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Abstract. Nambu structures are a generalization of Poisson structures in Hamiltonian dynamics,
and it has been shown recently by several authors that, outside singular points, these structures
are locally an exterior product of commuting vector fields. Nambu structures also give rise to co-
Nambu differential forms, which are a natural generalization of integrable 1-forms to higher orders.
This work is devoted to the study of Nambu tensors and co-Nambu forms near singular points. In
particular, we give a classification of linear Nambu structures (integrable finite-dimensional Nambu-
Lie algebras), and a linearization of Nambu tensors and co-Nambu forms, under the nondegeneracy
condition.
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1. Introduction

Let V be ann-dimensional smooth manifold artl= C*° (V) the space of smooth
functions onV. A Nambu structure of order onV is a multi-linear anti-symmetric
applicationIT from the direct product of samples of” to C, and denoted by the
bracket{ }:

MCxCx--xC—C, (ft, far--s f) = {f1, for s fo)

which satisfies the following two conditions
(i) Leibnitz condition:

Hfl,...,fq_l(fg) = fnfl,,fq_l(g) + gnfl,,fq_l(f) (l)

(i) Jacobi condition:
q
g (81 8D = Z{gl, v 8-t My g 185s8 (2)
i=1

forany fi,..., f;-1,81, ..., 8¢-1,. .8 € C, wherel'lfl,,_,,fq_1 denotes the con-
traction ofI1 by fl, cee fq—l: Hfl!---qu—l(f) = {f]_, cee fq_l, f}
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The Leibnitz condition (together with the antisymmetricityldf means thafl
is given by an (anti-symmetrig)-vector field onV, which we will also denote by
I1. Wheng = 1 the Jacobi condition is empty and we simply have a vector field
on V. Wheng = 2 the Jacobi condition is the usual condition for a 2-vector field
to be a Poisson structure in Hamiltonian dynamics. Thus, Nambu structures, which
are also called Nambu—Poisson structures, are a kind of generalization of Poisson
structures when the orderis different from 2. They were introduced by Nambu
[14] in an attempt to generalize Hamiltonian mechanics.

Given a Nambu structure of ordgrand a(g — 1)-tuple of functions(fy, ...,
fq—1) onV, one can associate to itlamiltonianvector field, which is the vector
field corresponding to the derivatiofi;, . ,:C — C. The Jacobi condition
means that this Hamiltonian vector field preserves the Nambu structure, like in
usual Hamiltonian dynamics. From the definition it is evident that the contraction
[y .. s, of aNambu structurél of orderg with arbitraryg —r smooth functions
fi,oo s O <r <q),Op g, (81,0, 8) =gy ,(81,..., &) is again
a Nambu structure of ordet. In particular, whery > 3 andr = 2, we get an
infinite family of Poisson structures.

Nambu structures were studied by many people in recent years, and one can
imagine various algebraic structures associated to them ([6, 17]). The most signi-
ficant result obtained, which is in fact also quite simple to prove, is the following
local normal form theorem, which was proved by Gautheron [6] and independently
by Nakanishi [13] and Alekseevsky and Guha [1]. Hereafter byambu tensoof
orderg we will mean any-vector field associated to a Nambu structure.

THEOREM (Gautheroret al.). LetIT be a Nambu tensor of order > 3 on an
n-dimensional manifold/, and O € V a point in whichIT(O) # 0. Thenin a
small neighborhood o one can find a local system of coordinates, .. ., x,)

such thatll = d/dx1 A --- A 3/dx, in this neighborhood.

The above theorem is a kind of Darboux theorem for Nambu structures. It also
shows a big difference between Nambu structures of oxd8rand Poisson struc-
tures: the former ones are decomposable at nonzero points while the later ones are
not in general.

The above theorem prompts us to study singularities of Nambu structures. The
first obvious thing that we observe here is that each Nambu structure gives rise to an
associated singular foliation (in the sense of Stefan—Sussmann), whose distribution
is spanned by the Hamiltonian vector fielfts/-l,___,fq_l. Wheng > 3 the leaves
of this singular foliation is of dimension either 0 gr while in case of Poisson
structures(g = 2) they may have any even dimension (see, e.g., [18, 19] for the
case of Poisson structures). These singular foliations give a geometric picture about
the Nambu structures themselves.

By a singularity of a Nambu structur&l, or aNambu singularitywe mean a
small neighborhood of a poir®@ at whichIT(O) = 0. WhenII(0O) = 0 at some
point O, then its linearization a0 is well-defined and gives us a linear Nambu
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structures. Thus the study of linear Nambu structures is a natural first step in the
study of singularities of general Nambu structures. We have the following result
(cf. Corollary 3.3).

THEOREM 1.1. Every linear Nambu tensadrl of orderg = n — p > 30n an
n-dimensional linear spac¥ belongs to one of the following two types:

Type 1: I1 = Z;i +x;0/0x1 A+ ANO/Oxj_1 AN O/OXj 1 A AND/Oxg41 +
Z;zlixq+l+ja/a.x1 VANRICIERVAN 8/8xr+j VAN 8/8xr+j+2 VAN 8/8xq+1 (W'th -1 < r <
g, 0<s <min(p —1,q —r)).

Type 2: T1 = 9/dx1 A --- A 3/Bxg-1 A (O}, Dixid/0x;)

We will call a Nambu singularityf Type 1if its linear part is of Type 1, andf
Type 2in the other case. The singularties of Type 1 and Type 2 are very different
geometrically, their corresponding foliations look very different, though they are in
some natural sengkial to each other (cf. Section 3). We have the following result
about the linearization of Nambu tensors near singular points (see Theorem 5.1,
Theorem 5.2 and Theorem 6.2 for the precise formulations):

THEOREM 1.2. Nondegenerate singularities of Type 1 of Nambu tensors of order
g > 3 are formally linearizable. They are, up to multiplication by a function,
C*-linearizable if they are analytic, and*-linearizable in the analytic (real or
complex) case. Nondegenerate singularities of Type 2 of Nambu tensors of order
g > 3 are C*-linearizable under some nonresonance condition, and analytically
linearizable in the analytic case under some Diophantine condition.

For nonelliptic singularities of type 1 of clags™®, we have (see Section 5): In
the case of signaturg — 3 they are not continuously linearizable in general. If the
signature is different frong — 3 then they are conjectured to B&°-linearizable.

What we know is that in this case their associated singular foliations are homeo-
morphic to the ones given by the linear Nambu structures.

An important object which arises in the study of Nambu tensors are the so-called
co-Nambu formswhich are obtained by the contraction of Nambu tensors with
volume forms. For them we have some results analogous to the above theorem,
which complement the ones obtained by Medeiros [10], and are similar to some
results obtained before by Kupka [7], Reeb [20], Moussu [11, 12] and others for
integrable 1-forms. Thus one can think of co-Nambu forms as integrable differen-
tial forms of higher orders. In fact, they are calledegrable p-formsin [10]. In
particular, we suspect that many results obtained by various authors for degenerate
singularities of integrable 1-forms can be also generalized to the case of co-Nambu
forms.

