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A Multivalued Nonlinear System with the
Vector p-Laplacian on the
Semi-Infinity Interval

Michael E. Filippakis and Nikolaos S. Papageorgiou

Abstract. We study a second order nonlinear system driven by the vector p-Laplacian, with a multi-

valued nonlinearity and defined on the positive time semi-axis R+. Using degree theoretic techniques

we solve an auxiliary mixed boundary value problem defined on the finite interval [0, n] and then via

a diagonalization method we produce a solution for the original infinite time horizon system.

1 Introduction

The purpose of this paper is to study the existence of a solution for a second or-

der nonlinear system driven by the ordinary vector p-Laplacian differential operator,

with a multivalued right-hand side and defined on the semi-infinite time interval R+.
So the problem under consideration is the following:

(1.1)
−(‖x ′(t)‖p−2x ′(t)) ′ ∈ F(t, x(t), x ′(t)) a.e. on R+,
x(0) = 0, x is bounded on R+, 1 < p < +∞.

Problems of this type have been studied by Agarwal and O’Regan [1], Constantin [3],

Granas, Guenther, Lee, and O’Regan [7] and Ma [10]. In all these works p = 2

(semilinear problems), the right-hand side nonlnearity F is single-valued and the

problem is scalar. Prolems with multivalued nonlinearities defined on a finite interval

can be found in [6].

Our method of proof uses a degree theoretic technique based on the fixed point

index of Bader [2] to produce solutions valid on the finite intervals [0, n], n ≥ 1 and

finally through a diagonalization argument we obtain a solution for the infinite time

horizon problem.

2 Mathematical Background

In addition to degree theory, our approach uses notions and results from the theory

of nonlinear operators of monotone type and from multivalued analysis. For easy

reference we recall them in this section. Details can be found in [5, 9].
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Let (Ω,Σ, µ) be a complete σ-finite measure space and X a separable Banach

space. In what follows we will use the following notations:

P f (c)(X) = {C ⊆ X : nonempty, closed, (convex)},

P(w)k(c)(X) = {C ⊆ X : nonempty, (weakly-) compact, (convex)}.

A multifunction G : Ω → 2X\{∅} is said to be measurable, if for all x ∈ X, the

R+-valued function ω → d(x,G(ω)) = inf{‖x − u‖ : u ∈ G(ω)} is Σ-measurable.

We say that G is graph measurable, if

GrG = {(ω, x) ∈ Ω × X : x ∈ G(ω)} ∈ Σ × B(X),

with B(X) being the Borel σ-field of X. For P f (X)-valued multifunctions (i.e., mul-

tifunctions with nonempty, closed values), measurability and graph measurability

are equivalent notions. Moreover, by virtue of the Yankov–von Neumann–Aumann

selection theorem, a graph measurable multifunction G : Ω → 2X\{∅} admits a

Σ-measurable selection, i.e., there exists a Σ-measurable function g : Ω → X such

that g(ω) ∈ G(ω) for all ω ∈ Ω. Given 1 ≤ p ≤ ∞ and a graph measurable multi-

function G : Ω → 2X\{∅}, we set S
p
G = {g ∈ Lp(Ω,X) : g(ω) ∈ G(ω)µ − a.e.}

(the set of Lp-selectors of G). This set may be empty. A straightforward argu-

ment involving the Yankov–von Neumann–Aumann selection theorem, reveals that

if inf{‖u‖ : u ∈ G(ω)} ∈ Lp(Ω)+, then S
p
G 6= ∅.

Let Y,Z be Hausdorff topological spaces and H : Y → 2Z\{∅} a multifunction.

We say that H is upper semicontinuous (usc for short), if for all U ⊆ Z open, the set

H+(U ) = {y ∈ Y : H(y) ⊆ U} is open in Y . We say that H has a closed graph, if

GrH = {(y, z) ∈ Y × Z : z ∈ H(y)} is closed in Y × Z. If Z is regular and H has

closed values, then upper semicontinuity of H implies that H has a closed graph. The

converse is true if H has closed values and is locally compact, i.e., for every y ∈ Y we

can find a neighborhood U of y such that H(U ) is compact in Z.

