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In this note we answer a question raised by Fnedland and Milnor in [FM] concerning
the topological entropy of polynomial diffeomorphisms of C2

Fnedland and Milnor prove that a polynomial diffeomorphism is conjugate to a
diffeomorphism of one of three types affine, elementary or cyclically reduced The
first two families of maps are very simple from a dynamical point of view The third
family contains diffeomorphisms which are dynamically very interesting The Henon
map is an example of a cyclically reduced diffeomorphism of degree 2

Topological entropy is most naturally defined for maps of compact spaces Since
C2 is not compact Fnedland and Milnor consider the map g, the extension of g to
the one point compactification of C2 They prove that if g is a cyclically reduced
diffeomorphism of (algebraic) degree d then the inequality h(g) < log d holds They
raise the question of whether the inequality can be replaced by an equality We
show that it can

THEOREM If g is cyclically reduced then h(g) = log d

The Henon map has been intensively studied as a map from R2 to itself and yet
many important problems remain In particular the dependence of the entropy of
g on the parameter values determining g is quite mystenous The above result
suggests that the dynamics of the Henon map when considered as a diffeomorphism
of C2 may be simpler than when considered as a diffeomorphism of R2

Let Pern (g) be the set of periodic points of penod n Let

H(g) = hm sup - log+ |Pern (g)|
n-*oo n

COROLLARY H(g) = \ogd

Proof of Corollary This follows by combining the above theorem with the result of
[FM] that h(g) s H(g) < log d

Fnedland and Milnor show that every cyclically reduced polynomial diffeomorph-
ism is conjugate to a composition of generalized Henon maps of the form g(x, y) =
(y,p(y) — Sx) where p is a polynomial and 5 is a nonzero complex number The
degree of g is the degree of p The degree of a composition of generalized Henon
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maps is the product of the degrees of the factors We begin by proving some basic
facts about these maps The proof of the theorem follows A version of Lemma 2
first appears in [DN]

LEMMA 1 (see [FM] Lemma 3 4) For every generalized Henon map g (x, y) >-» (y, z) =
(y,p(y) — Sx) there exists a constant K SO that \y\> K implies that either \z\>\y\ or
\x\ > \y\ or both

We fix the following notation Let g = gi ° g2 ° gn be a composition of general-
ized Henon maps Let d be the degree of g Choose K large enough so that Lemma
1 holds for each g, Let

V~ = {(x,y) \y\>Kaad\y\>\x\}

V+ = {(x,y) |x|>Kand|x|>|>>|}

y = {(x,y) \x\ < K and \y\ < K}

LEMMA 2

(1) g(V")<=y-
(2) g(V"u V)<= V"u V
(3) g- ' (V + )c V+

(4) g-\V+u V)<= V+u V

Proof It suffices to prove each assertion when g (x, y)>-^(y, z) is itself a generalized
Henon map
(1) Let (x, y) be an element of V~ then | ^ | > K and |y|>|x| By Lemma 1 |z|>|y|

and, since \y\ > K, we conclude that \z\ > K This implies that g(x, y) = (y, z) is
in V"

(2) By (1) it suffices to consider the case when (x, y) is an element of V We will
show that g(x, y) = (y, z) is in Vu V~ Consider two case If \z\ < K then, since
\y\ < K, (y, z) is in V If \z\ > K then, since \y\ < K, we conclude that \z\ > \y\ so
(y, z) is in V~

(3) Let (y, z) be an element of V+ we want to show that g~'(y, z) = (x, y) is in V+

Since \y\ > K and |j>| > \z\ Lemma 1 gives |x| > \y\ and, since \y\ > K and |x| > \y\,
we conclude that |x| > K This implies that (x, y) is in V+

(4) By (3) it suffices to consider the case when (y, z) is an element of V We will
show that (x, y) is in V+ u V If x < K then since \y\ < K we conclude that (x, y)
is in V If x > K then, since \y\ < K, we conclude that |x| > \y\ and (x, y) is in V+

Notation Let Dr <= C be the disk of radius r centered at the origin Let i C -> C2 be
denned by t(z) = (0, z) Let w C 2 ^C be defined by ir(x,y) =y

LEMMA 3 The set V~ is homotopy equivalent to S1 the map i dD2K -* V~ is a
homotopy equivalence The topological degree of the map induced by g on V~ is the
algebraic degree of g

Proof Let Cv be the j-axis Let 4>,{x,y) = ((1 -t)x,y) for te[0,1] Now(J,(V')c
V~, <t>0 is the identity on V and <j>t is the projection from V~ to V~nCv Thus 0
provides a retraction from V" to V~ n Cv The set V n C, is the image of t C - DK

Both i C - D2K -* V and TT V~ -» C - DK are homotopy equivalences
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To prove the last assertion it suffices to consider a single generalized Henon map
g, (x, y)>-*{y, p(y) - Sx) If we can prove it for a single such map it will follow for
a composition of generalized Henon maps because both the algebraic and homologi-
cal degrees of generalized Henon multiply under composition We compute the
degree of the map from V~ to itself by computing the degree of the map IT ° g ° t
This is an equivalent problem because it and i are homotopy equivalences This
map is given by y<-*p(y) Let d, be the algebraic degree of g, then d, is the degree
of p, If L is sufficiently large then the topological degree of the map on C-DL

induced by p is the degree of the polynomial p The inclusion C — Dk <= C — DL is a
homotopy equivalence Thus p has degree d, on C — DK