The rest of this paper is organized as follows: In Section 2 we give some prelim-
inary results concerning Nambu structures, most notably about co-Nambu forms.
In Section 3 we give a classification of linear Nambu structures, where we show
that they can be divided in two types. In Section 4 we prove a theorem about the
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decomposition of Nambu structures near nondegenerate singularities. Section 5
and Section 6 contain our main results concerning the linearization problem.

2. Preliminaries

Let Q2 be a volume form on an-dimensional manifold/, andIl a g-vector field
onV,withn > ¢ > 2. Putp = n — ¢ and denote bw the p-form obtained by
contractingIT and Q: w = i 2. Then the condition fofl to be a Nambu tensor
can be rewritten in terms of:

PROPOSITION 2.1With the above notation$] is Nambu if and only if, satisfies
the following two conditions:

isoAw=0, 3)
iaw A dow =0, (4)

for any (p — 1)- vectorA.

In casep = 1 the above conditions simply mean thatd w = 0, i.e.w is an
integrable 1-form.

The proof of the above proposition is based on the following two lemmas, which
follow directly from the Leibnitz and Jacobi conditions (1), (2) and the normal form
theorem of Gautheroet al.

LEMMA 2.2. TT is a Nambu tensor if and only if it is so on the openlet {x €
V, I1(x) # 0} of points where it does not vanish.

LEMMA 2.3. Suppose thaj > 3. Then ag-vector fieldIT is Nambu if and only if
in a neighborhood of each poi wherell(0) # 0, we can find a local system of
coordinates(xy, ..., x,) in whichIT can be written adl = 9/0x1 A --- A 9/0x,.

Proof of Proposition 2.1.Let IT be a Nambuy-tensor withg > 3. In a neigh-
borhood of a pointO such thatl1(O) # 0 we havell = d/dx1 A --- A 3/0x,
in some system of coordinates, according to the theorem of GautbeabrSince
Q= fdx; A--- Adx, (with some nonzero function), we have

wo=xfdryA---Ady, and do=Fdf Adxg A Ady,.

From here it is easy to verify that the Equation (3) and Equation (4) are satisfied
for any (p — 1)-vector A, wherep = n — g. (At least they are satisfied at any
nonzero point off1, but then at any point, since zero pointsIéfare also zero
points ofw.)

Conversely, lefl be ag-vector such thaty = i Q2 satisfies the Equations (3)
and (4). Fixa poinD € V such thaf1(0) # 0 (hencen(0O) # 0). Then Equation
(3) implies thatw is decomposable in a neighborhood®@f w = a1 A --- A «p,
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whereq; are independent 1-forms. One can fiipd— 1)-vectorsA,, ..., A, such
thatiy,o = «;,j = 1, p in some neighborhood of). Hereafterl, p means
1,2,..., p. Then Equation (4) givea; A dw = 0 for j = 1, p in this neigh-
borhood. But

p
da):Zal/\---/\aj,l/\ doj Atjpa Ao Aty
j=1

Thus we have @; Aa; A---Aa, =0 forj =1 p.Inother wordse; satisfy

the conditions of Frobenius theorem (see e.g. [2]), which says that in this case there
exists a local system of coordinates, . . ., x,) such thatr; Adx, 1 A- - -Adx, =0

for j =1, p. It follows thatw = f dxy A --- A dx, for some nonzero functioi,

andIl = gd/dx1 A --- A 3/0x, for some nonzero functiog. Replacingx; by

, /’“1 dr
Xl = )
=0 8, X2, ..., Xy)

we havell = 9/dxy A --- A 9/0x,. Applying Lemma 2.3, we obtain thdl is a
Nambu structure O

A simple corollary of Propositon 2.1 is that it is a Nambu tensor of order
q > 3andif f is a smooth function, theiiI1 is again a Nambu structure.

DEFINITION 2.4. A differential p-form » which satisfies the equation8) and
(4) in Proposition 21 will be called aco-Nambu form{of order p and co-ordeg).

We have a bijectiorll <> » between Nambu tensors and co-Nambu forms (if
V is orientable). Of course, this bijection depends on the choice of a volume form
on V, so it is not unique, but unique up to multiplication by a nonzero function.
Thus the study of singularities @f and that ofw are almost the same.

As a principle, when a structure vanishes at some point, then its linearization is
well-defined, and if its linearization also vanishes, then its quadratization is well-
defined, etc. It is also true for Nambu and co-Nambu structuresOLet V be
a point such thaf1(0) = 0, and(x, ..., x,) a local system of coodinates in a
neighborhood ofD. Then we have a Taylor expansionldfat O:

N=n®+n®+n®+...
where

n® = Z P 0/0xj, N--- A a/ax./q

J1---Jg
1< g

with P./'(Zf-)--./'q being polynomials of order in xi, ..., x,. It is easy to see from the

definition thatIT® is well-defined, and is also a Nambu structure. It is called the
linear part of IT.
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Similarly (by puttingQ = dx;A---Adx,) we havew = 0P +w@ +w® +. . . |
with o® = inewQ =3, < P o iAo ARy A AdE A A
In particular, the linear paev'V of w is well-defined byw and is also a co-Nambu
form. Note thatw™ is uniquely determined by1‘™¥, up to multiplication by a
constant.

For co-Nambu 1-forms, Proposition 2.1 shows that they are nothing but in-
tegrable 1-forms. (This has been known to be true also for Poisson sturctures on
3-manifolds, cf. [5]). The singularities of integrable 1-forms have been extensively
studied (see e.g. [7, 8, 10, 11, 20]). In particular, there is the following so-called
Kupka’s phenomenon (see [7, 10]):df is a zero point of an integrable 1-form
and dv(0O) # 0, then locallyw is a pull-back of an 1-form on a plane. In [10] a
similar result is also proved for co-Nambu forms of higher orders.

3. Linear Nambu Structures

THEOREM 3.1.If w is a linear co-Namby-form of co-ordely = n—p > 3ona
linear spaceV then there exist linear coordinatés;, . . ., x,) such thatw belongs
to one of the following two types:

Typel: w = dxy A--- A dx,_1 A @ Wherea is an exact 1-form of the type
o = d[Zp+r :I:x2/2+z 1x,xp+r+,] with—-1<r<g=n—p,0<s<g-r.

Type 2: w = i:l a, de; Ao AdxiZg A dx,+1 Ao Aty With g, =
Py +11 alx; j» Whered', are constant. The matriga’) can be chosen to be in Jordan
form.