Suppose that V,W are Banach spaces and K : D ⊆ V → W . We say that K is

completely continuous, if for every sequence {vn}n≥1 ⊆ D such that vn
w
→ v ∈ D,

we have K(vn) → K(v) in W . If V is reflexive and D ⊆ V is nonempty, closed and

convex, then complete continuity of K implies that K is compact, i.e., K is continuous

and maps bounded sets onto relatively compact sets.

Suppose that C ⊆ V and D ⊆ W are nonempty closed and convex sets and

G : C → 2D\{∅} a multifunction with weakly compact convex values which is usc

from C with the relative norm topology into D with the relative weak topology.

Also let K : D → C be completely continuous and set S = K ◦ G. We assume

that S is compact, i.e., it maps bounded sets into relatively compact sets (this is

the case if, for example, G maps bounded sets to norm bounded sets and X is re-

flexive; also we should mention that the compactness assumption implies that S is

usc). The interesting feature of S is that it need not have convex values. Finally

let U be a bounded and relatively open subset of C such that Fix(S) ∩ ∂U = ∅,

where Fix(S) = {v ∈ C : v ∈ S(v)} (the set of fixed points of the composite

multifunction S). For such triples (S,U ,C) Bader [2] defined a fixed point index

iC (S,U ) which exhibits all the usual properties. In particular, if S0 = K0 ◦ G0 and
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S1 = K1 ◦G1, then we say that S0 and S1 are homotopic if there is a usc multifunction

F : [0, 1] × C → 2D\{∅} (D equipped with the relative weak topology) which has

weakly compact convex values such that F(0, · ) = G0 and F(1, · ) = G1 and a se-

quentially continuous map N : [0, 1]×D → C (D always with the relative weak topol-

ogy) such that N(0, · ) = K0 and N(1, · ) = K1. We set H(λ, x) = (N ◦ F)(λ, x) and

in the homotopy invariance property of the index we require that x /∈ H(λ, x) for all

(λ, x) ∈ [0, 1]×∂U and H is compact. Finally we should mention that O’Regan [12]

recently extended the Leray–Schauder alternatives obtained by Bader [2].

If X is a reflexive Banach space, a nonlinear operator A : D(A) ⊆ X → X∗ is said to

be generalized pseudomonotone, if for any sequence {xn}n≥1 ⊆ D(A) with xn
w
→ x

in X, A(xn)
w
→ u∗ in X∗ and lim sup〈A(xn), xn − x〉 ≤ 0, we have u∗

= A(x) and

〈A(xn), xn〉 → 〈A(x), x〉. A maximal operator is generalized pseudomonotone. A

generalized pseudomonotone operator A such that D(A) = X and which is bounded

(maps bounded sets to bounded sets), it is pseudomonotone. Recall that a pseu-

domonotone coercive operator is surjective.

3 Auxiliary results

Our hypotheses on the multivalued nonlinearity F(t, x, y) are the following:

(H(F)) F : R+ × R
N × R

N → Pkc(R
N)

is a multifunction such that

(i) for all (x, y) ∈ R
N × R

N, t → F(t, x, y) is graph measurable;

(ii) for almost all t ∈ T, (x, y) → F(t, x, y) has a closed graph;

(iii) for every r > 0, there exists αr ∈ L1
loc(R+) such that for almost all t ∈ R+, all

‖x‖, ‖y‖ ≤ r and all u ∈ F(t, x, y), we have ‖u‖ ≤ αr(t);

(iv) there exists M > 0 such that if ‖x0‖ > M and (x0, y0)RN = 0, we can find

δ, γ > 0 such that for almost all t ∈ R+, we have

inf
{

(−u, x)RN + ‖y‖p : ‖x − x0‖ + ‖y − y0‖ < δ, u ∈ F(t, x, y)
}
≥ γ > 0;

(v) there exist η ∈ L1(R+) and ψ : R+ → R+\{0} a nondecreasing function such

that 1
ψ(·) is locally integrable,

∫ ∞

0
ds
ψ(s)

≥ ‖η‖1 and for almost all t ∈ R+, all

‖x‖ ≤ M, all y ∈ R
N and all u ∈ F(t, x, y), we have ‖u‖ ≤ η(t)ψ(‖y‖p−1).

