The entropy of polynomial diffeomorphisms of \mathbf{C}^{2}

JOHN SMILLIE \dagger
Department of Mathematics, Cornell University, Ithaca NY 14853, USA

(Recelved 21 November 1988)

In this note we answer a question raised by Friedland and Milnor in [FM] concerning the topological entropy of polynomial diffeomorphisms of \mathbf{C}^{2}

Friedland and Milnor prove that a polynomial diffeomorphism is conjugate to a diffeomorphism of one of three types affine, elementary or cyclically reduced The first two families of maps are very simple from a dynamical point of view The third famıly contaıns diffeomorphisms which are dynamically very interestıng The Hénon map is an example of a cyclically reduced diffeomorphism of degree 2

Topological entropy is most naturally defined for maps of compact spaces Since \mathbf{C}^{2} is not compact Friedland and Milnor consider the map g, the extension of g to the one point compactification of \mathbf{C}^{2} They prove that if g is a cyclically reduced diffeomorphism of (algebraic) degree d then the inequality $h(g) \leq \log d$ holds They rase the question of whether the inequality can be replaced by an equality We show that it can

Theorem If g is cyclically reduced then $h(g)=\log d$
The Hénon map has been intensively studied as a map from \mathbf{R}^{2} to itself and yet many important problems remain In particular the dependence of the entropy of g on the parameter values determining g is quite mysterious The above result suggests that the dynamics of the Hénon map when consıdered as a diffeomorphism of \mathbf{C}^{2} may be simpler than when considered as a diffeomorphism of \mathbf{R}^{2}

Let $\operatorname{Per}_{n}(g)$ be the set of periodic points of period n Let

$$
H(g)=\underset{n \rightarrow \infty}{\lim \sup } \frac{1}{n} \log ^{+}\left|\operatorname{Per}_{n}(g)\right|
$$

Corollary $H(g)=\log d$
Proof of Corollary This follows by combining the above theorem with the result of [FM] that $h(g) \leq H(g) \leq \log d$

Friedland and Milnor show that every cyclically reduced polynomial diffeomorph1sm is conjugate to a composition of generalized Hénon maps of the form $g(x, y)=$ $(y, p(y)-\delta x)$ where p is a polynomial and δ is a nonzero complex number The degree of g is the degree of p The degree of a composition of generalized Hénon

[^0]maps is the product of the degrees of the factors We begin by proving some basic facts about these maps The proof of the theorem follows A version of Lemma 2 first appears in [DN]
Lemma 1 (see [FM] Lemma 34) For every generalized Hénon mapg $(x, y) \mapsto(y, z)=$ $(y, p(y)-\delta x)$ there exists a constant κ so that $|y|>\kappa$ implies that either $|z|>|y|$ or $|x|>|y|$ or both

We fix the following notation Let $g=g_{1} \circ g_{2} \circ \quad g_{n}$ be a composition of generalized Hénon maps Let d be the degree of g Choose κ large enough so that Lemma 1 holds for each g_{1} Let

$$
\begin{aligned}
V^{-} & =\{(x, y)|y|>\kappa \text { and }|y|>|x|\} \\
V^{+} & =\{(x, y)|x|>\kappa \text { and }|x|>|y|\} \\
V & =\{(x, y)|x| \leq \kappa \text { and }|y| \leq \kappa\}
\end{aligned}
$$

Lemma 2
(1) $g\left(V^{-}\right) \subset V^{-}$
(2) $g\left(V^{-} \cup V\right) \subset V^{-} \cup V$
(3) $g^{-1}\left(V^{+}\right) \subset V^{+}$
(4) $g^{-1}\left(V^{+} \cup V\right) \subset V^{+} \cup V$

