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Mixing of fluids in a coaxial jet is studied under four distinct viscosity ratios, m =
1, 10, 20 and 40, using highly resolved large-eddy simulations (LES), particle image
velocimetry and planar laser-induced fluorescence. The accuracy of predictions is tested
against data obtained by the simultaneous experimental measurements of velocity and
concentration fields. For the highest and lowest viscosity ratios, standard RANS models
with unclosed terms pertaining to viscosity variations are employed. We show that the
standard Reynolds-averaged Navier–Stokes (RANS) approach with no explicit modelling
for variable-viscosity terms is not applicable whereas dynamic LES models provide
high-quality agreement with the measurements. To identify the underlying mixing physics
and sources of discrepancy in RANS predictions, two distinct mixing modes are defined
based on the viscosity ratio. Then, for each mode, the evolution of mixing structures,
momentum budget analysis with emphasis on variable-viscosity terms, analysis of the
turbulent activity and decay of turbulence are investigated using highly resolved LES data.
The mixing dynamics is found to be quite distinct in each mixing mode. Variable viscosity
manifests multiple effects that are working against each other. Viscosity gradients induce
additional instabilities while increasing overall viscosity decreases the effective Reynolds
number leading to laminarization of the turbulent jet, explaining the lack of dispersion and
turbulent diffusion. Momentum budget analysis reveals that variable-viscosity terms are
significant to be neglected. The scaling of the energy spectrum cascade suggests that in
the TLL mode the unsteady laminar shedding is responsible for the eddies observed.
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1. Introduction

Turbulent mixing is a ubiquitous problem that arises in many configurations with the aim
of mixing fluids through the cascade of three mechanisms, i.e. entrainment, dispersion
and diffusion. Depending on the physical and chemical properties of fluids, mixing
can be further categorized into ‘passive-scalar mixing’, ‘mixing coupled to dynamics’
and ‘mixing that alters the fluid’ (Dimotakis 2005), where the first two categories
are the subject of this study. In the simplest case, mixing substances with matched
physical properties (e.g. viscosity, density), henceforth constant-viscosity mixing (CVM),
is decoupled from the flow dynamics, and thus, only the flow field affects the mixing
dynamics, i.e. advection. One way that leads to coupled dynamics is the mixing of fluids
with disparate viscosity, henceforth variable-viscosity mixing (VVM), since the variations
in viscosity alter, including but not limited to, the local momentum field and Reynolds
number. Therefore, the local topology of entrainment and dispersion are perturbed by the
observed viscosity gradients while the ratio of momentum diffusivity and mass diffusivity,
defined with Schmidt number (Sc = ν/D), is varied by the magnitude of local viscosity.

In the simulations the range of Sc has significance from the calculations standpoint such
that, in the mixing of liquids (Sc � 1), the smallest length scale of the flow field and scalar
field eddies are separated by several orders of magnitude. A relation for the smallest length
scale defined by Batchelor (1959) reads

λB ≡ CBλKSc−1/2 ≡ CBλK

( ν

D

)−1/2
, (1.1)

where λB is the smallest scalar length scale, λK is the smallest velocity scale, CB is a model
constant (in the order of unity), ν is kinematic viscosity, D is the molecular diffusion
coefficient and Sc is Schmidt number. It is evident in the correlation that the resulting
Schmidt number is a spatiotemporal parameter in VVM and it can be of the order of
∼ 105 in this study. So, in the viscous-convective subrange, the diffusion becomes limited
and viscosity prevails (Sreenivasan 2019). The level of segregation between diffusive
and viscous scales poses challenges in capturing the mixing physics both experimentally
and computationally. Specifically, in the coupled scenario, where viscosity varies by the
mixing, the cruciality of accurate modelling is pronounced.

The variation in the viscosity brings fundamentally distinct mixing modes as it dictates
the local Reynolds number. The bulk dynamics of the mixing chamber are described by
the flow regime of the jet, coflow and completely mixed flows (Mikhail 1960; Razinsky &
Brighton 1971, 1972; Pathikonda et al. 2021). In a coaxial jet configuration the acronym
describes the flow regime (T for turbulent, L for laminar) of the jet, coflow and fully
mixed downstream, respectively. The regimes are determined a priori based on the flow
rate, characteristic length and viscosity, i.e. Reynolds number. In this study we focus on
TTT (m = 1) and TLL (m = 10, 20, 40) modes. Here, m is defined as the viscosity ratio
between the coflow and jet. In the TTT mode, the mixing layer remains turbulent and
the typical cascade of the mechanism described earlier applies here. However, in the
TLL mode, more complex transport and mixing phenomena are introduced by having a
turbulent/non-turbulent interface (TNTI) near the jet entrance and transitioning to laminar
flow in downstream locations. One also observes non-zero viscosity gradients that alter
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Mixing of fluids with disparate viscosity

the momentum field until all the gradients are diminished by the complete mixing. These
ramifications compel us to redefine the key mixing mechanisms.

In this perspective, we identify four distinct mechanisms in the TLL mode to break
down all scales of unmixed parcels. These are listed as turbulent mixing, unsteady laminar
mixing, steady laminar stretching (under linear velocity gradient in the radial direction)
and molecular diffusion sorted in descending order of mixing time scales. Inherently, the
first two mechanisms contain positive Q criterion, i.e. areas where the vorticity magnitude
is greater than the magnitude of strain rate (Kolář 2007), that promotes engulfment and
entrainment of unmixed or poorly mixed fluid parcels. Once the flow transitions to fully
developed steady laminar flow, the mixing only occurs through the rather slow processes
of shear and molecular diffusion. In particular, in a pipe the shearing varies linearly
in the radial direction and it stretches the remaining scalar structures that lead to thin
layers of stratified structures, called lamella. This mechanism works in favour of molecular
diffusion in a way that it increases interface area while decreasing the characteristic length
of diffusion.

If we recall the turbulent mixing mechanism, it requires further elucidation for the
TLL mixing mode since the mixing layer has anisotropy in the flow state. When a
turbulent jet is issued into a coflowing laminar jet, a highly convoluted TNTI forms at
the outermost boundary of the turbulent jet. Starting with the studies of Brown & Roshko
(1974) and later many other studies (Dahm & Dimotakis 1987; Ferré et al. 1990; Dimotakis
2000) concluded on the existence of large-scale organized structures, i.e. advective flux
(‘engulfing’ process), that are responsible for the entrainment. However, a fundamental
understanding of TNTI with irrotational outer flow carried out by Westerweel et al. (2005,
2009) indicates a very limited contribution of large-scale motions, instead the entrainment
is dominated by small-scale eddying, i.e. viscous stress (‘nibbling’ process), at the high
shear interface. Their assertion was also found to be consistent with other studies (Mathew
& Basu 2002; Kohan & Gaskin 2020). Furthermore, the ground-breaking experiments
and multiscale analysis by Philip et al. (2014) showed that while large-eddy simulation
(LES)-type modelling reasonably captures the ‘nibbling’ process, Reynolds-averaged
Navier–Stokes (RANS)-type models govern the entrainment in the form of advective flux
that is dependent on the accuracy of the RANS turbulence model in the highly anisotropic
region.

The present study has additional complexities over the existing literature in that the
outer flow is rotational (laminar) and the jets have disparate viscosities. The magnitude of
the viscosity gradient peaks at the interface and it alters the viscous stress field. Hence,
the evolution of the interfacial waves becomes a function of not only Kelvin–Helmholtz
(K–H) instabilities but also viscosity gradient instabilities (Govindarajan & Sahu 2014).
If we explain this more systematically, shear-driven jet interface development, particularly
with variable viscosity considered in this study, manifests multiple effects that are working
against each other: (1) laminarization of the flow with lowering effective Reynolds number
that stabilizes the flow, (2) shear-driven K–H-like instabilities due to a large velocity
difference that destabilize the flow, and (3) instabilities arising from viscosity stratification
that destabilizes the flow, brought to light in early work of Yih (1967) for an immiscible
flow. Selvam et al. (2007) neatly expanded a linear stability analysis for core-annular
flow showing that miscible flows at higher Schmidt numbers are even more unstable than
immiscible counterparts. It turns out that unless one has proper Reynolds stress closures of
RANS for such phenomena, the spatiotemporal solutions of the ‘nibbling’ process could be
invoked by means of highly resolved LES to capture the underlying physics. The following
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part of the introduction aims to provide previous efforts to study the mixing of fluids with
matching or disparate viscosity.