Remark 3.1 Hypothesis H(F)(iv) is a version of the Hartman condition [8, p. 433],

which is adapted to the present multivalued, Caratheodory setting. Hypothesis

H(F)(v) is a version of the well-known Bernstein–Nagumo–Wintner growth con-

dition (see [11, 13]) and it is satisfied if for almost all t ∈ T, all ‖x‖ ≤ M, all y ∈ R
N

and all u ∈ F(t, x, y), we have ‖u‖ ≤ α(t) + c‖y‖p with α ∈ L1(T)+, c > 0 (Bern-

stein’s choice). Hypothesis H(F)(iv) leads to a priori bounds for ‖x(t)‖ and hypoth-

esis H(F)(v) produces a priori bounds for ‖x ′(t)‖.

First we will consider a sequence of boundary value problems with a finite time

horizon. For this purpose, for every n ≥ 1, we consider the following function space:

Ŵn = {x ∈ W 1,p((0, n),R
N) : x(0) = 0}.
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The continuous (in fact compact) embedding of W 1,p((0, n),R
N) into C([0, n], R

N)

justifies the evaluation at t = 0. Also using this embedding we can check that Ŵn

furnished with the Sobolev norm, becomes a closed subspace of the Sobolev space

W 1,p((0, n),R
N). In particular, then Ŵn is a separable reflexive Banach space. Evi-

dently the only constant function belonging in Ŵn is the zero function. This implies

that the Poincaré inequality is valid on Ŵn. For the benefit of the reader, in the next

lemma we prove this fact in full generality.

Lemma 3.2 If Z ⊆ R
N is a bounded domain with a Lipschitz boundary ∂Z and V is

a closed vector subspace of W 1,p(Z) such that the only constant function in V is the zero

function, then there exists β > 0 such that ‖x‖p ≤ β‖Dx‖p for all x ∈ V .

Proof We argue indirectly. Suppose that the lemma is not true. Then we can find

{xn}n≥1 ⊆ V such that ‖xn‖p > n‖Dxn‖p for all n ≥ 1. Set yn =
xn

‖xn‖p
, n ≥ 1.

We have 1 > n‖Dyn‖p for all n ≥ 1, hence Dyn → 0 in Lp(Z,R
N). In particular

then, {yn}n≥1 ⊆ W 1,p(Z) is bounded and so by passing to a suitable subsequence

if necessary, we may assume that yn
w
→ y in W

1,p
0 (Z). Since W 1,p(Z) is embedded

compactly in Lp(Z), we have that yn → y in Lp(Z) and so ‖y‖p = 1, i.e., y 6= 0. Also

note that yn → y in W 1,p(Z) and so ‖Dy‖p = 0. Therefore y ≡ ξ ∈ R, hence y = 0

(since y ∈ V ), a contradiction.

Remark 3.3 If Z = (0, n) and we apply the lemma on each component, we see that

the Poincaré inequality is valid on Ŵn.

For h ∈ L1([0, n],R
N) we consider the following mixed boundary value problem:

(3.1)
−(‖x ′(t)‖p−2x ′(t)) ′ = h(t) a.e. on [0, n],
x(0) = 0, x ′(n) = 0, 1 < p <∞.

Proposition 3.4 Problem (3.1) has a unique solution Vn(h) ∈ C1([0, n],R
N) and the

solution map Vn : L1([0, n],R
N) → C1([0, n],R

N) is completely continuous.

Proof Consider the nonlinear operator A : Ŵn → Ŵ ∗
n defined by

〈A(x), y〉n =

∫ n

0

‖x ′(t)‖p−2(x ′(t), y ′(t))RN dt for all x, y ∈ Ŵn.

Hereafter by 〈 · , · 〉n we denote the duality brackets for the pair (Ŵn,Ŵ
∗
n ). It is easy

to see that A is monotone, demicontinuous, hence it is maximal monotone. Also

〈A(x), x〉n = ‖x ′‖
p
p. By virtue of Lemma 3.2 this means that the operator A is

coercive. But recall that a maximal monotone, coercive operator is surjective (see

[5, p. 49]. Since L1([0, n],R
N) ⊆ Ŵ ∗

n , we can find x = Vn(h) ∈ Ŵn such that

A(x) = h. Let ϕ ∈ C∞
c ((0, b),R

N) (i.e., ϕ : (0, b) → R
N is C∞ and has compact

support in (0, b)). We have

〈A(x), ϕ〉n =

∫ n

0

(h(t), ϕ(t))RN dt,
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therefore,
∫ n

