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In this note we answer a question raised by Friedland and Milnor in [FM] concerning
the topological entropy of polynomial diffeomorphisms of C*

Friedland and Milnor prove that a polynomial diffeomorphism 1s conjugate to a
diffeomorphism of one of three types affine, elementary or cyclically reduced The
first two families of maps are very simple from a dynamical point of view The third
family contains diffeomorphisms which are dynamtcally very interesting The Hénon
map 1s an example of a cyclically reduced diffeomorphism of degree 2

Topological entropy 1s most naturally defined for maps of compact spaces Since
C? 1s not compact Friedland and Milnor consider the map g, the extension of g to
the one point compactification of C*> They prove that if g 1s a cyclically reduced
diffeomorphism of (algebraic) degree d then the inequality h(g) =log d holds They
raise the question of whether the inequality can be replaced by an equality We
show that 1t can

THEOREM If g 15 cyclically reduced then h(g) =log d

The Hénon map has been intensively studied as a map from R to 1tself and yet
many important problems remain In particular the dependence of the entropy of
g on the parameter values determining g 1s quite mysterious The above result
suggests that the dynamics of the Hénon map when considered as a difftomorphism
of C? may be simpler than when considered as a diffeomorphism of R?

Let Per, (g) be the set of periodic points of period n Let

1
H(g)=hm sup— log” |Per, (g)]
CoroLLary H(g)=logd

Proof of Corollary This follows by combining the above theorem with the result of
[FM] that h(g)< H(g)=<logd

Friedland and Milnor show that every cychically reduced polynomial diffeomorph-
1sm 1s conjugate to a composition of generalized Hénon maps of the form g(x, y) =
(», p(y)—8x) where p 1s a polynomial and & 1s a nonzero complex number The
degree of g 1s the degree of p The degree of a composition of generalized Hénon
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maps s the product of the degrees of the factors We begin by proving some basic
facts about these maps The proof of the theorem follows A version of Lemma 2
first appears in [DN]

LemMMA 1 (see [FM] Lemma 3 4) For every generalized Hénonmapg (x, y)—(y, z) =
(y, p(y) — 8x) there exists a constant k so that |y|> k imples that either |z|>|y| or
Ix|>|y| or both

We fix the following notation Let g=g,°g,° g, be a composition of general-
1zed Hénon maps Let d be the degree of g Choose « large enough so that Lemma
1 holds for each g, Let

V7 ={(x,y) |y|>« and |y|>|x[}
V' ={(x,y) |x|>« and |x|>[y|}
V={(x,y) |x|=kand|y|=«}

LEMMA 2

(1) g(Vv7)e V™

(2) g(VuVvV)eV uV

(3) g (V)= V?

4) g (VtuVv)eviuv

Proof 1t suffices to prove each assertion when g (x, y)—(y, z) 1s itself a generalized

Hénon map

(1) Let (x, y) be an element of V™ then |y|>« and |{y|>|x| By Lemma 1 |z|>|y|
and, since |y|> k, we conclude that |z| > « This imphes that g(x, y)=(y, z) 1s
m V"~

(2) By (1) 1t suffices to consider the case when (x, y) 1s an element of V We will
show that g(x, y)=(y,z)1s1n VU V™ Consider two case If |z| =<« then, since
IyI=k, (3,2) 1s 1n V If |z > « then, since |y| < x, we conclude that |z|>|y| so
(y,z)ismm V™

(3) Let (y, z) be an element of V' we want to show that g~'(y, z) =(x, y) 1s1n V*
Since |y|> k and |y|>|z] Lemma 1 gives |x|>|y| and, since |y|> « and |x| > |y],
we conclude that |x|> « This implies that (x, y) 1s m V*

(4) By (3) 1t suffices to consider the case when (y, z) 1s an element of V We will
show that (x, y) 1s1n V' U V If x < « then since |y| < « we conclude that (x, y)
1s1n V If x> « then, since |y| < k, we conclude that |x|> ]y} and (x, y) 1s1n V*

Notation Let D, < C be the disk of radius r centered at the ornigin Let « C- C? be
defined by ¢(z)=(0,z) Let # C*> C be defined by w(x, y)=y

LEMMA 3 The set V™ 1s homotopy equivalent to S' the map « 3D, > V™ i1s a
homotopy equivalence The topological degree of the map induced by g on V™ 1s the
algebraic degree of g

Proof Let C, be the y-axis Let ¢,(x,y)=({(1—1t)x,y) for te[0,1] Now ¢,(V7)c
V™, ¢ 15 the identity on V™ and ¢, 1s the projection from V™ to V" nC, Thus ¢
provides a retraction from V" to V" nC, Theset V" nC, 1s the image of « C— D,
Both ¢ C—D,, -~V and # V > C- D, are homotopy equivalences
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To prove the last assertion 1t suffices to consider a single generalized Hénon map
g (x,y)—(y, p(y)—8x) If we can prove 1t for a single such map 1t will follow for
a composition of generalized Hénon maps because both the algebraic and homologi-
cal degrees of generalized Hénon multiply under composition We compute the
degree of the map from V™ to itself by computing the degree of the map wogo
This 1s an equivalent problem because = and ¢ are homotopy equivalences This
map 1s given by y+—>p(y) Let d, be the algebraic degree of g, then d, 1s the degree
of p, If L 1s sufficiently large then the topological degree of the map on C— D,
induced by p 1s the degree of the polynomial p The inclusion C— D, < C—-D; 1s a
homotopy equivalence Thus p has degree d, on C— D,