The CVM does not include viscosity gradients such that an acceptable prediction
solely relies on the pertinence of turbulence modelling of Reynolds stress and turbulent
scalar flux besides the stability of numerical solutions. A relevant work to the present
study by Tkatchenko et al. (2007) investigates the performance of LES and unsteady
RANS approaches on modelling the flow in a coaxial jet mixer with equal viscosities.
Depending on the flow rate ratio and jet diameter to outer diameter ratio, two different
flow modes are identified; jet (j mode) and recirculating (r mode) (Barchilon & Curtet
1964). They concluded that the dynamic mixed model (LES) reproduced accurate results
similar to particle image velocimetry (PIV) and planar laser-induced fluorescence (PLIF)
measurements whereas the shear stress transport (SST) model (unsteady RANS) failed
to capture unsteady dynamics but still provided a comparable agreement. Moreover, using
the same facility, mixing dynamics including the probability distribution function of scalar
fluctuations (Zhdanov et al. 2006) and a deeper understanding of the scalar structures
and dissipation rate (Kornev, Zhdanov & Hassel 2008) were scrutinized. These authors
found that the r mode promotes mixing and, thus, removes scalar gradients faster than
the j mode. But even so, the micromixing process was incomplete in the region they
studied (x/D < 9.1). Regardless of the j or r mode, fine scalar structures confirmed similar
distribution and statistical properties. They also concluded that larger scalar structures
contributed the most to the scalar variance while the significance of the inertial subrange
was negligible. These deductions made from PLIF data justifies the applicability of LES
as it resolves the complete spectrum of large scales.

In general, studies in the field of VVM are rather limited. Much of the emphasis is given
to the stability of miscible and immiscible flows. Although the dynamics is different, the
viscosity gradients are found to be posing instabilities, based on the linear perturbation
theory, in miscible flows as well (Govindarajan & Sahu 2014). Here, a finite Schmidt
number joins the parameters that affect the stability, alongside the Reynolds number and
viscosity ratio. More recently, several pioneering studies focused on the effect of VVM
with low Schmidt numbers, i.e. gas. Talbot, Danaila & Renou (2013) experimentally
studied mixing in the near field of a round jet with m = 5.5 (viscosity ratio of the outer
and inner flows) and found that VVM evolves to a self-similar solution faster compared
with CVM. In the same premise, for m = 3.5, Voivenel et al. (2016) observed self-similar
profiles of velocity starting from x/d ≥ 4.5 while the Taylor microscale Reynolds number
was not self-similar. Using the same experiments, Danaila, Voivenel & Varea (2017)
added that the second-order structure function of velocity also evidences a self-similar
profile at x/d = 5 and 6. Furthermore, direct numerical simulation (DNS) studies of
simplified geometries expand the fundamental understanding of VVM at low Schmidt
numbers. Gréa, Griffond & Burlot (2014) investigated decay of turbulence at viscosity
ratios of m = 3, 10, 100 and reported that at the low Reynolds number the decay occurs
slowly whereas it is insignificant at the higher Reynolds number. At m = 100, although
the laminar regions were entangled with turbulent zones, the flow remained turbulent
due to initial conditions. They concluded that VVM can be described with a constant
but lower than average viscosity that reads νeff = ν(1 − 〈

ν′ν′〉 /ν2). In a similar study for
m = 1, 5, 15 done by Gauding, Danaila & Varea (2018), enhanced velocity gradients
were observed in the regions of low viscosity that lead to the proliferation of small-scale
intermittency. The energy structure function reveals that although the magnitude of
viscosity gradient-induced transport is smaller than turbulent transport, it is directed from
small to larger scales. This finding aligns with the earlier observations that although the
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viscosity gradient is on the small-scale quantity, it can affect the large-scale behaviour.
Taguelmimt, Danaila & Hadjadj (2016a,b) performed DNS of the temporal mixing layer
for m = 1, 9 and reported that VVM alters the morphology of the mixing layer and
enhances turbulent kinetic energy (TKE) production, by a factor of 3, resulting in a 40 %
thicker mixing layer at a given time.

The previous studies of VVM are limited to rather low viscosity ratio, low Schmidt
number or isotropic turbulence conditions with no indication of TNTI. In the current study
we exploit computational methods, while also using in-house experiments for validation
purposes, to investigate the mixing dynamics in a confined coaxial turbulent jet with
the viscosity ratios of m = 1, 10, 20 and 40. The contribution of the current study is
twofold. First, we develop a highly resolved LES model to investigate flow and mixture
fraction fields of mixing two fluids with matching and disparate viscosity and validate it
against in-house simultaneous PIV and PLIF measurements. In the same flow conditions,
the prediction performance of standard RANS models is also evaluated. The comparison
suggests that standard RANS models are not applicable without appropriate modelling
of additional viscous terms while dynamic LES models show high-quality agreement.
Second, we analyse the evolution of interfacial waves in two distinct mixing modes
and discuss the development and decay of turbulence with an emphasis on the TNTI
phenomenon. The observations shed light on the evolution of mixing and competing
effects of laminarization and shear layer instabilities in both cases. Along the same lines,
momentum budget analysis with particular emphasis on variable-viscosity terms is carried
out. Moreover, they are invoked to reason the discrepant nature of the Smagorinsky model
and both RANS models. The rest of the manuscript is organized as follows: § 2 provides
governing equations including the additional terms due to viscosity variation and describes
the details of computational and experimental methods; § 3 begins with the comparison of
predictions and measurements followed by the analysis of mixing structures, momentum
budget analysis and decay of turbulence; and § 4 provides concluding remarks.

2. Methodology

2.1. Theory of VVM
The mixing of two miscible fluids with equal or disparate viscosity can be formulated
by Navier–Stokes (NS) equations for a flow field and advection–diffusion (AD) equations
for a mixture fraction. In the VVM case, the formulation requires coupling between the
AD equation and NS equations as the local viscosity is determined by the local mixture
fraction. For fluids with constant and equal density, the continuity equation and NS
equation read

∂ui

∂xi
= 0,

∂ui

∂t
+ uj

∂ui

∂xj
= − 1

ρ

∂p
∂xi

+ ν
∂2ui

∂x2
j

+ 2
∂ν

∂xj
Sij, (2.1)

where u, t, p, ρ, ν, Sij stands for velocity, time, pressure, density, kinematic viscosity
and strain-rate tensor, respectively. The viscosity gradient term that appears on the
very right-hand side of (2.1) alters the stress distribution and dissipation dynamics. The
viscosity dependency is assumed to be linear (Lopez et al. 2015) and is given by

ν = νl + (νh − νl)ξ(x, t), (2.2)
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where νh, νl stands for high and low viscosity, respectively. The linear proportion term,
ξ(x, t), represents the mixture fraction, described as a conserved passive scalar by

∂ξ

∂t
+ uj

∂ξ

∂xj
= D

∂2ξ

∂x2
j
, (2.3)

where the diffusion coefficient D is assumed to be constant. With the current viscosity
levels, coflow contains very dilute chemicals to adjust the water density that ensures taking
the diffusion coefficient as a constant. To unravel the intricacies associated with viscosity
variation on kinetic energy budget, we derive the one-point representation as

∂
〈
u′2

i
〉

∂t
+ 〈

uj
〉 ∂

〈
u′2

i
〉

∂xj
= −2

〈
u′

iu
′
j

〉 ∂ 〈ui〉
∂xj

+ 2
〈
u′

i
∂ν

∂xj

〉 [
∂ 〈ui〉
∂xj

+ ∂
〈
uj

〉
∂xi

]
︸ ︷︷ ︸

P∇μ

− 2
ρ

∂
〈
u′

ip
〉

∂xi
−

〈
u′

j
∂u′2

i
∂xj

〉
+

〈
ν
∂2u′2

i

∂x2
j

〉
+ 2

〈
νu′

i
〉 ∂2 〈ui〉

∂x2
j︸ ︷︷ ︸

Dμ

− 2
〈
ν
∂u′

i
∂xj

∂u′
i

∂xj

〉
+

〈
∂ν

∂xj

∂u′2
i

∂xj

〉
+ 2

〈
∂ν

∂xj

∂u′
iu

′
j

∂xj

〉
︸ ︷︷ ︸

ε∇μ

, (2.4)

where the additional terms, due to variable viscosity, are shown with an underbrace. Here
P∇μ is production due to the viscosity gradients, Dμ is molecular effects and ε∇μ is the
dissipation stem from viscosity gradients (Danaila et al. 2017). We further decompose
these terms using the mean and fluctuating components of local viscosity, ν = 〈ν〉 + ν′,
which yields