0
‖x ′(t)‖p−2(x ′(t), ϕ ′(t))RN dt =

∫ n

0
(h(t), ϕ(t))RN dt . From the repre-

sentation theorem for the elements of W−1,p ′

((0, n),R
N) = W

1,p
0 ((0, b),R

N)∗, with
1
p

+ 1
p ′

= 1 (see for example [4, p. 362]), we know that

(
‖x ′‖p−2x ′

) ′
∈ W−1,p ′

((0, n),R
N).

By 〈 · , · 〉0,n we denote the duality brackets for the pair

(W
1,p
0 ((0, n),R

N), W−1,p ′

((0, b),R
N)).

Then, through an integration by parts, we have

〈−(‖x ′‖p−2x ′) ′, ϕ〉0,n =

∫ n

0

(h(t), ϕ(t))RN dt

= 〈h, ϕ〉0,n for all ϕ ∈ C∞
c ((0, b),R

N).

Because C∞
c ((0, b),R

N) is dense in W
1,p
0 ((0, n),R

N), it follows that

(3.2) −(‖x ′‖p−2x ′(t)) ′ = h(t) a.e. on [0, n], x(0) = 0.

From (3.2), we obtain that ‖x ′‖p−2x ′ ∈ W 1,1((0, b),R
N) ⊆ C([0, n],R

N). Since

θp : R
N → R

N defined by

θp(v) =

{
‖v‖p−2v if v 6= 0,

0 if v = 0,

is a homeomorphism, it follows that x ′ ∈ C([0, n],R
N), hence x ∈ C1([0, n],R

N).

Now let v ∈ Ŵn. We have

〈A(x), v〉n =

∫ n

0

(h(t), v(t))RN dt.

Therefore,

(3.3)

∫ n

0

‖x ′(t)‖p−2(x ′(t), v ′(t))RN dt =

∫ n

0

(h(t), v(t))RN dt.

Performing an integration by parts on the integral in the left-hand side of (3.3),

we obtain

‖x ′(n)‖p−2(x ′(n), v(n))RN −

∫ n

0

((‖x ′(t)‖p−2x ′(t)) ′, v(t))RN dt

=

∫ n

0

(h(t), v(t))RN dt,
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Therefore, ‖x ′(n)‖p−2(x ′(n), v(n))RN = 0 for all v ∈ Ŵn (see (3.3)), hence x ′(n) = 0.

Therefore x ∈ C1([0, n],R
N) is a solution of problem (3.1). Moreover, due to the

strict monotonicity of the operator A, the solution x = Vn(h) ∈ C1([0, n],R
N) is

unique.

We consider the solution map Vn : L1([0, n],R
N) → C1([0, n],R

N). We will show

that Vn is completely continuous. To this end suppose that hm
w
→ h in L1([0, n],R

N)

and set xm = Vn(hm) ∈ C1([0, n],R
N). We have A(xm) = hm in Ŵ ∗

n for all n ≥ 1.

Using as a test function xm ∈ Ŵn, we obtain

‖x ′
m‖

p
p =

∫ n

0

(hm(t), xm(t))RN dt

≤ ‖hm‖1‖xm‖∞ (by Hölder’s inequality)

≤ c1‖hm‖1‖x ′
m‖p for some c1 > 0, all m ≥ 1.

(3.4)

Here in the last inequality we have used Lemma 3.2 and the fact that Ŵn is embedded

continuously (in fact compactly) into C([0, n],R
N). So using once more Lemma 3.2,

from (3.4) we infer that {xm}m≥1 ⊆ Ŵn is bounded. By passing to a suitable subse-

quence if necessary, we may assume that

xm
w
→ x in Ŵn and xm → x in C([0, n],R

N) as m → ∞.

We have

(3.5) 〈A(xm), xm − x〉n =

∫ n

0

(hm(t), xm(t) − x(t))RN dt → 0 as m → ∞.