Proof. Putw = 3 7’_; x;0; wherew; are constanp-forms. Thenw = w; at
points(x; = 0, ... ,x.," =1,...,x, = 0). At any pointw is either decomposable
(i.e. a wedge product of covectors) or zero, so dogsince it is constant. Denote
by E; the span ofv;, i.e.

E; = Spanw;) d=efSpar1iAa)j, Aisa(p — 1) — vecton
= Annulatofx € V, i,w; =0} C V*

ThendimE; = pif w; # 0, because of decomposability. We have:

LEMMA3.2. If w; # 0andw; # 0for some indiceg and j, thendim(E;NE;) >
p—1

Proof. Puttingx, = O for everyk # i, j, we obtain thaty;w; + xj0; = »
is decomposable or null for any, x;. In particular,w; + »; is decomposable. If
dim(E;NE;) =d < pthenthereisabasi,, ..., eq4, f1,..., fp—a: 81, -+ &p—d)
of E; + E;suchthaty, = ey A--- Aeg A fiA- A foog,0j =e1 A~ ANeg A
1IN N gp—d and

witwj=er A ANeg ALfiA A fpa+AZLA - Agpoal.
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It follows easily that ifp —d > 2 then Spatw; + »;) = E; + E;, dim Spariw; +
w;j) > p andw; 4+ w; is not decomposable. O

Return now to Theorem 3.1. We can assume fat .., E, # 0 andE; g, ...,
E, = 0 for some numbeh. PutE = E1 N E, N ...N E,. Then there are two
alternative cases: dii > p — 1 and dimE < p — 1.

Case 1 dimE > p—1. Then denoting byxs, ..., x,_1) aset ofp — 1 linearly
independent covectors containedtinand which are considered as linear functions
onV,we havew; = dxg Advo A Adypg A, i = 1, h for some constant
1-formse;, and hence

w=dxg AdroA--- Adx, 1 Ad, (5)
wherea = Xx;«; is a linear 1-form.

Case 2 In this case, without loss of generality, we can assume that&lim
E>NE3) < p—1. Then Lemma 3.2 implies that dilg;N E>N E3) = p—2. Foran
arbitrary indexi, 3 < i < h,putFy, = E1NE;, F, = E;NE;, F3N E;. Recall that
dim Fy, dim F», dim F3 > p — 1 according to Lemma 3.2, but diff, N F>N F3) =
dim(E1NE>NE3NE;) < p—1, hence we cannot havg = F, = F3. Thus we can
assume thaky # F>. Then eitherF; and F, are two different hyperplanes i, or
one of them coincides with;. In any case we havg; = F,+ F> C E1+ E>+ E3.
It follows that Y% E; = " E;, = E; + E» + Es. On the other hand, we have
dim(E{ + E> + E3) = dimE; +dim E> + dim E3 — dim(E1 N Ey) — dim(E1 N
E3) — dim(Ezﬂ E3) +d|m(E1 + Ey+ E3) = 3p — 3(p -1+ (p— 2) = p+ 1.
Thus

dlm(E1+E2++E,,)=p+l

It follows that there is a system of linear coordinates, .. ., x,) on V such that
(x1,...,Xx,41) SPAnEy + - - - + E, and therefore

p+1
6!),':2)/’»] dxg A2 A de_l/\ dx./+1/\"'/\d)€p+1
Jj=1

Hence we have

p+1
o= xop=» ajdeg A Adrg A drjgg A Adegg (6)

j=1

wherea; are linear functions oW .
To finish the proof of Theorem 3.1, we still need to normalize further the ob-
tained forms (5) and (6).
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Return now to Case 1 and suppose that= dx; A --- A dx,_1 A @ Where
o = Xa; dx; with o; being linear functions. We can pat =0for j =1, p -1
since it will not affectw. Then we havex = Epp’i:l)—na.’lx,- dx;. Equation (4)
implies thatee A dx; A --- A dx,_1 A da = 0. If we consider(xy, ..., x,_1) as
parameters and denote bYthe exterior derivation with respect to the variables
(xp, ..., x,), thenthe last equation meams.d'a = 0. That isx can be considered
as an integrable 1-form in the space of varialles, ..., x,), parametrized by
(x1, ..., xp—1). We will distinguish two subcaseg:o = 0 andd'« # 0.

Subcase (a). Suppose thétr = 0. Then according to Poincaré Lemma we
haveo; = Efzgla;xi+a/aqu<2>, whereg @ is a quadratic function in the variables
(xp, ..., X,). By a linear change of coordinates o, ..., x,), we haveg® =

Ef:; + x2/2, for some number > —1, and accordingly

ptr p-1
o= Z (:I:xj + Za;xi) dx; + Z a;xi dx;.

j=pr i=1 i=1p—1, j=p+r+in
By alinear change of coordinatés, .. ., x,_1) onone hand, ant,,+1, ..., X,)
on the other hand, we can normalize the second part of the above expression to
obtain
p+r p—1 s
o= Z (:l:xj + Zd;xl) + ij dx, i
Jj=p i=1 j=1

for some numbes(O < s <min(p — 1L, n— p —r)).
Replacingx;(j = p, p + ) by newx; = x; T &x; we havew = dyg A --- A
dx,_1 A a where

p+r N

a=d Z:l:xj?/Z—i— Zx,»prr,H
j=r i=1

(with -1 <r <g=n-—p,0<s <qg—r). These are the linear co-Nambu forms
of Type 1 in Theorem 3.1.

Subcase (b). Suppose théte £ 0. Then sincel’« is a constant coefficients,
we can change the coordinates,, . . ., x,) linearly so tha/’a = dx, A dx,1 +
-+ 4 dxpyor A dx,io-41 in these new coordinates, for some: 0.

If » > 1, then considering the coefficients of the term ddx, 1 Adx; (i > p+
1), dx, Adx,2Adx,3and d, g Ady, 2AdY, 3N 0= aAd'«, we obtain that all
the coefficients od are zero, i.e« = 0, which is absurd. Thugo = dx, Adx,,1,
and the conditiony A d'a = 0 implies thate = o1 dx, + a dx,1 with linear
functionsa; anda, depending only onvy, . .., x,_1, X, X,41. In this Subcase (b),
w=0xy; A--- Adx,_1 A« also has the form (6), as in Case 2.
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Suppose now thab has the form (6), as in Case 2 or Subcase (b) of Case 1.

p+1
w = ina)i = Zajdxl JARRE /\dxj_l /\dxj_l ANXjpr A ... /\dxp+1.
j=1
There are also 2 subcases:
(@) da;/ox; =0forj =1, p+1,i = p+ 2 n.Inother words,

p+1
w = Zal’,.x,»dxl/\---/\dxj,l/\dxjﬂ/\---/\dxp“

i,j=1

with constant coefficientsj..
To see tha(a’,l) can be put in Jordan form, notice that the linear Nambu tensor
corresponding te is, up to multiplication by a constant:

p+1
M= (> ®aixd/dx; | A0/0xpia A AD/0x,.
i,j=1

The first term inIT is a linear vector field, which is uniquely defined by a linear
transformationR”** — R”*! given by the matrixa}), so this matrix can be put
in Jordan form. '

(b) Thereisj < p+ 1andi > p 4 2 such thaba;/dx; # 0. We can assume
thatda;/dx, # 0. PuttingA = d/dxaA--- A3/0x,11 1N 0 =i 0 A dw we obtain

0 = (ap dxo+axdxy) A Z dx; A
i=Tn,j=1,p+1

da;j

0Xx;

A—Oxg A Adrj_g Adxjg A Adxpyg.
Considering the coefficient ofxgd A - - - A dx,41 A dx, in the above equation,
we have

a1das/dx, — a10ay/dx, = 0.