2
〈
u′

i
∂ν

∂xj

〉 [
∂ 〈ui〉
∂xj

+ ∂
〈
uj

〉
∂xi

]
︸ ︷︷ ︸

P∇μ

= 2
〈
u′

i
∂ν′

∂xj

〉 [
∂ 〈ui〉
∂xj

+ ∂
〈
uj

〉
∂xi

]
, (2.5a)

2
〈
νu′

i
〉 ∂2 〈ui〉

∂x2
j︸ ︷︷ ︸

Dμ

= 2
〈
ν′u′

i
〉 ∂2 〈ui〉

∂x2
j

, (2.5b)

〈
∂ν

∂xj

∂u′2
i

∂xj

〉
︸ ︷︷ ︸

ε∇μ,1

= ∂ 〈ν〉
∂xj

〈
∂u′2

i
∂xj

〉
+

〈
∂ν′

∂xj

∂u′2
i

∂xj

〉
, (2.5c)

2

〈
∂ν

∂xj

∂u′
iu

′
j

∂xj

〉
︸ ︷︷ ︸

ε∇μ,2

= 2
∂ 〈ν〉
∂xj

〈
∂u′

iu
′
j

∂xj

〉
+ 2

〈
∂ν′

∂xj

∂u′
iu

′
j

∂xj

〉
. (2.5d)

Here we observe multiple terms that arise in the form of covariance of velocity fluctuations
with viscosity fluctuations or its gradients. The significance of these terms, when
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Mapping

Plane

Outlet

Inlet
8d

2D

10D

D D/d = 5

d

Figure 1. Schematic of the computational domain.

compared with their counterpart (i.e. the terms in the constant viscosity), varies depending
on the mixing state and turbulence level. In the regions of incomplete mixing (see
figure 12), the production and dissipation rate of the TKE is altered and it needs to be
adequately included in the model. As for the turbulence level, when laminarization of the
turbulent jet occurs due to increasing viscosity, like in m40, velocity fluctuations decay,
and thus, the magnitude of additional terms erode.

2.2. Computations

2.2.1. Computational domain and parameters
In this section the details of the computational domain, simulation parameters, grid
resolution and boundary conditions are provided. The specifications are configured to
match with experimental design. Figure 1 shows the computational domain including pipe
diameter ratios, domain lengths and mapping plane. The outer pipe-to-jet diameter ratio,
D/d, and jet pipe thickness-to-jet diameter ratio are set to be 5 and 0.08, respectively. The
pipe length in the mixing zone is 10 outer diameters whereas it is 2 outer diameters in the
upstream section. Including an upstream section in the computational domain is found to
be crucial for an accurate inlet boundary condition and it is discussed later in this section.

In the simulations, while jet-to-coflow momentum ratio is constant and the density of
both streams is equal, the viscosity ratio, m = μc/μj, between coflow and jet (μj = 1 cP)
is varied. Table 1 lists the flow conditions of the jet, coflow and pipe downstream
indicated with subscripts, j, c and p, respectively. Here the pipe downstream refers to
a distance where two fluids are fully mixed and, hence, the mixture viscosity reaches
an equilibrium. So, the mixing mode simply indicates the flow regime, laminar (‘L’)
and turbulent (‘T’), depending on the respective Reynolds numbers, Rej = ρUjd/μj,
Rec = ρUc(D − d)/μc and Rep = ρUpD/μp. Here, the equilibrium viscosity is defined
as μp = (μjQj + μcQc)/(Qj + Qc), where Q is volumetric flow rate. The flow regime is
determined a priori based on the commonly cited critical Reynolds number of 2300. The
simulation cases are henceforth referred to as m1, m10, m20 and m40 for the viscosity
ratios of m = 1, m = 10, m = 20 and m = 40, respectively.

A butterfly grid mesh is generated using blockMesh utility provided by OpenFOAM.
Figure 2 demonstrates the mesh distribution and topology at the inlet where the jet and
coflow are separated by a pipe. In the axial direction the mesh is distributed uniformly.
The butterfly topology minimizes the mesh skewness and non-orthogonality leading to
mesh configuration independent predictions and fewer corrector steps in the solution.
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Figure 2. A snapshot of mesh G2 at the inlet. The jet (red) and coflow (blue) are separated by the pipe wall.

To obtain a mesh size independent calculation, three different grids are generated with
parameters given in table 2. Here nr, nθ , nz, N stands for the number of divisions
in the radial, azimuthal and axial directions and the number of total elements in the
domain, respectively. To show the convergence of velocity and mixture fraction solutions,
time-averaged LES predictions of G1, G2 and G3 are compared at the centreline and
various axial locations. The G2 mesh provides less than 1 % discrepancy in the L2 norm
of the velocity field and, hence, it is used for RANS and LES simulations when comparing
to experimental data.

To establish a detailed understanding toward the physics of VVM, an increased grid
resolution, G4, is also included in LES simulations. This level of mesh refinement highly
resolves the mixing hydrodynamics resulting in negligibly small model-dependent SGS
contributions. The mixing structures (see § 3.2), the significance of viscous terms in
momentum transport (see § 3.3) and jet laminarization characteristics (see § 3.4) are
investigated using this highly resolved LES data.
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Mesh name nr nθ nz N y+

Jet Pipe Coflow

G1 12 3 36 48 576 1 313 280 6
G2 16 4 48 64 768 3 112 960 4.5
G3 20 5 60 80 960 6 080 000 3
G4 30 12 82 144 1296 21 306 240 1.5

Table 2. Mesh parameters.

The inflow condition is found to be critical in determining the early mixing structures
and evolution of the shear layer in LES simulations. Initially, the domain is set
to start axially right where fluid mix (no upstream section) and the experimental
mean flow profiles are applied with added temporal fluctuations that match with
desired turbulence statistics. Although this synthetic turbulent inflow condition provides
reasonable predictions of the mean flow, the covariance of fluctuating terms shows
significant discrepancies. Then the inlet is extended two outer diameters (2D = 10d)
upstream and the same velocity profiles are applied in anticipation of the developed
turbulent structures. It is observed that the predictions are not satisfactorily matching.
Finally, a mapping boundary condition defined as

u(rin, t) = αmu(rin + 8dî, t) (2.6)

is applied to the jet and coflow inlet where î indicates axial flow direction. The solution for
a property of interest is interpolated at 8d downstream and mapped to the inlet as shown in
figure 1. The studies conducted by Kim & Adrian (1999) indicate that 8d mapping distance
encapsulates major coherent turbulent structures. To conserve the inflow rate, the mapped
velocity is multiplied by a correction factor, αm, which reads

αm = Qin∫∫
S u(rin + 8di, t) dS , (2.7)

where Qin is the inlet flow rate and S is the mapping plane. In the end, a reasonable
agreement with experiments is obtained in the mixing chamber. A relevant study on the
effect of inlet conditions on predicting the desired flow over a wall-mounted hump suggests
the superiority of the plane mapping over a fixed velocity profile and synthetic turbulent
inlet (Montorfano, Piscaglia & Ferrari 2013). Besides the inflow condition, a no-slip
surface condition is imposed on the walls and a pressure outflow boundary condition is
applied at the outlet. The same boundary conditions are used for RANS simulations.