Recall that the nonlinear operator A is maximal monotone, hence it is generalized

pseudomonotone (see [5, p. 58]). So from (3.5) it follows that 〈A(xm), xm〉n →

〈A(x), x〉n, hence ‖Dxm‖Lp([0,n],RN) → ‖Dx‖Lp ([0,n],RN). We know that Dxm
w
→ Dx in

Lp([0, n],R
N). Also the space Lp([0, n],R

N) is uniformly convex. So by the Kadec–

Klee property we have Dxm → Dx in Lp([0, n],R
N), therefore xm → x in Ŵn as

m → ∞. Passing to the limit as m → ∞, we obtain A(x) = h, and thus Vn(h) = x.

Because −(‖x ′
m(t)‖p−2x ′

m(t)) ′ = hm(t) a.e. on [0, n] for all m ≥ 1, it follows that

{(‖x ′
m‖

p−2x ′
m) ′}m≥1 ⊆ L1([0, n],R

N)

is uniformly integrable and so we deduce that {‖x ′
m‖

p−2x ′
m}m≥1 ⊆ C([0, n],R

N)

is equicontinuous. Moreover, since x ′
m(n) = 0, we have that {‖x ′

m‖
p−2x ′

m}m≥1 ⊆
C([0, n],R

N) is bounded. Invoking the Arzela–Ascoli theorem, we obtain that

{‖x ′
m‖

p−2x ′
m}m≥1 ⊆ C([0, n],R

N)

is relatively compact. Recall that the map θp : R
N → R

N defined by

θp(v) =

{
‖v‖p−2v if v 6= 0,

0 if v = 0,
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is homeomorphism.

So it follows that {x ′
m}m≥1 ⊆ C([0, n],R

N) is relatively compact. Therefore, at

least for a subsequence, we can say that x ′
m → x ′ in C([0, n],R

N), hence xm → x in

C1([0, n],R
N). Finally, Urysohn’s criterion for convergent sequences implies that for

the original sequence we have Vn(hm) = xm → x = Vn(h) in C1([0, n],R
N). This

proves the desired complete continuity of the solution map Vn( · ).

Next we consider the Nemytskii (superposition) operator corresponding to the

multifunction F. Namely let NF : C1([0, n],R
N) → 2L1([0,n],RN) be defined by

NF(x) = S1
F( · ,x( · ),x ′( · )).

Proposition 3.5 If hypotheses H(F)(i–iii) hold, then NF has values in

Pwkc(L1([0, n],R
N))

and is usc from C1([0, n],R
N) with the norm topology into L1([0, n],R

N) furnished

with the weak topology (denoted hereafter by L1([0, n],R
N)w).

Proof First we show that NF has nonempty values. Note that hypotheses H(F)(i,ii)

do not in general imply the measurability of (t, x, y) → F(t, x, y) (see [9, p. 227]. So

the nonemptiness of the values of NF it is not immediately clear. Let

x ∈ C1([0, n],R
N).

Then we can find step function {sm}m≥1, {rm}m≥1 such that ‖sm(t)‖ ≤ ‖x(t)‖,

‖rm(t)‖ ≤ ‖x ′(t)‖ and sm(t) → x(t), and rm(t) → x ′(t) a.e. on [0, n] as m → ∞.

Then by virtue of hypothesis H(F)(i), for every m ≥ 1, t → F(t, sm(t), rm(t)) is

Lebesgue measurable (see Section 2) and so, applying the Yankov–von Neumann–

Aumann selection theorem, we can find a Lebesgue measurable function

um : [0, n] → R
N

such that um(t) ∈ F(t, sm(t), rm(t)) a.e. on [0, n], for all m ≥ 1. Because of hypothesis

H(F)(iii), we have ‖um(t)‖ ≤ αr(t) a.e. on T with r = ‖x‖C1([0,n],RN) for all m ≥ 1.

So {um}m≥1 ⊆ L1([0, n],R
N) is uniformly integrable, and by the Dunford–Pettis

theorem, we may assume that um
w
→ u in L1([0, n],R

N). Then from [4, p. 484], we

have that

u(t) ∈ conv lim sup
m→∞

F(t, sm(t), rm(t)) ⊆ F(t, x(t), x ′(t)) a.e. on [0, n],

where the last inclusion is a consequence of hypothesis H(F)(ii) and the fact that F

has values in Pkc(R
N). Therefore u ∈ S1

F( · ,x( · ),x ′( · )) = NF(x) and so NF(x) 6= ∅.