Proof It suffices to prove each assertion when $g(x, y) \mapsto(y, z)$ is itself a generalized Hénon map
(1) Let (x, y) be an element of V^{-}then $|y|>\kappa$ and $|y|>|x|$ By Lemma $1|z|>|y|$ and, since $|y|>\kappa$, we conclude that $|z|>\kappa$ This implies that $g(x, y)=(y, z)$ is in V^{-}
(2) By (1) it suffices to consider the case when (x, y) is an element of V We will show that $g(x, y)=(y, z)$ is in $V \cup V^{-}$Consider two case If $|z| \leq \kappa$ then, since $|y| \leq \kappa,(y, z)$ is in V If $|z|>\kappa$ then, since $|y|<\kappa$, we conclude that $|z|>|y|$ so (y, z) is in V^{-}
(3) Let (y, z) be an element of V^{+}we want to show that $g^{-1}(y, z)=(x, y)$ is in V^{+} Since $|y|>\kappa$ and $|y|>|z|$ Lemma 1 gives $|x|>|y|$ and, since $|y|>\kappa$ and $|x|>|y|$, we conclude that $|x|>\kappa$ This implies that (x, y) is in V^{+}
(4) By (3) it suffices to consider the case when (y, z) is an element of V We will show that (x, y) is in $V^{+} \cup V$ If $x \leq \kappa$ then since $|y| \leq \kappa$ we conclude that (x, y) is in V If $x>\kappa$ then, since $|y|<\kappa$, we conclude that $|x|>|y|$ and (x, y) is in V^{+}
Notation Let $D_{r} \subset \mathbf{C}$ be the disk of radius r centered at the origin Let $\iota \mathbf{C} \rightarrow \mathbf{C}^{2}$ be defined by $\iota(z)=(0, z)$ Let $\pi \quad \mathbf{C}^{2} \rightarrow \mathbf{C}$ be defined by $\pi(x, y)=y$
Lemma 3 The set V^{-}is homotopy equivalent to S^{1} the map $\iota \partial D_{2 \kappa} \rightarrow V^{-}$is a homotopy equivalence The topological degree of the map induced by g on V^{-}is the algebraic degree of g
Proof Let C_{1} be the y-axis Let $\phi_{t}(x, y)=((1-t) x, y)$ for $t \in[0,1]$ Now $\phi_{t}\left(V^{-}\right) \subset$ V^{-}, ϕ_{0} is the identity on V^{-}and ϕ_{1} is the projection from V^{-}to $V^{-} \cap \mathbf{C}_{b}$ Thus ϕ provides a retraction from V^{-}to $V^{-} \cap \mathbf{C}_{\downarrow}$ The set $V^{-} \cap \mathbf{C}_{,}$is the image of $\iota \mathbf{C}-D_{\kappa}$ Both $\iota \mathrm{C}-D_{2 \kappa} \rightarrow V^{-}$and $\pi \quad V^{-} \rightarrow \mathrm{C}-D_{\kappa}$ are homotopy equivalences

To prove the last assertion it suffices to consider a single generalized Hénon map $g_{1}(x, y) \mapsto(y, p(y)-\delta x)$ If we can prove it for a single such map it will follow for a composition of generalized Hénon maps because both the algebraic and homological degrees of generalızed Hénon multıply under composition We compute the degree of the map from V^{-}to itself by computing the degree of the map $\pi \circ g \circ \iota$ This is an equivalent problem because π and ι are homotopy equivalences This map is given by $y \mapsto p(y)$ Let d_{1} be the algebraic degree of $g_{\text {, }}$ then d_{1} is the degree of p_{1} If L is sufficiently large then the topological degree of the map on $C-D_{L}$ induced by p is the degree of the polynomial p The inclusion $\mathbf{C}-D_{k} \subset \mathbf{C}-D_{L}$ is a homotopy equivalence Thus p has degree d_{i} on $\mathrm{C}-D_{\kappa}$

Lemma 4 Let $f(D, \partial D) \rightarrow\left(V^{-} \cup V, V^{-}\right)$be a holomorphic map Let $\operatorname{deg}(f)$ denote the topological degree of $f \partial D \rightarrow V^{-}$Then area $(f(D) \cap V) \geq \operatorname{area}\left(D_{\kappa}\right) \operatorname{deg}(f)$
Proof The projection map π sends v to D_{κ} The induced map from $f(D) \cap V$ to D_{κ} is a proper map and therefore a branched cover We see that the coverıng degree is $\operatorname{deg}(f)$ by notıng that $\pi f(\partial D)$ wraps $\operatorname{deg}(f)$ tımes around D_{κ} Let U be the set obtained from D_{κ} by removing the critical points of the projection and removing arcs connecting the critical points to the boundary of D_{κ} The area of U is the same as the area of D_{κ} and $f(D) \cap \pi^{-1} U$ consists of $\operatorname{deg}(f)$ components each mapped bijectively onto U by π Now π does not increase lengths and hence does not increase area so the area of each component is at least area $(U)=\operatorname{area}\left(D_{\kappa}\right)$ Thus the area of $f(D) \cap V$ is at least area $\left(D_{\kappa}\right) \operatorname{deg}(f)$
Proof of Theorem 1 Let $K^{+} \subset \mathbf{C}^{2}$ be the set of points with bounded forward orbits and let K^{-}be the set of points with bounded backwards orbits Let $K=K^{+} \cap K^{-}$ When g is cyclically reduced an argument from [FM] Lemma 35 proves that $K^{+} \subset V \cup V^{-}, K^{-} \subset V \cup V^{+}$hence $K \subset V$ The same argument shows that all points outside of K are wanderıng The set K is compact and is in fact the maximal compact invariant subset of \mathbf{C}^{2}