Furthermore, the validity of the method is tested by comparing the flow profiles in the
upstream jet pipe with DNS solutions of turbulent pipe flow provided by El Khoury et al.
(2013). The data reported for Reb = 11 700, bulk Reynolds number, is used for comparison
that is the closest to our problem (Rej = 11 400). The profiles of mean velocity and the
root mean square (r.m.s.) of fluctuations with inner scaling are presented for three LES
simulations with varying grid size and DNS in figure 3. Here y+ is defined as (1 − r)+
and the velocities are normalized with mean friction velocity, uτ . The LES are conducted
using the dynamic Smagorinsky model as described in the following section. Although
there is a discrepancy in u+

r , overall the mapping provides a satisfactory inflow condition
and the G2 mesh is found to be acceptable that is consistent with the mesh level selection
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Figure 3. Radial profiles of mean velocity (a) and the r.m.s. of axial (b), radial (c) and azimuthal (d) velocity
fluctuations shown at the upstream jet pipe (between the inlet and mapping plane). Plot (e) depicts the
comparison of laminar coflow velocity profile in the same upstream location against analytically obtained
velocity profiles using (2.8).

reported above. This validation study applies to all viscosity ratios as the jet viscosity is
the same across.

In the disparate viscosity cases, coflow is always laminar and, hence, the velocity profile
is analytically obtained as

Ux = −dp
dx

1
4π

[
R2

i − r2 + (R2
o − R2

i )
ln r/Ri

ln Ro/Ri

]
, (2.8)

where Ri is the inner radius and R2 is the outer radius. In the analytical solution, no-slip
boundary conditions (Ux(r|r = Ri) = 0 and Ux(r|r = Ro) = 0) are applied. Figure 3(e)
shows this analytically obtained profile and time-averaged LES results using the dynamic
Smagorinsky model obtained with the G2 mesh. The matching comparison suggests that
LES with the mapping boundary condition accurately reproduces the analytical profile.
Also, this result assures the use of LES with dynamic Smagorinsky in laminar flow zones
that is observed partially as the jet laminarizes in downstream locations.

2.2.2. Large-eddy simulations
The LES equations are derived by applying a spatial filter to NS equations that separate
eddies into resolved and unresolved scales based on the selected filter size. The filtered
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equations for the flow field and mixture fraction reads

∂ ūi

∂t
+ ūj

∂ ūi

∂xj
= − 1

ρ

∂ p̄
∂xi

+ ν̄
∂2ūi

∂x2
j

+ 2
∂ν̄

∂xj
S̄ij −

∂τLES
ij

∂xj
+ Γ LES

1 + Γ LES
2 , (2.9)

∂ξ̄

∂t
+ ūi

∂ξ̄

∂xi
= D

∂2ξ̄

∂x2
i

− ∂qLES
i

∂xi
, (2.10)

where ū is filtered velocity, ρ is density, p̄ is filtered pressure, ν̄ is kinematic viscosity, S̄ij
is the filtered strain-rate tensor, ξ̄ is the filtered mixture fraction and D is the molecular
diffusion coefficient. In the filtered equations the contribution of unresolved scales,
subgrid scales (SGS), appears in the following terms where τLES

ij is the stress tensor, qLES
i

is the scalar flux and Γ LES
1 , Γ LES

2 are contraction of viscosity and strain-rate tensor. They
are defined as

τLES
ij = uiuj − ūiūj, qLES

i = uiξ − ūiξ̄ , (2.11a,b)

Γ LES
1 = ν

∂2ui

∂x2
j

− ν̄
∂2ūi

∂x2
j

, Γ LES
2 = ∂ν

∂xj
Sij − ∂ν̄

∂xj
S̄ij. (2.11c,d)

The unclosed SGS stress tensor, τLES
ij , is formulated in eddy viscosity form that reads

−2νsgsSij. The SGS kinematic viscosity, νsgs, is locally calculated using three different
models with implicit filtering where filter width, Δ, is defined to be the cube root of
the grid volume; Smagorinsky (Smagorinsky 1963), dynamic Smagorinsky (Germano
et al. 1991) and dynamic k equation (Kim & Menon 1995). In the Smagorinsky model
the eddy viscosity is modelled as a function of dimensionless empirical coefficient, cs,

length scale, Δ, and a velocity scale, Δ|S|, where |S| =
√

2SijSij. The dynamic variant
of this model proposed by Germano (referred to as dynamic Smagorinsky) applies an
explicit filter (top hat), αΔ, where Δ is the SGS filter size and α > 1 (α = 2 in the
present study). Then it seeks a cs value as a function of space and time determined
from the resolved scales. This eliminates the limitations introduced by the constant
empirical coefficient approximation. Particularly, having a computational domain of mixed
laminar and turbulent regions, dynamic calculation of the model coefficient provides an
irrefutable advantage. However, the dynamic calculations are also prone to instabilities
due to disparate cs coefficients at different length scales, large spatial gradients of cs
and division by zero. A more robust calculation that removes the zero-division problem
proposed by Lilly (1992) is implemented that considers volume averaging. Two different
models, to close the SGS stress tensor, explained so far are described as algebraic
models. The third model used in the present study is a one-equation model, dynamic
k equation, that solves a transport equation for SGS TKE to determine eddy viscosity.
Kim & Menon (1995) proposed the dynamic modelling method to the k-equation SGS
model to adjust model parameters in space and time. One of the significant benefits of
a one-equation model over algebraic models is that it relaxes the local equilibrium of
TKE production and dissipation assumption so it can account for non-local and history
effects.
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The SGS turbulent scalar flux, qLES
j , is modelled using the gradient diffusion method

that leads to

qLES
j = −νsgs

Sct

∂ξ̄

∂xi
, (2.12)

where νsgs is SGS kinematic viscosity and Sct is the turbulent Schmidt number set to be
0.7.

In the present study the contraction of viscosity and strain-rate tensor terms,
Γ LES

1 , Γ LES
2 , are neglected since there are no available SGS closure models. This

assumption is justified by the fact that LES solutions obtained by G4 grid size resolve
more than 98 % of the energy-containing larger scales such that the contribution of SGS
terms remains relatively small. This is quantified by measuring the ratio of SGS turbulence
to total turbulence, with a relation given by

φk = ksgs

ksgs + k̄
. (2.13)

However, in future studies the validity of this assumption should be tested using model-free
direct numerical simulations.

When solving (2.10), 2.15, a multi-dimensional limiter for explicit solution (MULES)
algorithm (Deshpande, Anumolu & Trujillo 2012) is utilized to maintain the boundedness
of the mixture fraction field. From the solved field, the kinematic viscosity is corrected,
based on (2.2), to be used in the momentum equation. This process satisfies the coupling
between momentum and mixture fraction equations. The temporal stability of the LES
simulations is ensured with an adaptive time step that limits the flow and interface Courant
numbers by 0.35. The equations are discretized using second-order CrankNicolson with a
blending coefficient of 0.9 for time integration, a pure second-order van Leer interpolation
(Van Leer 1974) for scalar divergence operations (convective terms) and second-order
linear interpolation for Laplacian operations (diffusive terms). The simulations are
conducted in OpenFOAM-v6 (an open-source, cell-centred finite volume solver) using
‘twoLiquidMixingFoam’ solver. This specific solver is designed for mixing two miscible
incompressible fluids with disparate viscosity.

The temporal sampling frequency and duration of LES simulations are decided based
on the eddy-turnover time, te, and flow through time, tf . With the flow parameters and
domain given in this study, te and tf are calculated as 0.26 s and 2.6 s, respectively. The
simulations, using four Skylake (SKX) nodes (192 CPU cores) of TACC’s Stampede2
HPC system, run for 23 tf (230 te) and during this period 1200 instantaneous samples
(weak temporal correlation between consecutive samples) are collected. Subsequently,
the first- and second-order statistics are obtained based on the ensemble average of the
instantaneous solutions, and convergent mean and fluctuating quantities are confirmed.
The computational demand of each simulation with G2 and G4 meshes is determined to
be ≈18 000 and ≈550 000 CPU hours.