Clearly the values of NF are closed and convex. Moreover, hypothesis H(F)(iii) and

the Dunford–Pettis theorem imply that for all x ∈ C1([0, n],R
N), NF(x) belongs in

Pwkc(L1([0, n],R
N)).
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The above argument also shows that the multifunction NF has a graph which is

sequentially closed in C([0, n],R
N) × L1([0, n],R

N)w. Also hypothesis H(F)(iii) and

the Dunford–Pettis theorem imply that NF is locally compact from C1([0, n], R
N)

into L1([0, n],R
N)w. Since weakly compact sets in L1([0, n], R

N) furnished with the

relative weak topology are metrizable, we conclude that NF is usc from C1([0, n],R
N)

with the norm topology into L1([0, n],R
N) with the weak topology.

We consider the following finite time horizon approximation of problem (1.1):

(3.6)
−(‖x ′(t)‖p−2x ′(t)) ′ ∈ F(t, x(t), x ′(t)) a.e. on [0, n],
x(0) = 0, x ′(n) = 0, n ≥ 1.

In the next proposition, we establish the solvability of (3.6).

Proposition 3.6 If hypotheses H(F) hold, then problem (3.6) has a solution xn ∈
C1([0, n],R

N) such that for some M1 ≥ M we have

‖xn(t)‖, ‖x ′
n(t)‖ ≤ M1 for all t ∈ [0, n] and n ≥ 1.

Proof Consider the multivalued homotopy

Hn : [0, 1] ×C1([0, n],R
N) → Pk(C1([0, n],R

N))

defined by Hn(λ, x) = (Vn ◦ λNF)(x) for all (λ, x) ∈ [0, 1] × C1([0, n],R
N). We

will show that there exists R > 0 such that x /∈ H(λ, x) for all λ ∈ [0, 1] and all

x ∈ ∂BR(0). Since Vn(0) = 0, we may assume 0 < λ ≤ 1. If x ∈ (V ◦ λNF)(x) with

λ ∈ (0, 1], we have

(3.7)
−(‖x ′(t)‖p−2x ′(t)) ′ = λu(t) a.e. on [0, n]

x(0) = 0, x ′(n) = 0 and u ∈ NF(x).

First we show that ‖x(t)‖ ≤ M for all t ∈ [0, n], with M > 0 as in hypothesis

H(F)(iv) (the Hartman condition). For this purpose let ξ(t) = ‖x(t)‖p and let

t0 = [0, n] be the point where ξ attains its maximum on [0, n]. Suppose that M p <
ξ(t0). First assume that t0 ∈ (0, n). Then 0 = ξ ′(t0) = p‖x(t0)‖p−2(x ′(t0), x(t0))RN ,
hence (x ′(t0), x(t0))RN = 0. By virtue of hypothesis H(F)(iv), there exist δ > 0 and

γ > 0 such that

(3.8) inf
{

(−u, x)RN +‖y‖p :‖x−x(t0)‖+‖y−x ′(t0)‖ < δ, u ∈ F(t, x, y)
}
≥ γ > 0.

Since x ∈ C1([0, n],R
N), given δ > 0 as in (3.8), we can find δ1 > 0 such that if

t ∈ (t0, t0 + δ1] ⊆ [0, n], we have ‖x(t) − x(t0)‖ + ‖x ′(t) − x ′(t0)‖ < δ. Since

u(t) ∈ F(t, x(t), x ′(t)) a.e on [0, n], we have

(−u(t), x(t))RN + ‖x ′(t)‖p ≥ γ > 0 for almost all t ∈ (t0, t0 + δ1],

therefore, ((‖x ′(t)‖p−2x ′(t)) ′, x(t))RN + λ‖x ′(t)‖p ≥ λγ > 0 for almost all t ∈
(t0, t0 + δ1] (see (3.7) and recall λ > 0), hence

∫ t

t0

((‖x ′(s)‖p−2x ′(s)) ′, x(s))RN + λ

∫ t

t0

‖x ′(s)‖pds ≥ λγ(t − t0)
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for all t ∈ (t0, t0 + δ1]. Performing an integration by parts on the first integral of

the left-hand side of the above inequality and recalling that (x ′(t0), x(t0))RN = 0, we

obtain

‖x ′(t)‖p−2(x ′(t), x(t))RN + (λ− 1)

∫ t

t0

‖x ′(s)‖pds ≥ λγ(t − t0) > 0,

therefore ‖x ′(t)‖p−2(x ′(t), x(t))RN > 0 for all t ∈ (t0, t0 + δ1] since 0 < λ ≤ 1),

hence ξ ′(t) > 0 for all t ∈ (t0, t0 + δ1], which contradicts the choice of t0 ∈ [0, n].

