome cases I I = uv with k = 4, 6 and 8. To

illustrate the method, the case k = 8 will now be discussed briefly.
Using the notation introduced in (17), if \S(n,8)|<3 it is easy to verify that

u<v must hold if/i>36. So now suppose |S(n,8)| = 4. If P(«,8)2<8!, it follows
from (19) that P(n,8)^ 180, and then R(n,8)^56/45, using (26). In this case, (25)
holds if n ̂  77. For larger P{n, 8) we still have P(n, 8) ̂  7! by (19), so if Q(n, 8) Ss 29
then R(n,8)5*841/630>56/45, so (25) certainly holds if n^ll. It remains to check
the cases with Q(n, 8) < 29. By (23), the only possibilities are

Q(n,8)e{l, 11,13,17,19,23}.

Moreover, the direct search reported in the previous section was carried out up to
n = 2667 for k = 8, according to (22')- Thus it remains to locate all those runs of
k = 8 consecutive integers, with largest member n ̂  2668, which contain three
numbers having no prime factor greater than 7, and a fourth with at most one
prime factor (counting multiplicity) greater than 7, but none greater than 23.
Either the first three contain a pair of the form a, a+d with d = 1, 2 or 4, or else
the first three are of the form a, a+3, a+6, in which case the fourth is necessarily
adjacent to one of them. All occurrences of such configurations can be deduced
from the tables in Lehmer (1964), by first locating all possible pairs described.
Each potential configuration is easily tested and rejected, so no further instances of
u> v with k — 8 exist.

The other cases to be checked for u> v are k = 1,9, 14, 20 and 24, and those to
be checked for U> V are k = 11, 13, 17, 19 and 23. Tables 3 and 4 give the
upper bound on n for each case, while (22') gives the lower bound. Again we
illustrate the method by brief discussion of one case: we choose k = 14 for this
purpose.

Let A(n, 14) denote the product, running over each prime p< 14, of the largest
prime-powers pa^n. Combining this with (18) and (19), we observe that

(27) u^A(n, 14)P(n, 14)/14! ^A(n, 14)/14.

Table 3 gives the upper bound n<21120, and ^(21120,14) = 214395«7S11*133.
Correspondingly we have v^(n—6)(«—7)...(n—13)/13! so u<v holds provided
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n> 13669. Iterating the calculation with this new bound,

,4(13668,14) = 213385574113133

shows that u < v holds provided «^5198. A further iteration leads only ton ^4157,
and ,4(5197,14) = ,4(4156,14). However, we can get down to the lower bound
0 2695 coming from (22') by noting that P(n, 14) = 0 (mod 13) holds only if
n=0(modl3). Thus, for «^4156 we have either the bound as;,4(4156,14)/13.14,
which is sharper than (27) by a factor of 13, or else one of n and n —13 is a
multiple of 2197, the largest available power of 13. In this example, observe that
there is in fact no multiple of 2197 between the current search bounds. The sharper
bound on u ensures that u < v holds throughout the current search range, so the
checking is complete. (We also made a separate check using more intricate
combinatorial arguments, in conjunction with Lehmer's tables, for all the relevant
cases in Region V.)

8. Remarks and unsolved problems

Here we shall use notation which makes explicit the dependence of U and V on
n and k, where as usual we have n ̂  2k.

The most obvious outstanding problem is to obtain an effective upper bound
on n for which U(n, k) > V(n, k) when k = 3, 5 or 7. More generally, note that
Mahler's Theorem that U(n,k)<n1+e is not effective. It would be very interesting
to obtain an effective result of the same kind, even if the result in question were
much weaker. For example, it would be useful to have U(n,k)<nkli for k>k0,
with an explicit k0.

An inequality of the form U(n, k) < n2 ek, which may hold for n < ek, would be
useful. Perhaps such an inequality even holds if «2 is replaced by n.

It would be of interest to strengthen Mahler's Theorem. For fixed k, perhaps
there are positive constants cx and c2 such that we have U(n,k)<c1n(\ogn)Ct, for
all sufficiently large n.

Consider, for fixed k, the sequence of integers n{k,r) with r = 1,2,..., defined
by taking n{k, \) = 2k and thereafter

n(k, r +1) = min {« > n(k, r): U{n, k) > U(n(k, r), k)}.

It would be interesting to study the properties of this sequence, which is analogous
to Ramanujan's sequence of highly composite numbers. Also of interest would be
the properties of the strictly increasing sequence N(k,r) with r = 1,2,..., where
N(k, r) is the rth positive integer for which there is some constant c(k, r) > 1 such
that U(n, k)lrf(Kr) achieves its maximum at n = N(k, r). This sequence is analogous
to Ramanujan's sequence of superior highly composite numbers.

In closing, we mention that other results closely related to the present paper
are given in Erdos and Graham (1976).
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