A direct comparison of a scalar field, i.e. mixture fraction, predictions between LES and
PLIF field measurements requires one to take the planar laser sheet thickness into account.
In the experimental set-up the planar sheet thickness is 1 mm so that the resultant PLIF
measurement is a spatial average across this length. Although the effect is negligible in the
mean field, it is discernible in the scalar variance field. To account for this, instantaneous
LES predictions are extracted and averaged over the same thickness. Then 1200 adjusted
snapshots are averaged to calculate the mean and variance of the mixture fraction.
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2.2.3. Reynolds-averaged Navier–Stokes
Steady RANS equations are obtained by decomposing a property into mean and fluctuating
components (φ = 〈φ〉 + φ′) and averaging for a certain period of time that leads to a
time-independent mean 〈φ〉 and zero-mean fluctuations, 〈φ′〉 = 0. The RANS equation
for variable viscosity and Reynolds-averaged AD equation reads

〈
uj

〉 ∂ 〈ui〉
∂xj

= − 1
ρ

∂ 〈p〉
∂xi

+ 〈ν〉 ∂2 〈ui〉
∂x2

j
+ 2

∂ 〈ν〉
∂xj

〈
Sij

〉 + ∂τRANS
ij

∂xj
+ Γ RANS

1 + Γ RANS
2 ,

(2.14)

〈ui〉 ∂ 〈ξ〉
∂xi

= D
∂2 〈ξ〉
∂x2

i
− ∂qRANS

i
∂xi

, (2.15)

where quantities denoted with 〈•〉 corresponds to time-averaged properties, 〈u〉 is mean
velocity, ρ is density, 〈p〉 is mean pressure, 〈ν〉 is mean kinematic viscosity,

〈
Sij

〉
is the

mean strain-rate tensor, 〈ξ〉 is the mean mixture fraction, D is the molecular diffusion
coefficient, τRANS

ij is the Reynolds stress tensor and qRANS
i = 〈

u′
iξ

′〉 is the turbulent scalar
flux. The additional closure terms, Γ RANS

1 , Γ RANS
2 , that arise from the decomposition of

viscosity fluctuations represent the mean contraction of viscosity and strain-rate tensor.
They are given by

Γ RANS
1 =

〈
ν′ ∂

2u′
i

∂x2
j

〉
, Γ RANS

2 =
〈
2
∂ν′

∂xj
S′

ij

〉
, (2.16a,b)

where quantities denoted with •′ corresponds to the fluctuation of properties about mean
values, 〈•〉. The local viscosity is calculated based on the linear scaling given in (2.2).

The Reynolds stress term, shown with τRANS
ij = −

〈
u′

iu
′
j

〉
in (2.14), is closed using the

linear eddy viscosity model that postulates a linear relationship between the deviatoric
part of Reynolds stress and mean strain-rate tensor, which reads

−
〈
u′

iu
′
j

〉
= 2νt

〈
Sij

〉 − 2
3

kδij, (2.17)

where νt is a proportionality constant. In the current study this proportionality constant, the
kinematic eddy viscosity, is calculated using two different two-equation RANS models;
k − ε (Launder & Spalding 1974) and k − ω SST (Menter, Kuntz & Langtry 2003).

In the k − ε model the expression for kinematic eddy viscosity takes the form νt =
Cμk2/ε, where ε is the total rate of dissipation. Two separate transport equations are solved
for k and ε with the model coefficients of Cμ = 0.09, C1 = 1.44, C2 = 1.92, σk = 1.0 and
σε = 1.3 as described in Launder & Spalding (1974, table 2.1).

In the k − ω SST model the expression for kinematic eddy viscosity takes the form νt =
a1k/ max a1ω, b1F23S, where F1 is the blending function that ensures a proper selection of
k − ω and k − ε zones based on wall distance. Two separate transport equations are solved
for k and ω with the model coefficients of αk1 = 0.85, αk2 = 1.0, αω1 = 0.5, αω2 = 0.856,
β1 = 0.075, β2 = 0.0828, β∗ = 0.09, γ1 = 5/9, γ2 = 0.44, a1 = 0.31, b1 = 1.0 and c1 =
10.0 as described in Menter et al. (2003).
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To close the turbulent scalar flux term, qRANS
i = 〈

u′
iξ

′〉, the gradient diffusion method is
employed and it is given by

qRANS
i = − νt

Sct

∂ 〈ξ〉
∂xi

, (2.18)

where νt is turbulent kinematic viscosity and Sct is the turbulent Schmidt number set to be
0.7. This hypothesis requires co-alignment between turbulent scalar flux and mean scalar
gradient that is evaluated using highly resolved LES data (see § 3.3).

In the RANS simulations the contraction of viscosity and strain-rate tensor terms,
Γ RANS

1 , Γ RANS
2 , are also neglected. Based on the time-dependent flow field and mixture

fraction predictions provided by highly resolved LES, described in the following
subsection, we observe that these terms are significant to remain unclosed (see § 3.3),
especially in the early mixing regions. However, in the current study the intention is to
evaluate the performance of available standard RANS models on the mixing of fluids with
disparate viscosity. Since there is no adequate model to close terms shown in (2.16a,b), to
the best of the authors’ knowledge, these terms are neglected in the solution.

The RANS simulations solve three-dimensional steady-state partial differential
equations for the velocity and mixture fraction shown in (2.14) and (2.15), in addition
to solving the Poisson equation for pressure to satisfy the continuity. For convective and
diffusive terms, the same discretization schemes are used as for the LES. For the pressure
equation, the relaxation factor is 0.3 while, for the remaining equations, the value is 0.7.
The absolute residual tolerance for the pressure equation is 10−8 while, for all of the other
variables, it is 10−7. The simulations run on one Skylake (SKX) node (48 CPU cores) of
TACC’s Stampede2 HPC system where a convergent solution is reached at around 6000
iterations. Each simulation with the G2 mesh demands ≈2000 CPU hours.

2.3. Experiments
The experiments were performed in the viscous mixing jet facility at the Georgia Institute
of Technology. This is a pressure-driven, modular facility capable of sustaining aqueous
flows with viscosity disparities of the order of 1000 Pa s. The facility was configured to
match the co-annular test geometry used in this study.

A schematic of the facility is shown in figure 4. As shown, test fluids are prepared
in 900 l mixing tanks, then transferred into 800 l driving tanks. Both inner and outer
fluids are water. In the preparation the outer flow viscosity is increased by mixing
the water-soluble viscosity modifier (sodium carboxymethylcellulose) where the mixture
remains Newtonian at the concentration and shear rates considered in this study. The
experiments are conducted in a temperature-controlled lab space with a 2 ◦C characteristic
drift. The actual temperature fluctuations inside the tank were found to be an insignificant
fraction of 2 ◦C that assures to decouple dynamic viscosity from the temperature effect.
The fluids are pumped with a steady back pressure of pressure-regulated nitrogen and
throttled by high flow rate control valves (Fisher 2-inch 24000SVF-54-3661) controlled by
the readings of inline ultrasonic flow meters (Omega FDT-40). The flows are conditioned
in a settling chamber where the outer flow is directed through a series of honeycombs and
meshes in a circular cross-section with 16 times the area as the test section. The inner flow
travels through a 10 mm section of 75 diameters before entry into the test section to ensure a
fully developed turbulent pipe flow. Simultaneous PIV and PLIF are performed in the 1.5 m
optically accessible test section to observe the concurrent velocity and concentration fields.
The acquisition system, shown in figure 4, mounts two cameras (29 MP TSI Powerview)
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Figure 4. Schematic of the experimental facility.

on an assembly that can translate to observe adjacent areas of the flow field. The flow
field is illuminated by 120 mJ laser pulses (Litron Nano-PIV 532 nm) that pass through a
series of lenses to form a 1 mm sheet through the centre of the pipe. Operating at 1 Hz,
both of these cameras observe a 50 mm × 80 mm domain corresponding to a 1D × 1.6D
acquisition region, where they record 250 realizations of the turbulent flow field at each
streamwise location. The camera resolution enables roughly 5λK PIV resolution and
10λB PLIF resolution in a plane over the domain, enabling high-resolution velocity and
concentration measurements over the full extent of the pipe. Using this acquisition system,
the experiments observe the first 6.4D of the flow field.