Sinceday/dx, # 0, it follows thata, is linearly dependent aof;. Similarly, a;
is linearly dependent of;, for anyj = 1, p + 1. Thusw = aiw; wherew; is
decomposable and constantj = dx; A --- A dx, in some linear system of
coordinates. If; is linearly independently ofx, . .., x,,) then we can also assume
thata; = x,,1. Thus also in this Subcase (l),is of Type 2 in Theorem 3.1. O

The form ofw gives us a clear picture about the singular foliations associated to
linear Nambu structures: The foliation of a linear Nambu structure of Type 1 has
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p first integrals, namelys, ..., x,_1 and Zf:; +£x2 + 31 XjXpyrqj, and the
leaves of the foliation are uniquely determined by these first integrals. The singular
foliation of a linear Nambu structure of Type 2 is a Cartesian product of a foliation
given by a linear vector field in a linear space with (an 1-leaf foliation on) another
linear space.

Rewritting Theorem 3.1 in terms of Nambu tensors, we have:

COROLLARY 3.3. Every linear Nambu tensdnd of orderg = n — p > 3on an
n-dimensional linear spac¥ belongs to one of the following two types:

Typel Il = Z;j £x;0/0x1 A - ANO/OXj_1 AND/OXjpa A AD[OXgq1 +
Zi.:l EXg414+;0/0X1 A oo AN D/0Xpyj A 0/0Xyjy2 A 0/0Xg41 (With =1 < 7 <
¢, 0< s <min(p—1,9 —r)).

Type 2 I =3/dxy A+ A/Oxy_1 A (Y7 _, b'x;9/9x;)

i,j=q ~j

Remark Linear Nambu tensors may be viewed as finite-dimensional Nambu—
Lie algebras which satisfy some integrability conditions (cf. [6, 17]). The case of
four-dimensional Nambu-Lie algebras of order 3 has been done in [6].

We notice here a very interesting duality between Type 1 and Type 2: The
formula for IT of Type 1 looks similar to that fow of Type 2, and vice versa.
This duality will play an important role in the rest of this paper. We should notice
also that if a differential formw can be written in one of the two forms presented
in Theorem 3.1, then it is obviously a linear co-Nambu form.

We have the following natural notion of nondegeneracy for linear Nambu struc-
tures:

DEFINITION 3.4. A linear co-Namby-form » (and its corresponding linear
Nambug-tensorII) of Type 1 is callednondegeneratéf and only if it can be
written in the forme = dx; A -+ A dx,_1 A dg®, whereq® = Y7 £x2 (is
nondegenerate). In this caseandIl are callecelliptic if ¢ is negative-definite

or positive-definite. The absolute value of the signature of the quadratic function
q? is called thesignatureof w. Theindexof w is the index ofg®, defined only

up to the involutionm +— ¢ + 1 — m.

A linear co-Nambup-form o (and its corresponding linear Nambutensor
IT) of Type 2 is callechondegeneraté and only if it can be written in the form
=YY el de A Adxiog Adiig A A drg, with (af) being
nondegenerate, i.e. having nonzero determinant.

Itis evident that a linear Nambu structure of Type 1 is nondegenerate if and only
if all the other linear Nambu structures nearby it are equivalent to it in a natural
sense, and there is only a finite number of equivalence classes in this case, which
are classified by a signature @f?. On the other hand, for nondegenerate linear
Nambu structures of Type 2, there is a continuum of equivalence classes, which are
classified by the Jordan form (Jﬁj), modulo multiplication by a nonzero number.
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4. Decomposition of Nondegenerate Nambu Singularities

We will say that a singularity of a Nambu structureofsType 1(of Type 2, nonde-
generate, elliptic, hyperboljdf its linear part is so. In this Section we will show
that Nambu structures are decomposable also at nondegenerate singularities.

THEOREM 4.1. (a)Let O € V be a nondegenerate singular point of Typef a
co-Nambup-form (of co-orderg > 3) w. Then in a small neighborhood @f in
V, w is decomposable: it can be written @s= y1 A --- A y,_1 A @, Wherey; are
1-forms which do not vanish &, and« is an1-form which vanishes ad.

(b) Let O € V be a nondegenerate singular point of Typef a Nambug-
tensor (of orderg > 3) I. If ¢ = n — 1 then we will also assume that in the
normal form of its linear parf1®® = 9/8x1 A - - A 3/8x,-1 A (O}, blxid/dx;)
as given in Corollary 3.3, th€2 x 2) matrix (b;) has a nonzero trace. Then in
a small neighborhood 0P in V, IT is decomposable: it can be written &b =
Vin---AV,_1 A X, whereV; are vector fields which do not vanish &t and X
is a vector field which vanishes ét.

Proof. First we will prove (a). The proof will not make use of the integrability
of Nambu tensors (or similar property of co-Nambu forms), so in fact the above
theorem can be stated in a stronger form.

According to the definition of nondegenerate singularities of Type 1, we can
suppose thab has a Taylor expansian = o + 0@ + - -, with 0@ = dx; A
o Adr, 1 A dg®, whereq® = Y0 +x%/2. Expressw as a polynomial in
deg, .., dyppo=dog A Adeg A+ Y du A Ady g Adyg A
---/\dxp,l/\ﬂj +Zl<i<j<p_ldxl/\---/\d.xl',l/\dxi+1/\---/\de,]_/\d.Xj+]_/\

-~ Adx,_1Ayj+- - - Herea, B, vij, . . . are differential forms which, when written

in coordinategxy, .. ., x,), do not contain the termseg, . . ., dx,_1. Applying the
equationsoAw =0t0A = 9/9dxy1A---A3/dx,_1, We havex Aw = 0. It follows
thata A B; = 0, A y;; = 0, etc. We can consider and 8; as differential forms

on the space of variablds,, ..., x,}, parametrized by, ..., x,_1, and by our
assumption of nondegeneracy, we can apply DeRham division theorem (cf. [4]),
which says that, since the number of variableg #s 1 > 2 which is the order of

B;, B; is divisible bya: ; = o A 6; whered; are smooth 1-forms.