Therefore we have ‖x(t)‖ ≤ M for all t ∈ [0, n].

If t0 = 0, then x ≡ 0 (since x(0) = 0). Finally if t0 = n, then since x ′(n) = 0

(see (3.6)) we have that ξ ′(t0) = 0 and so the above argument applies. Therefore in

all three cases, we have ‖x(t)‖ ≤ M for all t ∈ [0, n] and all n ≥ 1. Next because of

(3.7) and hypothesis H(F)(v) (the Bernstein–Nagumo–Wintner growth condition),

we have

d

dt
(‖x ′(t)‖p−1) =

d

dt

(∥∥‖x ′(t)‖p−2x ′(t)
∥∥)

≤
∥∥(

‖x ′(t)‖p−2x ′(t)
) ′∥∥

= λ‖u(t)‖ (see (3.7))

≤ ‖u(t)‖ (since 0 < λ ≤ 1)

≤ η(t)ψ(‖x ′(t)‖p−1) a.e. on [0, n].

(3.9)

Set z(t) =
∫ t

0
η(s)ψ

(
‖x ′(s)‖p−1

)
ds + ‖x ′(0)‖p−1, t ∈ [0, n]. Evidently z : [0, n] →

R
N is absolutely continuous and we have

(3.10) z ′(t) = η(t)ψ
(
‖x ′(t)‖p−1

)
a.e. on [0, n].

Moreover, by virtue of (3.9), we have

(3.11) ‖x ′(t)‖p−1 ≤ z(t) for almost all t ∈ [0, n].

Since by hypothesis H(F)(v), ψ is nondecreasing, from (3.10) and (3.11) we have

z ′(t) ≤ η(t)ψ(z(t)) a.e. on [0, n]. Therefore, z ′(t)
ψ(z(t))

≤ η(t) a.e. on [0, n]. Hence,

∫ t

0

z ′(t)

ψ(z(s))
ds ≤ ‖η‖L1(R+) for all t ∈ [0, n], n ≥ 1.

Then by a change of variables, we have

∫ z(t)

0

ds

ψ(s)
≤ ‖η‖L1(R+) for all t ∈ [0, n], n ≥ 1.

By virtue of hypothesis H(F)(v), the above inequality implies that there is an M1 ≥ M

such that ‖x ′(t)‖ ≤ M1 for all t ∈ [0, n], all n ≥ 1. Therefore if R > M1, then we

have that x /∈ H(λ, x) for all λ ∈ [0, 1] and all

x ∈ ∂BR(0) = {x ∈ C1([0, n],R
N) : ‖x‖C1([0,n],RN) = R}
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for all n ≥ 1. From the homotopy invariance and the normalization properties of the

fixed point index of Bader [2], we have

(3.12) iC1([0,n],RN) (Vn ◦ NF,BR(0)) = 1 for all n ≥ 1.

Here BR(0) = {x ∈ C1([0, n],R
N) : ‖x‖C1([0,n],RN) < R}. From (3.12) and the

existence property of the fixed point index, we see that we can find xn ∈ BR such that

xn ∈ (Vn ◦ NF)(xn). Then A(xn) = u with u ∈ NF(xn), and xn ∈ C1([0, n],R
N) is a

solution of problem (3.6).

Now using a diagonal argument, we will establish the existence of a solution for

the original infinite time horizon problem (1.1)

Theorem 3.7 If hypotheses H(F) hold, then (1.1) has a solution x ∈ C1(R+,R
N).

Proof From Proposition 3.6, we know that for every n ≥ 1, problem (3.6) has a

solution xn ∈ C1([0, n],R
N). We set

x̂n(t) =

{
xn(t) if t ∈ [0, n],

xn(n) if t ∈ [n,+∞),
n ≥ 1.