Planar laser-induced fluorescence was employed with Rhodamine 6G (1.85 ×
10−5 kg m−3) seeded into the outer stream. This enabled PLIF calibration to be performed
during testing by running only the outer flow and observing a pure Rhodamine field
at every test domain. The PLIF camera was fitted with a notch filter to remove the
532 nm PIV signal (6 nm FWHM). The PLIF fields were post processed in MATLAB
with self-developed codes by current authors and it is described in Pathikonda et al.
(2021). Particle image velocimetry was implemented using hollow glass microspheres
(Potters beads characteristic size 25 μm) mixed into both streams. These microspheres
were calculated to have a Stokes response time of 35 μs and were therefore trusted to
follow the smallest scales of the velocity field. The glass microspheres were illuminated
by the double-pulsed laser with 250 ms between pulses. The PIV fields were post processed
in LaVision Davis 8.4 with 24 × 24 pixel resolution and 50 % overlap, resulting in greater
than 97 % of vectors satisfying outlier criteria. To characterize the uncertainty of PIV and
PLIF measurements, central limit theorem is applied. With a 95 % confidence interval, the
uncertainty of the population means is obtained ≈2 % whereas this number is ≈14 % for
the uncertainty of the variance. Further details on PIV and PLIF post processing are given
in Pathikonda et al. (2021) and Ahmad (2021).
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Figure 5. Evolution of radial profiles of mean velocity rendered at three different streamwise locations for m1
(a–c) and m40 (d–f ). The profiles are normalized by the bulk velocity, Up.

3. Results and discussions

3.1. Comparison and analysis of velocity and mixture fraction
In this subsection the performance of predictions acquired by three LES and two RANS
models, using the G2 mesh, are compared against experimental measurements reported by
current authors (Pathikonda et al. 2021) for the lowest (m1) and highest (m40) viscosity
ratios. In figures 5–8 radial profiles of quantities of interest are presented for m1 in the
top row and m40 in the bottom row. The profiles are plotted at three distinct streamwise
locations that are x/D = 0.5, 2 and 5, where D is the outer diameter. Although the
quantities of interest obtained with each method are shown with different notations
(LES, •̄; RANS, 〈•〉; and Exp, •), they are simply represented with no overline or brackets.

Figure 5 shows the mean axial velocity normalized by the bulk velocity, Up, given in
table 1. The jet expansion predicted by the Smagorinsky model is underestimated in the
early locations while it is overpredicted in downstream locations. This indicates that the
constant model coefficient accurately governs the evolving mixing physics neither in m1
nor m40. The dynamic LES models adjust to capture the local mixing conditions, thereby
offering a great agreement with the experimental data throughout the mixing chamber.
On the contrary, even though RANS predictions indicate a certain level of agreement
in the first two locations, it deviates notably later in both cases. Considering m1 has
no variable-viscosity physics, the discrepancy with experiments stems from the inability
of the RANS closure model in predicting the energy production due to the K–H-type
instabilities. Furthermore, to shed light on the applicability of well-known energy cascade
scaling in the inertial subrange, the energy spectrum is plotted and discussed in the
following subsection (see figure 23). In m40, RANS predictions deviate even more in
the last locations. This is envisaged since the turbulence model becomes ill-defined
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Figure 6. Evolution of radial profiles of axial velocity fluctuations r.m.s. rendered at three different
streamwise location for m1 (a–c) and m40 (d–f ).
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Figure 7. Evolution of radial profiles of the mean mixture fraction rendered at three different streamwise
locations for m1 (a–c) and m40 (d–f ). The profiles are normalized by the centreline mixture fraction, ξ0.
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Figure 8. Evolution of radial profiles of mean mixture fraction fluctuations rendered at three different
streamwise locations for m1 (a–c) and m40 (d–f ).

in the unsteady laminar region and it behaves severely dissipative as if the turbulence
momentum diffusion is dominant. More evidence on the existence of unsteady laminar
flow is discussed in figure 23.

The profiles in near jet entry, shown in figure 5(a,d), illustrate the noteworthy shear
between the jet and coflow interface that manifest as well-known K–H waves. While K–H
instabilities are key in inducing initial perturbation of the shear layer interface, later it
transitions to a more complex three-dimensional system. On top of it, viscosity variations
induce additional instabilities. Particularly in m40 the entrainment between the inner and
outer flow, stemming from K–H and viscosity gradient instabilities, dictates the local
viscosity and its gradients. Consequently, the increased local viscosity in the shear layer
increases momentum diffusion while decreasing the local Reynolds number. When m1
and m40 velocity profiles at x/D = 2 are compared, higher local velocities, hence elevated
momentum diffusion, are observed in the shear layer between 0.2 < r/D < 0.3 in m40.
This observation also means that the shear velocity, driving the K–H instabilities, is less
in the higher viscosity. Ultimately, the velocity profiles transition towards fully developed
turbulent flow in m1 and laminar flow in m40.

The root-mean-squared values of streamwise velocity fluctuations obtained with LES
and experiments are presented in figure 6. In the first two axial locations the Smagorinsky
model overpredicts the fluctuations and this is consistent with the findings on the higher
jet expansion rates predicted by this model discussed above. As seen in figure 6(a–c),
the dissipative nature of the Smagorinsky model, arising from spurious eddy viscosity
stem from the mean shear, result in decaying turbulence activity at the near wall that is
an unphysical solution according to the wall-bounded turbulence theory. Although there
are wall-damping methods available to alleviate these deficiencies, the standard method is
purposely tested since we intend to predict the shear layer evolution.
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Figure 9. Interfacial dynamics of a turbulent jet issued into a coflow with equal (m = 1) and variable
(m = 10, 20, 40) viscosity ratio. The isosurfaces are rendered at equilibrium mixture fraction, ξeq = 0.2.

In m40 (TLL), the pipe flow eventually transitions to steady laminar flow as determined
a priori by the equilibrium flow rate and viscosity. However, the non-zero r.m.s. of
fluctuations in the interrogated axial locations indicates a transitional flow regime in the
form of unsteady laminar flow that lasts for several diameters. An unsteady laminar flow
assertion is also verified by decaying turbulence activity near the wall in figure 6( f ). On
the contrary, m1 shows an increase in the magnitude of near-wall fluctuations and the
overall agreement in the shear layer and near-wall region between dynamic LES models
and PIV proves the validity of these models.

Figure 7 presents the mean mixture fraction normalized by the mean centreline value,
ξ0. The drawbacks of the Smagorinsky model mentioned earlier are evident in the mixture
fraction evolution. The overpredicted velocity fluctuations (see figure 6) induce turbulent
scalar flux resulting in an overestimation of jet expansion. However, the dynamic LES
models used in this study provide an excellent comparison against PLIF. The accuracy
of mixture fraction predictions is particularly important in this study since they indicate
accurate modelling of the two-way coupled VVM physics.

The quality of RANS predictions relies heavily on the validity of the closure models
selected for the Reynolds stress and concentration fields. Seeing as the principles
underlying these closures have not been validated in a disparate viscosity context, these
simulations represent the best of current practices for CVM. Along the same line
of discussion in figure 5, RANS overpredicts the jet spreading in general. However,
the severity of the discrepancy is pronounced in the last location. Reynolds-averaged
Navier–Stokes suggests almost a complete homogenization of fluids that is quite
contradictory to experiments and LES. One noteworthy aspect of the RANS predictions
is that the jet width is quite similar between m1 and m40. It appears that the model
is incapable of capturing differing shear layer evolutions discussed in the following
subsection (see figure 9).

Particularly in m40, having a scalar transport through a TNTI and jet laminarization
adds more complexity. In the mixing zones, the stark difference between TTT and TLL
and jet laminarization in TLL are pronounced. The dynamic LES models resolve all the
scales in this transitioning unsteady region since the contribution of unresolved eddies
conspicuously decays to negligible levels by x/D ≥ 2. Apparently, the likely cause of the
discrepant predictions by the Smagorinsky model discussed earlier, is the inadequacy of
using a constant model coefficient in the transitioning region. In addition to omitting
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variable-viscosity closure terms, the RANS computation also misses physics in the
transition to a laminar regime since the entire domain is simulated with the same model.

It is anticipated that the real difference would be observed in the r.m.s. of mixture
fraction fluctuations that have key importance in many processes including fast chemical
reactions. Figure 8 plots the variance of mixture fractions that are resolved in LES.
Here, there are no data points pertaining to RANS because no transport equation or
algebraic calculations are employed in this study. Through a similar argument as before,
in general, the Smagorinsky model deviates and, particularly at x/D = 0.5, both the width
and magnitude of the fluctuating region are discrepant with experimental data. On the
other hand, dynamic LES models pronounce the advantage of locally adjusted model
coefficients by the agreement with experimental data, given that it has 14 % measurement
uncertainty, in both early and downstream locations.