Applying the equatioiyo Aw =0t0A = 9/dxy A---AND/Ox;_1 AD/OXjp1 A
-+ AN0/0x,-1 N D/0x,, We get

0= A [{@ 8/0x,)(—)"/ dx; +6,) — (6;,/0x,)a].

Since(a, 3/0x,) = (@, 8/0x,) +--- = £x,+--- # 0, and we already haven
o =0, we getthatvAy; = Owherey; = dx;+(—1)?~/6;. Sincey; do not vanish
and are linearly independent@j it follows thatw is divisible by the product of;:
w=yiA---ANy,_1Aa’ for some 1-formy’. By adding a combination of; to o/,
we assume that’ does not contain the termsd. .., dx,_1 when written in the
coordinategxy, ..., x,). Then considering the terms containing o - - - Adx,_1
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on the two sides of the equatian= y; A --- A y,_1 A, it follows that in fact we
havea’ = «. Statement (a) is proved.

The proof of Statement (b) in cage> n — 2 is the same as that of (a), by
the dualityvector <> covector We will now prove (b) for the casg = n — 1. In
this case we haveél = 9/9x1 A -+ A 3/0x,_2 A (X,,_18/0x,_1 + X,,0/0x,) +
(P2 Bia)Oxy A+ ADJOX; 1 ADJOXig1 A+ A D)X 2) A D/BXn 1 A D)X,
whereB; contains only terms of degree 2 in the Taylor expansion, and the linear
part of the vector field = X,_19/dx,-1 + X,,0/9x, has nonzero trace, that is
9X,_1/0x,_1 + 93X, /dx, # 0. Notice thatX is a Hamiltonian vector field ofT,
given by the(q — 1)-tuple of functiong(xy, ..., x,_») (heren —2 = g — 1). Hence
X preservedl: LxIT = 0. Considering the coefficient of the te@yidx; A --- A
9/0x;_1 A3/dx;z1 A-+- AD/Ox,_o in the equationlxIT = 0, we obtain a relation
of the form

(X(B;) — (8Xn71/8xn71 + 8Xn/8xn)Bi)8/8xnfl A 8/8xn =UnX

for someU = U, _19/0x,_1 + U,3/9x,. SincedX,_1/0x,_1 + 90X, /0x, # 0, it
follows that we have a relation of the forB) = V,_1 X,, — V,, X,_1 and, therefore,
B;d/0x,_1 A 3/0x, is divisible by X: B;d/9x,_1 A 3/0x, = (V,,_10/0x,_1 +
V,0/0x,) A X. Thus in this case, by using the fact tBahas nonzero trace, instead
of its nondegeneracy, we also obtain the divisibility ¥yof the tems of degree
g — 2 in the expression dfl as a polynomial ird/oxy, ..., d/9x,_1. The rest of
the proof is the same as for the case n — 2. O

The nondegeneracy implies that the 1-fosnin the above theorem, considered
as an 1-form on the space of the variables, ..., x,), will have exactly one
(nondegenerate) zero point of each value of the parameters. ., x,_1), and

of course this zero point will depend smoothly on the parametears .., x,_1).

A similar statement is true for the vector fieXdin the second case. Thus we have:

COROLLARY 4.2. If O is a nondegenerate singular point of Typef a Nambu
tensorIl of orderg > 3in ann-dimensional manifold, then the set of zero points
of IT near O forms a(n — g — 1)-dimensional submanifold. & is a nondegenerate
singular point of Typ& of a Nambu tensoFI of orderqg > 3 in ann-dimensional
manifold (whery = n — 1 we need the same additional assumption as in the previ-
ous theorem), then the set of zero point$lafear O forms a(g — 1)-dimensional
submanifold.

5. Nondegenerate Singularities of Type 1

We have the following result about the linearization of co-Nambu forms of Type 1.

THEOREM 5.1. Let O be a nondegenerate singular point of Typef a smooth
co-Nambup-form w of co-orderg > 2.
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(a) If the singular pointO is of elliptic type therw is linearizable in a neigh-
borhood ofO, up to multiplication by a nonzero smooth function. In other words,
there is a local smooth system of coordinates . .., x,) in a neighborhood ot
such that we have = f dxy A--- Adx,_1 A a®, where f is a smooth function
which does not vanish aP, andaY = dq¢® is a nondegenerate linear closed
1-form in the variablegx,, . .., x,) (which does not depend @ny, ..., x,_1)).

(b) If w is analytic (real or complex), then it is linearizable analytically in a
neighborhood of0, up to multiplication by an analytic function which does not
vanish atO.

(c) If wis only C* but not analytic, and is not of elliptic type, thew is still
formally linearizable atO, up to multiplication by a formal function which does
not vanish ato.

Proof. Statement (a) and Statement (b) of the above theorem are absolutely
similar to that of Reeb [20], as improved by Moussu [11], for the case of integrable
1-forms, and the proof is essentially the same except for some additional regular
first intregrals. So we will only give a sketch of the proof here. The details of
the steps can be found in [11, 20]. In the elliptic case, we can blow up along
the local (p — 1)-dimensional submanifold of elliptic singular points &f (cf.
Corollary 4.2), and then take a double covering of the blown-up manifold. In this
double covering we have a regular foliation induced by the foliation associated to
the Nambu structure. All the leaves of this foliation are diffeomorphi§?tdue to
Reeb’s stability theorem, and the foliation itself is a regular fibration of fiijer
On the p-dimensional base space of this fibration we have a smooth involution,
whose fixed point set is a locgp — 1)-dimensional manifold (which corresponds
to the manifold of zero points @é). It follows that there is a system of coordinates
(f1. ..., fp) on the base manifold of the fibration such thgt, ..., f,—1) are
invariant under the involutionf,, = 0 on the submanifold of fixed points a
is invariant under the involution. These coordinates give rise to the first integrals of
the singular foliations of the Nambu structure: the figst- 1) first integrals are reg-
ular and functionally independent, the last one is zero on the submanifold of zero
of the co-Nambu formw and is nondegenerate positive-definite in the transversal
direction to this submanifold. Taking the fingt — 1) first integrals as coordinates
and applying the Morse’s lemma to the last first integral, we get the linearization
of w up to multiplication by a nonzero smooth function. In the real analytic case,
one can complexify the picture, then realify it back (in a different way) so that the
singularity becomes elliptic, and then proceed as above. The complex analytic case
is similar, without the step of complexifying.