LemMMmAa 4 Let f (D,aD)-> (V™ UV, V™) be a holomorphic map Let deg (f) denote
the topological degree of f 4DV~ Then area (f(D)n V)=area(D,) deg(f)

Proof The projection map = sends v to D, The induced map from f(D)nV to
D, 1s a proper map and therefore a branched cover We see that the covering degree
1s deg (f) by noting that (3 D) wraps deg (f) times around D, Let U be the set
obtained from D, by removing the critical points of the projection and removing
arcs connecting the critical points to the boundary of D, The area of U 1s the same
as the area of D, and f(D)n #~'U consists of deg (f) components each mapped
bijectively onto U by = Now 7 does not increase lengths and hence does not
increase area so the area of each component 1s at least area (U) =area (D,) Thus
the area of f(D)n V 1s at least area (D,) deg(f)

Proof of Theorem 1 Let K™ < C” be the set of points with bounded forward orbits
and let K~ be the set of points with bounded backwards orbits Let K=K "~ K~
When g 1s cychcally reduced an argument from [FM] Lemma 3 5 proves that
K"c VUV, K cVu V" hence K<V The same argument shows that all points
outside of K are wanderning The set K 1s compact and 1s in fact the maximal
compact 1nvariant subset of C’

Friedland and Milnor give log d as an upper bound for the entropy of h(g) The
inequality h(g)=h(g|K) 1s a basic property of entropy It suffices to prove the
lower bound h(g|K)=log (d)

Lemmas 3 and 4 imply that the area of g".(D,, )~ V 1s at least constant d"
Thus the volume growth, as defined 1n [Y], of the submanifold «(D,,) 1s at least
log d We wish to apply the result of Yomdin ([Y], see also [G]) which says that,
for C* maps of compact manifolds, volume growth of submanifolds 1s a lower
bound for entropy We cannot apply this theorem directly to C* because 1t 1s not
compact We cannot apply this theorem directly to K because 1t 1s not a mamfold
and we do not have information on the area of g"«(D,,) ~ K We proceed by an
indirect course, we approximate the set K by manifolds with boundary V, defined
below

Letd,(x, y) =max,_, ,_, d(g'(x), g'(y)) For X a compact subset of C* we denote
by M(n, g, X) the minimum number of e-balls 1n the d, metric needed to cover X
Let v(n) be the area of g"«(D,.)nV Let V,=Vn~g "(V) Let v%n, &) be the
maximum of the area of g".(S’) where §"1s +'(S) for S an e-ball of V, 1n the d,
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metric If we choose a minimal covering of V, by e-balls S, then the area of
g"(D,,)n V 1s bounded above by the sum of the areas of g"«(S!) The sum of
areas 15 bounded above by the number of balls times the maximum area This gives

v(n)=M(n, ¢, V,)0%n, )

Taking limits gives

1
Iim sup —log v(n)=lim sup —log M(n, e, V,)+1lim sup— log v°(n, £)
We evaluate v(n) By Lemma 3 the topological degree of the map g"t on 3D,, 1s
d" By Lemma 4 we have

area (g"«(D,.)n V)=constant deg (g".) =constant d"

Thus the left hand side 1s greater than or equal to log d and we have

logd<11msup—logM(n g, V)+11msup—logv (n, &)

n-»0o0 n-»o0

Taking hmits as & goes to zero gives

log d <lim llmsup—log M(n, e, V)+11m llmsup—logv (n, ¢)

£ ps00 n->oo

Yomdin shows ([Y] Theorem 1 8) that

lim lim sup n~'log v°(n, €)

£20 pL0

1s zero for C™ maps This result 1s stated for compact manifolds but 1t holds 1n our
situation. The following modification 1s required in the proof A bound of the form
B* on the norm of the first derivative of the kth iterate of the map 1s needed In
our case if B 1s a bound for the norm of the derivative of g|V then B* 1s a bound
for the norm of the derivative of g*| V;

It remains for us to relate the quantity

hm imsup n”'log M(n, ¢, V,)

£E—>00 n->00

to the entropy of g| K Let V denote the quotient space (VU V7)/ V™ Let m be the
point corresponding to V- We define a metric d(x, y) on V by the formula

d(x,y)=mm{d(x, v),d(x, V)+d(y, V)}
dix,m)=d(x, V")

Since the set V™ 1s g invanant, g extends to a continuous map g from V to 1tself
We have

h(g)= 11m lim sup—log M(n, e, V)

n—-»oo

=hm hmsup—log M(n, e, V,)

F=>C n->oc

=logd
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The first equality 1s the definition of entropy The second inequality follows because
V, € Vand If V, 1s sufficiently far from V n V™ (relative to the size of £) then the
metrics d and d are the same when restricted to V, Thus an (n, €) cover of V with
respect to the d metric yields an (n, &) cover of V, with respect to d

By a result of Bowen [B] the entropy of a map 1s equal to the entropy of the
restriction of the map to the nonwandering set In this case we have h(g)=
h(g| K" u{m}) because the nonwandering set 1s contained in K*u{m} Now

h(g|K"u{m})=h(g|K)+h(g|{m})=h(g|K™)

On the set K* the maps g and g are 1dentical Thus h(g)=h(g|K™) The non-
wandering set of g| K™ 1s contained in g|K so applying Bowen’s result again we
have h(g|K*)=h(g|K) Combining these results gives

h(g|K)=h(g|K")=h(g)=logd
This completes the proof of the theorem O
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