The magnitude of fluctuations in the downstream locations is a good indication to assess
the level of unmixedness of the jet, such that it should be zero in the fully mixed region.
In general, m40 attains higher magnitudes of fluctuations due to large pockets of unmixed
‘blobs’ described as folded-segregated structures (see figure 11). Specifically, the decay of
fluctuations downstream in m40 happens slowly when compared with m1. This behaviour
suggests that the flow is already transitioned to unsteady laminar (as evidenced in the
discussion of figure 6( f )) at x/D = 5 so that the lack of turbulent eddies manifests itself
as prolonged unmixed regions.

Overall, in this section it is shown that dynamic LES models using the medium-level
mesh (G2) provide satisfactory results when compared with PIV and PLIF measurements
whereas standard RANS models fail noticeably. To understand mixing physics at disparate
viscosity conditions and investigate the effect of unclosed terms arising from variable
viscosity in RANS equations, the remainder of the results and discussions utilize highly
resolved LES data obtained by G4 grid resolution that minimizes the SGS model
dependency. Especially in the variable-viscosity cases, this mesh provides a DNS-like
solution since elevated viscosity reduces the effective Reynolds number.

3.2. Development of jet interface in TTT and TLL mixing modes
Figure 9 shows the snapshot of the interfacial dynamics of TTT (m1) and TLL (m10, m20,
m40) cases for qualitative analysis. As fluids are miscible, the level of isosurfaces is set
to 0.2, which is the equilibrium mixture fraction based on the inlet condition. In all cases,
although the interface expands to similar diameters at the given distance, a discernible
difference in interfacial dynamics is observed between TTT and TLL cases. In m1 the
shear layer instabilities grow rapidly and break the axis symmetry almost immediately
after jet injection. Then the flow becomes three dimensional, leveraging the azimuthal
mixing mechanism that limits the formation of ‘mushroom’-like larger structures. This
phenomenon elucidates the formation of small-length scale structures that generate this
intricate interface. It is apparent that shear-driven TKE production is initiated by K–H-type
instabilities that promote early mixing. This is also evident in energy spectra that in
early mixing K–H instabilities inject a range of TKE that causes deviation from −5/3
in the inertial range. Therefore, we can conclude that the TTT mixing mode leads to
rapid homogenization of fluids at the shear layer and limited entrainment through larger
structures.

In TLL cases one should also consider the Yih-type instabilities due to viscosity
stratification in addition to K–H instabilities for a complete discussion. In the scope of the
current study, it is not directly possible to decouple these two instabilities. However, having
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Figure 10. Isosurfaces of normalized Q criterion (QD2/U2
b = 60) shown for m10 (a), m20 (b) and m40 (c).

Isosurfaces are coloured with the mixture fraction where ξ = 1 for the jet and ξ = 0 for the coflow. The grey
shade in the background of each panel depicts the computational domain.

different viscosity ratios in TLL and TTT cases with matching inlet momentum enables us
to investigate the overall effect of viscosity variations on interface development. Overall,
the interfacial waves engulf large pockets of outer fluid into the centreline in early locations
but the mixing mechanism dispersing these structures after engulfment is limited by
laminarization caused by elevated viscosity. The mechanisms generating interfacial waves
in the azimuthal direction decay. Without mechanisms to further generate the interfacial
area, the previously formed waves persist in a folded-segregation pattern. The unsteady
laminar flow shears these waves into semi-toroidal sheet-like structures. When comparing
cases from m10 to m40 with increasing viscosity ratio, we observe that the entrainment
of jet to coflow is suppressed and the interface is less disturbed in the azimuthal direction
that results in an even larger unmixed fluid parcel. It is interpreted that increasing viscosity
laminarizes the jet faster leading to less vortical activity to induce mixing.

To support these observations, figure 10 renders isosurfaces of normalized Q criterion
for TLL cases. Isosurfaces are also coloured with mixture fractions so that we can
conveniently identify zonal vortical activity between the jet and coflow. The difference in
axisymmetry break is so distinct in early locations, 0 < x/D < 1. In m1 coherent vortical
structures indicate that the shear layer is three dimensional throughout whereas in the
other two cases we can identify initial coherent vortex rings (0 < x/D < 0.5; pointed with
dashed arrows) that remain almost intact in a circular shape. This shows the dominant
effect of flow laminarization due to increasing viscosity when compared with instabilities
triggered by viscosity stratification. This is also evident in rapid vortical structure decay
in m40, whereas we observe ‘volume-filling’ vortical activity in m10. Also, the size of
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the vortices (see solid arrows) is increasing with the increasing viscosity ratio, which
indicates the coarsening effect of lowering the effective Reynolds number. When the
vortical activity is analysed in early locations, 0 < x/D < 2, it is clear that at lower
viscosity ratios immediate axisymmetry break and a relatively higher effective Reynolds
number lead to higher rates of vortical expansion in the radial direction. These qualitative
observations reveal that increasing the viscosity ratio (so overall viscosity) stabilizes the
flow more so than viscosity stratification instabilities.

To elucidate the difference between the homogenized mixing layer and folded-segregated
patterns, the evolution of the mixture fraction is demonstrated at longitudinal and
cross-sectional planes in figure 11. The stark difference between TTT and TLL is attributed
to different mixing modes. In the viscosity matched case, m1, both the jet and coflow
are turbulent and they transition to a fully developed turbulent pipe flow downstream.
However, in the higher viscosity ratios, while the jet flow is turbulent, the coflow and
downstream pipe remain in the laminar regime due to the increased viscosity. This
condition introduces a TNTI phenomena in the early locations of the developing mixing
layer. The spatiotemporal evolution of the TNTI is dictated not only by nature mixing
but also by the presence of a viscosity gradient in the first place. As two miscible fluids
entrain at the interface, the magnitude of the viscosity gradients decreases and ultimately
disappears when the mixing reaches equilibrium. Hence, in the regions where viscosity
fluctuations and TNTI are significant, the model needs to encapsulate a closure for the
effects of both viscosity gradients as well as momentum transport at the TNTI. Inherently,
LES offers several advantages over RANS-type models since most energy-containing
fluctuations are resolved and the SGS turbulence level is adjusted dynamically to account
for TNTI.

The spatial distribution of the mixture fraction at subsequent cross-sectional planes
indicates the increased level of non-axisymmetry and intricacy of the interface in TLL.
In TTT, overall, the circular-like shape of the jet remains intact for longer distances and
the probability of observing the pure outer fluid at the centreline is very low. However,
in TLL, the jet starts to be highly skewed at x/D = 1 and it subsequently transitions
to the formation of folded-segregated structures. Soon after, the laminar stretching and
prolonged existence of the larger pockets of fluids are observed. Especially in m40, pockets
of unmixed fluid greater than half-mixing (ξ > 0.5) are observed at x/D = 6. At this pipe
location, evidently, the turbulent scalar flux is already decayed to insignificant levels that
only shear-driven mixing and relatively slower molecular diffusion mechanisms remain to
stir fluids.

The effect of viscosity ratio among TLL cases manifests itself as noticeable differences
in both early mixing and further downstream locations. At x/D < 2, m10 exhibit more
penetrative behaviour meaning that small pockets of jet fluid are detached (see dashed
circles) by the induced shear instabilities and are convected into the outer fluid. However,
with the increasing viscosity ratio, this detachment phenomenon occurs at later axial
locations. This is well explained by the difference in level and coherent structure of vortical
activities along the shear layer, as discussed in figure 10. Even the positive correlation
between the size of detached jet fluids and vorticity supports this argument. This also
provides further evidence about the dominance of shear instabilities over viscosity gradient
instabilities that is further discussed in § 3.4.