Let us now prove Statement (c) of the theorem. Since in this case the blowing-
up argument does not work so easily, we adopt a different strategy. By induction
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we assume that we have found a new system of local coordifates . , x,,) such
that the Taylor expansion of in these coordinates have ‘goa@’ — 1) first terms:

oV = dxy A Adr,g Aa®
w® = dx; A - A dxp—l Aa®

o' =deg A Ade,g AT,

wherea® = >, &x; dx;. Whenr = 2, this assumption follows from the defini-
tion of nondegenerate singularities of Type 2. We will show that we can make so
thato™ = dxg A - Adx,_1 Aa®.
Let us use the following notations:

X = (xl’ R xpfl)’

y= (xpv"'v-xn) = ()’1,--~’)’q+l),

dx =dxg Ao Adx,_g,

de; =dxg A Adr_g Adxipg A Ady,_g,

0x =0/0xy A--- ND3/0xp_1,

R = 0/0x1 A+ AD/Oxi_1 AD/Xis1 A D)Xy 1.

(7)

Decompose ) into ™ = dx Aa” +w’, wherew’ consists of the terms which
are not divisible by d. PutA = 9x; A 9/dy, for some index < g. We have that
is0® =Y, v; dy; 2ay” dy, for some functions;. The terms of degree+ 1 in
the relationi s A w = 0 give:

tydy Ao + [ D vidy | A dena® =0, (8)
J

which implies thatty; dx; A " = dx A y; for someyy, andx; A w’ = dx Ay for
somey,. By varyingk from 1 top — 1, we obtain that

-1
W = die A oF 9)
1

<

~
1

with o* = dicj a)lk] dy; A dy;.
Putting Equation (9) into the left-hand side of Equation (8) we get

+y10° A dx = Zvj dy; Aa® Adr,
J
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which implies
o = a® A gk (10)

with g5 =", gf dy, for someg;.
The term of degree in i 4o A dw = 0 gives

which implies%y; dx A de* = 0, and hencexd A dw* = 0.
Thus the derivation of,* with respect to the variables is zero: do* = 0.
Putting the relation (10) in this equation we get

a®Adpr=0. (11)

Now we will use the nondegeneracy @f. The division theorem of DeRham
(cf. [4]) says that in this case we can dividgsd by «V:

dp=a® A B2, (12)

where =2 is a homogeneous 1-form of degree- 2. Differentiating (12) with
respect to the variables we geta™ A d,8~? = 0, which implies

d,B72 = a® A g9
for someB"~%. Repeat the above process until we get a fg#ir?” with d,
B2 = 0. Then we go backp"~?" = d,¢"~?*+Y and the equation d

ﬁ(r—2h+2) — O[(l) A ,B(r_Zh) givesﬁ(’_2h+2) — _¢(r—2h+l)a(1) + dy¢(r—2h+3). Keep
going back until we refineg* in the form

k r—1 (1 (r+1)
= —¢ PaP +d,p .

It follows that (10) we can chang® by an exact 1-fornaw* = a® A d,¢. .
Consider now the following new system of coordinates

xp=x1+£ ¢¥+l)

(r+1) (13)

X, =Xp_1% nqﬁkl

y=JX.

In these new coordinates™ becomes &) A -+ A dx/,_; A (X911 £y, dy)) =
o® 4 3P 4 diy A a® A dypU R (terms of degree- ¢).
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Thus, by choosing appropriate signs in the above change of variables, we can
kill the terme’ = Y diy A of = Y775 +di; A a® A dyg Y in the expression
o =dv Ao + .

Repeating the above procedure fogoing from 2 to infinity, we find a formal
system of coordinate&y, . . ., x,) inwhichw = Y72 0" with 0 = dx1 A+ - A
dx,_1 A" for everyr. In particularw = dx A o, where d = dxg A -+ Adx,_3
anda = Y a®. The relationiy,w A dw = 0 implies thate A dya = 0, that isa
can be considered as an integrable 1-form in the variahlesth a nondegenerate
closed linear part&¥, and parametrized bg. It is well known that in this case
«a is formally linearizable up to multiplication by a formal functiof (see, e.qg.,
[11]). Theorem 5.1 is proved. O

Remarks In the above theorem, we have linearization only up to multiplication
by a function, because is not a closed form in general. Itis closed (outside singu-
lar points) only up to multiplication by a function. There is another simple proof of
the analytic (and formal) case of the above theorem, which uses Theorem 4.1 and
Malgrange’s Frobenius theorem with singularities [8].

The above theorem implies that a nondegenerate Nambu tensor of Type 1 is
(maybe formally) linearizable up to multiplication by a function. In fact, at least
formally, we can linearize it without the need of multiplication by a function:

THEOREM 5.2. Let O be a nondegenerate singular point of Typef a smooth
Nambug-tensorIl, g > 2. Thell is formally linearizable atO: there is a formal
system of coordinates, . . ., x,) such that

g+1
Y S  0/0x1 A - A D/0xi-1 A B/dxiss A -+ A3/,
i=1
Proof. According to Theorem 5.1, we can wrilé = fII; wherell; =
7!11 +x;0/0x1 A+ AND/Ox;i_1 A D/OXiz1 A+ ADJOX,
We want to change the coordinates, .. ., x,+1) (and leavex, o, ..., x, un-
changed) so that to make= 1. We will forget about the parameteps, o, . . ., x,)
and will assume for simplicity that = g + 1.

Write f = Y £ where f is homogeneous of orderin (xi, ..., x,+1). By
a change of coordinates of the type = gxi,...,x, 4 = gx441, We can make
f© = 1. We assume now that we already hat® = ... = =D = 0 for

somer > 1. We will show that there is a change of coordinates which changes
x; by terms of degree= r, and which kills £ It amounts to find a vector field

X such that£xI1; = f®TI1,, where.£ denotes the Lie derivative. Consider the
volume formQ = dx; A --- A dx,11. Then it is easy to see, by contractiiy

with Q, that the equatiort xI1; = £ I1; is equivalent to the equationxd Q) =

(f" + dive X)dQ, whereQ = 1/2%¢;x? with ; = £1. In turn, this equation is
equivalent to the following system of equations:

diveX + ) =d20F(Q)]/dQ  X(Q) =20F(Q),
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whereF is an unknown function. Writd = A+ Y, whereA = F(Q) >_x;0/0x;,
andY is a vector field such that(Q) = 0. Then the above system of equations
is equivalent to a system of the typg Q) = 0, (Q) + diveY = O, where

B is an unknown function. The equatidf{Q) = 0 is equivalent to the fact that

Y = Zi<j finij WhereYij = el-xja/axl- — ijia/axj‘. For such ary, we have
diveY = ij Y (fj). Denote byJ the set of homogeneous polynomials of degree
r. The solvability of the above system of equation follows from the following facts,
which can be verified easily by choosing approprigte

(1) If a monomialx! = x{l X! has one ofl; to be an odd number, then it

DY q+l
belongs ta/.
(2) ©* is equivalent to.x? moduloJ for some nonzero numbex
11 Ig+1

(3) Any monomialx! = x; ...x,tp, with all 1; even, is equivalent taxfl"

moduloJ for some numbek.