LEMMA 4 Let f (D,dD)->(V"uV, V") be a holomorphic map Let deg (/) denote
the topological degree off dD-> V~ Then area (f(D) n V) s area (DK) deg (/)

Proof The projection map TT sends v to DK The induced map from f(D)n V to
DK is a proper map and therefore a branched cover We see that the covering degree
is deg (/) by noting that irf(dD) wraps deg (/) times around DK Let U be the set
obtained from DK by removing the critical points of the projection and removing
arcs connecting the critical points to the boundary of DK The area of U is the same
as the area of DK and f(D) mr~lU consists of deg (/) components each mapped
bijectively onto U by TT NOW IT does not increase lengths and hence does not
increase area so the area of each component is at least area (U) = area (DK) Thus
the area of f(D) n V is at least area (DJ deg (/)

Proof of Theorem 1 Let K+c C2 be the set of points with bounded forward orbits
and let K~ be the set of points with bounded backwards orbits Let K = K+ n K~
When g is cyclically reduced an argument from [FM] Lemma 3 5 proves that
K + c V u V~, K~<^ Vu V+ hence K <= y The same argument shows that all points
outside of K are wandering The set K is compact and is in fact the maximal
compact invariant subset of C2

Fnedland and Milnor give log d as an upper bound for the entropy of h(g) The
inequality h(g)>h(g\K) is a basic property of entropy It suffices to prove the
lower bound h(g | K) > log (d)

Lemmas 3 and 4 imply that the area of g"i(D2K)n V is at least constant d"
Thus the volume growth, as denned in [Y], of the submanifold I(D2K) IS at least
log d We wish to apply the result of Yomdin ([Y], see also [G]) which says that,
for Cx maps of compact manifolds, volume growth of submanifolds is a lower
bound for entropy We cannot apply this theorem directly to C2 because it is not
compact We cannot apply this theorem directly to K because it is not a manifold
and we do not have information on the area of g"t(D2K)n K We proceed by an
indirect course, we approximate the set K+ by manifolds with boundary Vn defined
below

Let dn(x, y) = max1=0 „_, d(g'(x), g'{y)) For X a compact subset of C2 we denote
by M(n, e, X) the minimum number of e-balls in the dn metric needed to cover X
Let v{n) be the area of g"i(D2K)n V Let Vn= Vng'"(V) Let v°(n, e) be the
maximum of the area of g"t.(S') where S' is i~l(S) for S an e-ball of Vn in the dn
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metric If we choose a minimal covering of Vn by e-balls S, then the area of
g"i(D2K)n V is bounded above by the sum of the areas of g"t(S',) The sum of
areas is bounded above by the number of balls times the maximum area This gives

Taking limits gives

hm sup —log v(n)slim sup — log M(n, e, Vn) + hm sup —log v°(n, e)

We evaluate v(n) By Lemma 3 the topological degree of the map g"i on dDlK is
d" By Lemma 4 we have

area (g"i(D2K) n V)> constant deg (g"i) = constant d"

Thus the left hand side is greater than or equal to log d and we have

log d<hmsup —log M{n, e, Vn) + hmsup —log v°(n, e)
n-*oD Tl n-*oo Tl

Taking limits as e goes to zero gives

log d< hm hmsup — log M(n, e, Vn)+ hm hmsup —log v°{n, e)

Yomdin shows ([Y] Theorem 1 8) that
hm hm sup n"1 log v°(n, e)

is zero for C°° maps This result is stated for compact manifolds but it holds in our
situation. The following modification is required in the proof A bound of the form
Bk on the norm of the first derivative of the fcth iterate of the map is needed In
our case if B is a bound for the norm of the derivative of g | V then Bk is a bound
for the norm of the derivative of gk | Vk

It remains for us to relate the quantity

hm hm sup n~l log M(n, e, Vn)

to the entropy of g | K Let V denote the quotient space (Vu V~)/V~ Let m be the
point corresponding to V~ We define a metric d{x, y) on V by the formula

d(x, y) = mm {d(x, v), d{x, V") + d(y, V")}

d(x,m) = d(x, V~)

Since the set V~ is g invariant, g extends to a continuous map g from V to itself
We have

h(g) = hm hm sup — log M(n, e, V)

> hm hm sup — log M(n, e, Vn)

a log d
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The first equality is the definition of entropy The second inequality follows because
Vn c V and if Vn is sufficiently far from VnV~ (relative to the size of e) then the
metrics d and d are the same when restricted to Vn Thus an (n, e) cover of V with
respect to the d metric yields an (n, e) cover of Vn with respect to d

By a result of Bowen [B] the entropy of a map is equal to the entropy of the
restriction of the map to the nonwandermg set In this case we have h{g) =
h(g\K+vj{m}) because the nonwandermg set is contained in X+u{m} Now

On the set K+ the maps g and g are identical Thus h(g) = h(g\K+) The non-
wandering set of g\K+ is contained in g\K so applying Bowen's result again we
have h(g\K+) = h(g\K) Combining these results gives

h(g\K) = h(g\K+) = h(g)>log d

This completes the proof of the theorem •
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