Friedland and Milnor give $\log d$ as an upper bound for the entropy of $h(g)$ The inequality $h(g) \geq h(g \mid K)$ is a basic property of entropy It suffices to prove the lower bound $h(g \mid K) \geq \log (d)$

Lemmas 3 and 4 imply that the area of $g^{n} \iota\left(D_{2_{\kappa}}\right) \cap V$ is at least constant d^{n} Thus the volume growth, as defined in [Y], of the submanifold $\iota\left(D_{2_{\kappa}}\right)$ is at least $\log d$ We wish to apply the result of Yomdın ([Y], see also [G]) which says that, for C^{∞} maps of compact manifolds, volume growth of submanifolds is a lower bound for entropy We cannot apply this theorem directly to \mathbf{C}^{2} because it is not compact We cannot apply this theorem directly to K because it is not a manifold and we do not have information on the area of $g^{n} \iota\left(D_{2 \kappa}\right) \cap K$ We proceed by an indirect course, we approximate the set K^{+}by manıfolds with boundary V_{n} defined below

Let $d_{n}(x, y)=\max _{t=0}{ }_{n-1} d\left(g^{\prime}(x), g^{\prime}(y)\right)$ For X a compact subset of \mathbf{C}^{2} we denote by $\boldsymbol{M}(n, \varepsilon, X)$ the minımum number of ε-balls in the d_{n} metric needed to cover X Let $v(n)$ be the area of $g^{n} \iota\left(D_{2_{\kappa}}\right) \cap V$ Let $V_{n}=V \cap g^{-n}(V)$ Let $v^{0}(n, \varepsilon)$ be the maximum of the area of $g^{n} \iota\left(S^{\prime}\right)$ where S^{\prime} is $\iota^{-1}(S)$ for S an ε-ball of V_{n} in the d_{n}
metric If we choose a mınımal coverıng of V_{n} by ε-balls S, then the area of $g^{n} \iota\left(D_{2 \kappa}\right) \cap V$ is bounded above by the sum of the areas of $g^{n} \iota\left(S_{i}^{\prime}\right)$ The sum of areas is bounded above by the number of balls times the maximum area This gives

$$
v(n) \leq M\left(n, \varepsilon, V_{n}\right) v^{0}(n, \varepsilon)
$$

Takıng limits gives

$$
\underset{n \rightarrow \infty}{\limsup _{n}} \frac{1}{n} \log v(n) \leq \underset{n \rightarrow \infty}{\lim \sup } \frac{1}{n} \log M\left(n, \varepsilon, V_{n}\right)+\underset{n \rightarrow \infty}{\limsup } \frac{1}{n} \log v^{0}(n, \varepsilon)
$$

We evaluate $v(n)$ By Lemma 3 the topological degree of the map $g^{n} \iota$ on $\partial D_{2 \kappa}$ is d^{n} By Lemma 4 we have

$$
\text { area }\left(g^{n} \iota\left(D_{2 \kappa}\right) \cap V\right) \geq \text { constant } \operatorname{deg}\left(g^{n} \iota\right)=\text { constant } d^{n}
$$

Thus the left hand side is greater than or equal to $\log d$ and we have

$$
\log d \leq \underset{n \rightarrow \infty}{\limsup } \frac{1}{n} \log M\left(n, \varepsilon, V_{n}\right)+\underset{n \rightarrow \infty}{\limsup } \frac{1}{n} \log v^{o}(n, \varepsilon)
$$

Takıng limits as ε goes to zero gives

$$
\log d \leq \lim _{\varepsilon \rightarrow \infty} \lim \sup _{n \rightarrow \infty} \frac{1}{n} \log M\left(n, \varepsilon, V_{n}\right)+\lim _{\varepsilon \rightarrow \infty} \limsup _{n \rightarrow \infty} \frac{1}{n} \log v^{0}(n, \varepsilon)
$$