Thus the above system of equations can always be solved. The theorem is
proved. a

Suppose now thab is of classC, is nondegenerate of Type 1 at a zero point
0, is not elliptic atO but has an index different from 2 agd— 1 (i.e. signature
different fromg —3, cf. Definition 3.4). Then the regular local leaves of the fibration
associated to the linear pastY of w are simply-connected (they are diffeomorphic

to a direct product of a disk with a sphere of dimension different from 1). It follows
from Reeb’s stability theorem that the local regular leaves afe diffeomorphic

to that ofo™. One can show easily in this case that the singular foliation associated
to w is homeomorphic to the one associated to the linear past(eée [10] for the
casep = 1). According to Moussu [11, 12], ib is the orderp = 1 (i.e. is an
1-form) and its index is different from 2 ang— 1, or if its index is 2 but all of

its leaves are closed except for a finite number of leaves which contain the origin
in the limit, then it admits a smooth first integral, which means that smoothly
linearizable up to multiplication by a smooth function which does not vanigh at

We suspect that it is also true for the case 1. If w is of index 2 atO and without

the condition on the closedness of the leaves, then it may have no local first integral,
(which implies in particular that it may not be linearizable up to multiplication by
a function), as the following example shows:

Example Consider the 2-fornm = [dg + [(¢)a] A [dxz + h(g)«] near O in
R3t% where

x1 Oxo — xp dx
2 2 2 2 1 Ox2 2 Ox
q=X1+tX— Y1~ ~ Vs @ = 2, .2
xX;+ x5

is a singular closed 1-forni(g) andhi(g) are two flat functions i at 0 such that
l(g) = h(g) = 0 wheng < 0. The conditions ofi(g) andh(g) assure thab is
a smooth two-form whose linear part at O ig d dx4. Near a pointP such that
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x1(P)? + x2(P)? # 0, we can writex = df for some functionf. Thus near this
point w can be considered as a pull-back of a two-form on a three-dimensional
space via the mapxq, x,, x3, y1, ..., y) — (g, f, x3). Since any two-form on a
three-dimensional space is a co-Nambu form and a pull-back of a co-Nambu form
is also a co-Nambu form, it follows thatis a co-Nambu form. Wheh(g) = 0 and

I(g) > 0forg > 0, the leaves of the singular foliation associated twill spiral
toward the conegq = 0, x3 = constant). In this case the foliation has only one
local first integral (up to functional dependence), whichygisif I(¢) > 0 andh(g)

is not identically O wherg > 0, then the leaves of the singular foliation associated
to w also drift inxz, and if we chose, i well enough this phenomenon will prevent
the foliation from having a nontrivial first integral. For example, we can niéKe
andh(g) vanish together at a series of poigtswhich tend to 0. Near each point

q; we makeh(q) vary from positive to negative an infinite number of times and
chosel(¢) andh(g) so that the drift in terms of; of a leaf passing via some point

x € R*with ¢; < ¢(x) < g;_1 and spiraling inwards or outwards (i.e. the curve
drawn by the value af; of a point on this leaf while this point is moving inwards

or outwards), is contained in a small interyale;, +¢;] (Iim ¢; = 0) and spans this
interval an infinite number of times. It follows that this leaf contains the leayes

gi, X3 = constante [—¢;, +¢;]) or the leavesg = ¢;, x3 = constante [—¢;, +¢;])

in its limit. By invariance with respect t8/9x3 andx;9/dx, — x29/dx, of our
construction, any other leaf nearby this leaf will have the same property (with the
interval [—¢;, +¢;] replaced by an intervdl-¢;, +§, +¢; + §]). It follows that for

any local continuous functiorf which is invariant on the leaves of the foliation,
there is an open set containing 0 in the boundary, in wiiéh constant.

6. Nondegenerate Singularities of Type 2

THEOREM 6.1. Let O be a nhondegenerate singular point of Type 2 of a Nambu
tensorIT of orderg > 3 on anr-manifold V, whose linear part has the form
OY = 9/0xg A+ A3/3x4-1 A (sz:q b",.x,.a/ax,). If g = n — 1then we will
also assume that the matr(k;) has a nonzero trace. Then there is a local system
of coordinateq x4, ..., x,) in whichII can be written as

M= fo/0x1A---N3/0x4—1 N X,

where f is a function withf(0) # Oand X = 37 ci(x,, ..., x,)3/dx; is a
vector field which does not depend @n, .. ., x,-1).

Proof. WriteIT = Vi A--- AV,_1 A X asin Theorem 4.1, where in some local
system of coordinatescy, .. ., x,) we haveV; = 9/dx; + > ,_, ,vid/dx;, and
X does not contain terms #ydx;,i < g and hasy 7} ;_, bj.x,-a/axj as its linear
part.

Using Corollary 4.2, we can, and will, make so that= 0 on the submanifold
(xq =...=x,=0).
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The integrability of[T implies that for any pair of indices j < ¢, [V;, V;1 A
Vin---AV,_1AX = 0. Considering the terms containigox; A - - - A9/0x,_1 in
this equation, we get thav;, V;] A X = 0. Notice tha{V;, V;] may be considered
as a vector field on the space of the varialles ..., x,), parametrized by the
parametersxs, ..., x,_1). The nondegeneracy of the linear partXfallows us
to use DeRham division theorem (cf. [4]), which says th&t V;] is divisible
by X:[Vi, V;]1 = gijX where f; is some smooth function. Using these proper-
ties, we will changell, whereg;; is some smooth function. Similarly, we have
that[V;, X] = f;X, V; and X so thatIl is only changed by multiplication by a
nonzero function, the above relations still hold, but in addii®rtommutes with
X, Voo, V1.

The equatiorfVy, X1 = f1X implies that[Vy, gX] = (Vi(g) + f1g)X for any
function g. The equationVi(g) + f1g = 0 can be solved locally becausg is
nonzero at0. ReplacingX by gX and Il by gIT, we still havell = V; A --- A
V,—1 A X, but with [V, X] = 0. Assume now that we already havé, X] = 0.
Fori > 1,i < g we have[Vy, V; + ¥, X] = (g1; + Vi(:))X. One can easily solve
the equatior(gy; + V1(y;)) = 0to find ay; such thafVy, V; 4+ y; X] = 0. Replacing
Vi by V; + y; X, we get thatV; commutes withV, ..., V,_1, X.