Since x ′
n(n) = 0, we see that xn ∈ C1(R+,R

N). Moreover, from Proposition 3.6 we

know that ‖x̂n(t)‖, ‖x̂ ′
n(t)‖ ≤ M1 for all t ∈ R+ and all n ≥ 1. Then by virtue of

hypothesis H(F)(iii), we have

∥∥(
‖x̂ ′

n(t)p−1x̂ ′
n(t)

) ′∥∥ ≤ αM1
(t) a.e. on [0, b] for all b > 0,

Therefore,

∫ t

s

∥∥(
‖x̂ ′

n(τ )‖p−2x̂ ′
n(τ )

)∥∥ dτ ≤

∫ t

s

αM1
(τ ) dτ for all t, s ∈ [0, b], s ≤ t, b > 0;

∥∥∥
∫ t

s

(‖x̂ ′
n(τ )‖p−2x̂ ′

n(τ )) ′ dτ
∥∥∥ ≤

∫ t

s

αM1
(τ ) dτ for all t, s ∈ [0, b], s ≤ t, b > 0;

∥∥‖x̂ ′
n(t)‖p−2x̂ ′

n(t) − ‖x̂ ′
n(s)‖p−2x̂ ′

n(s)
∥∥ ≤

∫ t

s

αM1
(τ ) dτ

for all t, s ∈ [0, b], s ≤ t, b > 0;

{‖x̂ ′
n( · )‖p−2x̂ ′

n( · )}n≥1 ⊆ C([0, b],R
N)

is equicontinuous and bounded for all b > 0;
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{‖x̂ ′
n( · )‖p−2x̂ ′

n( · )}n≥1 ⊆ C([0, b],R
N)

is relatively compact for all b > 0 (Arzela–Ascoli theorem);

{x̂ ′
n}n≥1 ⊆ C([0, b],R

N) is relatively compact for all b > 0.

Therefore we can find S1 a subsequence of N and w1 ∈ C1([0, b],R
N) such that

x̂n → w1 in C1([0, 1],R
N), n ∈ S1.

Let Ŝ1 = S1\{1}. Then we can find a subsequence S2 of Ŝ1 and w2 ∈ C1([0, 2],R
N)

such that x̂n → w2 in C1([0, 2],R
N), n ∈ S2. Evidently w2|[0,1] = w1. Inductively we

generate a subsequence Sk+1 of Ŝk = Sk\{k} and a wk+1 ∈ C1([0, k],R
N) such that

x̂n → wk+1 in C1([0, k],R
N), n ∈ Sk+1 and wk+1|[0,k] = wk for all k ≥ 1. Now let

x̂(t) = wk(t) for all t ∈ [0, k]. Clearly this function is well defined and belongs in

C1(R+,R
N). Also if k ≥ 1, then for each n ∈ Ŝk = Sk\{k}, we have

(3.13)
−

(
‖x̂ ′

n(t)‖p−2x̂ ′
n(t)

) ′
= un(t) a.e. on [0, k],

with un ∈ NF(x̂n) on [0, k], x̂n(0) = 0, x̂ ′
n(k) = 0.

Because of hypothesis H(F)(iii) and the Dunford–Pettis theorem, we may assume

that un
w
→ vk in L1([0, k],R

N) as n → ∞ for all k ≥ 1. Because of Proposition 3.5, we

have that vk ∈ NF(wk) for all k ≥ 1. So from (3.13) in the limit as n → ∞, we obtain

−
(
‖w ′

k(t)‖p−2wk(t)
) ′

= vk(t) a.e. on [0, k],

vk ∈ NF(wk), vk(0) = 0, w ′
k(k) = 0, k ≥ 1.

If we set v̂(t) = vk(t) for all t ∈ [0, k], then v̂ is well-defined, v̂ ∈ L1
loc(R+,R

N),

v̂(t) ∈ F
(
t, x̂(t), x̂ ′(t)

)
a.e. on R+ and

−(‖x̂ ′(t)‖p−2x̂ ′(t)) ′ = v̂(t) a.e. on R+

x̂(0) = 0, x̂ is bounded on R+,
.

Therefore x̂ ∈ C1(R+,R
N) is a solution of (1.1).
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