Yomdin shows ([Y] Theorem 18) that

$$
\lim _{\varepsilon \rightarrow \infty} \limsup _{n \rightarrow \infty} n^{-1} \log v^{0}(n, \varepsilon)
$$

is zero for C^{∞} maps This result is stated for compact manıfolds but it holds in our situation. The following modification is required in the proof A bound of the form B^{k} on the norm of the first derivative of the k th iterate of the map is needed In our case if B is a bound for the norm of the derivative of $g \mid V$ then B^{k} is a bound for the norm of the derivative of $g^{k} \mid V_{k}$

It remains for us to relate the quantity

$$
\lim _{\varepsilon \rightarrow \infty} \underset{n \rightarrow \infty}{\limsup } n^{-1} \log M\left(n, \varepsilon, V_{n}\right)
$$

to the entropy of $g \mid K$ Let \bar{V} denote the quotient space $\left(V \cup V^{-}\right) / V^{-}$Let m be the point corresponding to V^{-}We define a metric $\bar{d}(x, y)$ on \bar{V} by the formula

$$
\begin{aligned}
\bar{d}(x, y) & =\min \left\{d(x, v), d\left(x, V^{-}\right)+d\left(y, V^{-}\right)\right\} \\
\bar{d}(x, m) & =d\left(x, V^{-}\right)
\end{aligned}
$$

Since the set V^{-}is g invariant, g extends to a continuous map \bar{g} from \bar{V} to itself We have

$$
\begin{aligned}
& h(\bar{g})=\lim _{\varepsilon \rightarrow \infty} \lim \sup \\
& n \rightarrow \infty \\
& \frac{1}{n} \log M(n, \varepsilon, \bar{V}) \\
& \geq \lim _{\varepsilon \rightarrow \infty} \limsup _{n \rightarrow \infty} \frac{1}{n} \log M\left(n, \varepsilon, V_{n}\right) \\
& \geq \log d
\end{aligned}
$$

The first equality is the definition of entropy The second inequality follows because $V_{n} \subset V$ and if V_{n} is sufficiently far from $V \cap V^{-}$(relative to the size of ε) then the metrics d and \bar{d} are the same when restricted to V_{n} Thus an (n, ε) cover of \bar{V} with respect to the \bar{d} metric yields an (n, ε) cover of V_{n} with respect to d

By a result of Bowen [B] the entropy of a map is equal to the entropy of the restriction of the map to the nonwandering set In this case we have $h(\bar{g})=$ $h\left(\bar{g} \mid K^{+} \cup\{m\}\right)$ because the nonwandering set is contained in $K^{+} \cup\{m\}$ Now

$$
h\left(\bar{g} \mid K^{+} \cup\{m\}\right)=h\left(\bar{g} \mid K^{+}\right)+h(\bar{g} \mid\{m\})=h\left(\bar{g} \mid K^{+}\right)
$$

On the set K^{+}the maps g and \bar{g} are identical Thus $h(\bar{g})=h\left(g \mid K^{+}\right)$The nonwandering set of $g \mid K^{+}$is contained in $g \mid K$ so applying Bowen's result again we have $h\left(g \mid K^{+}\right)=h(g \mid K)$ Combining these results gives

$$
h(g \mid K)=h\left(g \mid K^{+}\right)=h(\bar{g}) \geq \log d
$$

This completes the proof of the theorem

REFERENCES

[B] $\quad \mathrm{R}$ Bowen Topological entropy and axiom A Proc Svmp Pure Math 14 Amer Math Soc (1970), 23-41
[DN] R Devaney \& Z Niteckı Shift automorphısms in the Hénon map Comm Math Phvs 67 (1979), 137-146
[FM] S Frıedland \& J Milnor Dynamical properties of plane polynomial automorphısms Ergod Th \& Dynam Svs 9 (1989), 67-99
[G] M Gromov Entropy homology and semalgebratc geometry (after Y Yomdın) Seminaire N Bourbakı 663 (1985-86)
[HO] J H Hubbard \& R Oberste-Vorth Henon mappings in the complex domain In preparation
[Y] Y Yomdin Volume growth and entropy Israel J Math 57 (1987), 285-300

[^0]: \dagger Partally supported by NSF grant \# DMS-8803228 and the Sloan Foundation