Assume now that we already have thatcommutes withVs, ..., V,_1, X. In
other words, everything is invariant with respectfp Make the same process
as above but witl,, in a way which is invariant with respect #,, we get that
Vo, ..., V4-1, X can be changed so thAtremains the same b, becomes com-
muting with V3, ..., V,_1, X. Repeating the above process Wit V,, .. .. In the
end we get a new family of vector fields and X whose product i§1 and which
commute pairwise.

SinceV; commute pairwise and are linearly independent, there is a new local
system of coordinateéxy, ..., x,) such that in these coordinates we hage=
d/0x; fori = 1 < g — 1. The fact thatX commutes withV; means that the
cofficients ofX is these coordinates will not depend @n, . .., x,_1). Of course,
we can also assume th&t does not contain the termdg/ox;,i = 1,...,9 — 1,
since subtracting these terms forwill not changell. ThusX can be considered
as vector field on the space of the variabieg, . . ., x,), which vanishes at the
origin (and which does not depend on the parameters . ., x,_1)). O

THEOREM 6.2. Let O be a nhondegenerate singular point of Typef a Nambu
tensorIT of orderg > 3 on anr-manifold V, whose linear part has the form
MY =9/9x1A-- AND)xg AN (] i, b;xia/axj). If the matrix(¥") is nonreson-
ant, i.e. if its eigenvalue&.y, . . ., A ,41) do not satisfy any relation of the form =
Z‘;’;lmjkj withm ; being nonnegative integers ajdm; > 2, thenIT is smoothly
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linearizable, i.e. there is a local smooth system of coordinétegs. .., x,) in a
neighborhood oD, in whichTI coincides with its linear part:

M =0/0x3 A AD/dxg1 A | D blixid/ox;

i,j=q

The above linearization can be made analyti€lifs analytic and the eigenvalues
Ay ..o, Apyq Of (bj.) satisfy the Bryuno’s incommensurability condition: there exist
positive constant€”, € such that for any(p + 1)-tuple of nonnegative integers
(m1, ..., mpyyq) With ) m; > 2 and any index < p + 1 we have|(}_ A;m;) —
Ml > Cexp(—(3 m)'e).
Proof. Using Theorem 6.1, we can wrild = V3 A --- A V,_1 A Y, where
Y = fX = fY_, cilxg ..., x,)9/0x;. (We will forget about the fact that
V. = 0/0x;). If the linear part ofX satisfies the nonresonance condition then we
can apply Sternberg’s theorem [16] to lineari¥esmoothly, and if it satisfies the
Bryuno’s incommensurability condition then we can apply Bryuno's theorem (see
e.g. [3, 9]) to linearizeX analytically in the analytic case. Thus in both case we can
assume thak is already linearized and normalize#: = Z;’:p Ai—p41X;0/0X;.
We want now to chang®; andY so that they become commuting and the relation
IT = Vin---AV,_1AY still hold (without multiplyingIT by the nonzero function).
Similarly to the proof of Theorem 6.1, we hay&,, Y] = [V, fX] = Vi(f)
X = fi¥ with f; = Vi(f)/f. The equatiorV1(g) + f1g = 0 can be solved locally
becauseV;1(0) # 0. This time we will solve it on the submanifold, = --- =
x, = 0) of zero points ofl1. So letg be a nonzero function which does not depend

on (x4, ..., x,) and which satisfie/;1(g) + fig = 0 on the submanifoldx, =
- = x, = 0). Then[Vy/g, gY] = h/gY whereh is a function which vanishes
on the submanifoldx, = --- = x, = 0). Under the nonresonance condition,

a theorem of Roussarie [15] says that the equaligp) = h, or equivalently,
X(y) = h/f, has a smooth solutioh. (Notice here an important fact that

does not depend ofx,, ..., x,), which allows us to use Roussarie’s theorem). In
the analytic case, the equatidf(y) = (Zf’jll AiXg—14i0/0xg-14:)(y) = h/f =
D B Py (X1, X,-1)%," ... x{" has the formal solution

1
D s e (1 MR PR s

SqroSn Lai=1 ViSq—1+i

which can be verified easily to converge ne&2y under the incommensurability
condition of Bryuno.

With a smooth or analytic functiop such thatY (y) = h, we have[Vi/g +
yY,gY] = 0. Thus we can chang¥, by V;/¢ + yY andY by gY to obtain
[V1, Y] = 0. Of course, this change does not affEctAfter that, we can change
Vo, ..., V;-1 so that they commute witliry, in the same way as in the proof of
Theorem 6.1.
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Thus we can mak&; commute withV,, ..., V,_1, Y, without affectinglT. Just
as in the proof of Theorem 6.1, by induction we can mé&ke. .., V,_1, Y com-
mute pairwise. Then we can put = 9/9dx; in some new local system of coordin-

ates, and can assume tliaoes not contain the termgox,, ..., d/dx,—_1. The we
can linearizeY, using Bryunao's or Sternberg’s theorem, to finish the linearization
of I. a

Remark The Bryuno’s incommensurability condition in the above theorem can
indeed be replaced by a weaker so-cali§€g-condition plus the nonresonance
condition (see e.g. [3, 9] for thg2)-condition).

Talking about co-Nambu forms of Type 2, the above theorems show that such
co-Nambu forms can be written locally as = fw; where f is some nonzero
function andw, is a p-form which does not contain the terms;d. . ., dx,_1 and
does not depend on the variablgs. . ., x,_1, in some local system of coordinates
(x1, ..., xy). In other wordse, is a pull-back of gp-form on a(p+1)-dimensional
space under a projectioR” — RP*1. Furthermorew; can be made linear if
o satisfies some nonresonance of incommensurability condition (O £ 0O,
then a result of Medeiros [10] (called fundamental lemma for integrakiams)
says thatw itself is the pull-back of gp-form on a(p + 1)-dimensional space
under a projectiolR” — RP*1, Let us give a proof of this fact, which is a slight
simplification of the one given in [10].

First of all, notice that ifw is a co-Nambup-form, then @ is a co-Nambu
(p + D-form. Indeed, the condition (4) in Definition 2.4 is trivial fowdand the
condition (3) about the decomposability is easily verified: near a nonzero point of
w we can writew = f dxg A--- Adx,, whichimpliesd =df Adxy A--- Adx,.

If dw (0) # 0 then a Nambu tensor dual to it is regulaaand gives rise to a local
regular foliation, denoted h§ . The tangent spaces &f are nothing but the spaces
of vectors whose contraction withods zero. Therefore i is a vector tangent to
F at a pointx nearO we haveiz dw(x) = 0. If w(x) # 0 then we also obtain
thati ;o (x) = 0, by using again the presentation= f dx; A --- A dx,. Since the
set of nonzero points @b is dense nea® (because d(0) # 0), by continuity we
get that for anyZ tangent to¥', iyw(x) = 0 andiz dw(x) = 0. It means thab is
locally a pull-back of a form on the local base space&rof O
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