In the current coaxial confined turbulent mixing setting, the direction of the mean
pressure gradient flips several times along the pipe centreline. One observes a favourable
pressure gradient (FPG) in the flow direction from the jet outlet to the merging of
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Figure 11. Evolution of the instantaneous mixture fraction shown across the flow with centreplanes and eight
different cross-sectional planes for m = 1, 10, 20, 40 from (a–d). The contours are overlaid with half-mixing,
ξh = 0.5 (black) and equilibrium mixing, ξeq = 0.2 (white) isolines. The cross-sectional planes for each
viscosity ratio are depicted at x/D = 0.5, 1, 2, 3, 4, 5, 6 and 8 from left to right.

shear layers. Then, until transitioning to a pipe flow an adverse pressure gradient (APG),
where the mean pressure gradient is in the opposite direction of the mean velocity gradient,
decelerates the flow. Ultimately in the developed pipe region, FPG is registered. The
effect of well-known APG on the mixture fraction structures is distinguishable in m40.
As shown in figure 11, the snapshot of mixture fraction for m40 in the longitudinal plane
indicates that the shape of the unmixed blobs is more oblate than stretched in the flow
direction from x/D = 2 to 5. Axially decelerating blobs tend to expand in the radial
direction. The observations can be described as the development of interfacial waves
as well as the formation of mushroom-like structures, resulting in promoted entrainment
between the inner and outer flow. This effect is less obvious with the decreasing viscosity
ratios.
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Figure 12. Probability density function (p.d.f.) of the normalized mixture fraction, ξ∗ = (ξ − 〈ξ〉)/ξ ′
rms, at

x/D = 2 (a), x/D = 4 (b), x/D = 6 (c) and x/D = 8 (d) for m1, m10, m20 and m40. Data are collected along
the centreline, r/d = 0. The normal distribution is shown with dashed grey lines.

To unravel the mixing dynamics further, the normalized probability density function
(p.d.f.) of the mixture fraction is presented along the centreline (r = 0) and centre of the
shear layer (r = 0.5d) in figures 12 and 13, respectively. The p.d.f.s are centred by the mean
and normalized where the approach flows are traced with ξjet = 1 and ξcoflow = 0. Thus,
ξ∗ < 0 indicates outer flow whereas ξ∗ > 0 indicates inner flow. In m1 the distribution
of mixture fraction follows always a Gaussian trend regardless of radial or axial location
in the mixing chamber. This behaviour can be intuitively explained by the TTT mixing
mode where flow is always turbulent across the domain such that scalar structures are
homogenized to equilibrium by the induced flow. However, TLL cases show a different
scalar distribution behaviour.

Along the centreline (r/d = 0), m10 and m20 exhibit a negative skew-normal
distribution, where the distribution mode is on the inner fluid side, at x/D = 2, 4 and
6. At x/D = 8 all of the distribution curves collapse to normal distribution regardless of
viscosity ratio or mixing mode. However, m40 behaves differently than other TLL cases
in x/D ≤ 6. At x/D = 2, similar to other TLL cases, negative skew distribution is noted
whereas, at x/D = 4 and 6, it reveals a bimodal distribution with the new mode peak at the
outer fluid side, ξ∗ < 0. This shows that engulfed and entrained outer fluid reaching to the
centreline does not necessarily break down, which suggests that an elevated viscosity ratio
quickly decays turbulence even at x/D = 4. Then laminarization phenomenon prevails so
that the dispersion and dissipation mechanism remains limited resulting in persistent scalar
fluctuations for longer pipe lengths. It is deduced that in m10 and m20, jet laminarization is
delayed so that no pure outer fluid is observed along the centreline. Energy spectra shown
in figure 23 corroborates delayed laminarization with decreasing viscosity.
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Figure 13. Probability density function (p.d.f.) of the normalized mixture fraction, ξ∗ = (ξ − 〈ξ〉)/ξ ′
rms, at

x/D = 2 (a), x/D = 4 (b), x/D = 6 (c) and x/D = 8 (d) for m1, m10, m20 and m40. Data are collected along
the centre of the shear layer, r/d = 0.5. The normal distribution is shown with dashed grey lines. In (a) and
(b), insets show out-of-range values. For symbol legends, see figure 12.

Along the centre of the shear layer (r/d = 0.5), m40 is negatively skewed with a
persistent bimodal distribution in x/D ≤ 6, similar to centreline analysis but with a greater
magnitude of the peak. Unlike centreline behaviour, m20 is also bimodal at x/D = 2
and 4. This type of bimodal distribution is not clearly observed in m10 even though a
non-zero distribution density is registered on the outer fluid side at x/D = 2. Eventually,
all curves collapse to normal distribution similar to the centreline location. Therefore, this
study reveals that TLL cases exhibit anisotropic scalar distribution either with or without
bimodal behaviour up to x/D = 6. Unless modelled properly, standard RANS models are
doomed to fail in predicting scalar distribution accurately.

3.3. Momentum budget analysis of viscous terms
Viscosity variations alter the momentum field that ultimately affects the mixing dynamics.
Using highly resolved LES data, we quantify this effect by examining the budgets
of the mean momentum equation that includes two additional terms pertaining to the
decomposition of viscosity fluctuations. Having a DNS-like grid resolution (G4 mesh)
ensures minimal (less than one order of magnitude) contribution from SGS terms. Starting
with the highly resolved spatiotemporal flow and mixture fraction field obtained by
LES, we decompose a property into LES-resolved mean and LES-resolved fluctuating
components (φ̄ = 〈

φ̄
〉 + φ′′) and perform a temporal averaging over all available time steps

(1200 time steps spanning 23 tf or 230 te) that satisfies temporal convergence. With this
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Figure 14. Radial profiles of the axial component of Dν̄ (solid line) and Dν′′ (dashed line) terms in (3.1).
Profiles are shown at x/D = 0.5 (a), x/D = 1 (b), x/D = 2 (c), x/D = 3 (d), x/D = 4 (e) and x/D = 5 ( f ) for
m10, m20 and m40.

decomposition, the time-averaged momentum equation reads

〈
ūj

〉 ∂ 〈ūi〉
∂xj︸ ︷︷ ︸
C

= − 1
ρ

∂ 〈p̄〉
∂xi︸ ︷︷ ︸

P

+〈ν̄〉 ∂2 〈ūi〉
∂x2

j︸ ︷︷ ︸
Dν̄

+ 2
∂ 〈ν̄〉
∂xj

〈
S̄ij

〉
︸ ︷︷ ︸

D∇ν̄

+
〈
ν′′ ∂

2u′′
i

∂x2
j

〉
︸ ︷︷ ︸

Dν′′

+
〈
2
∂ν′′

∂xj
S′′

ij

〉
︸ ︷︷ ︸

D∇ν′′

−
∂

〈
u′′

i u′′
j

〉
∂xj︸ ︷︷ ︸
S

, (3.1)

where quantities denoted with 〈•̄〉 correspond to LES-resolved, time-averaged properties;
〈ū〉 is mean velocity, ρ is density, 〈p̄〉 is mean pressure, 〈ν̄〉 is mean kinematic viscosity,〈
S̄ij

〉
is the mean strain-rate tensor and

〈
u′′

i u′′
j

〉
is the resolved stress tensor.

In this subsection we analyse the magnitude and orientation of viscous terms, Dν̄ ,
Dν′′ , D∇ν̄ and D∇ν′′ . Figures 14, 15, 17 and 18 show radial profiles of radial and axial
components at six different axial locations. Solid lines refer to mean terms (Dν̄ , D∇ν̄)
whereas dashed lines represent their fluctuating counterparts (Dν′′ , D∇ν′′). Note that the
centre of the shear layer, rs, is at rs = r/D ≈ 0.1, which is important to follow especially
when analysing early mixing locations.

Figure 14 shows the axial component of Dν̄ and Dν′′ . At early locations the mean
term shows bimodal behaviour with a clear inflection about rs and later it transitions
to a centre-peak profile. This occurs because the turbulent jet is transitioning to a fully
developed Poiseuille flow that experiences axial velocity gradients. The fluctuating term
peaks at about rs with a zero centreline value at initial locations and then transitions to
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Figure 15. Radial profiles of the radial component of Dν̄ (solid line) and Dν′′ (dashed line) terms in (3.1).
Same description as figure 14. Profiles are shown at (a) x/D = 0.5, (b) x/D = 1, (c) x/D = 2, (d) x/D = 3,
(e) x/D = 4, ( f ) x/D = 5.

a centre-peak behaviour as well. A zero value is intuitive as mixing is not reached to the
centreline at early locations. Although the magnitude of fluctuating terms at the peak is
less but comparable to their mean counterpart, it shows a more uniform profile along the
radial direction, particularly further downstream. Overall, the magnitudes of each term
strongly scale by the mean viscosity but such normalization is omitted as it does not
collapse exactly. Further normalization is required in future studies.

Interestingly, in x/D ≤ 1 mean and fluctuating terms have opposing momentum
directions at the outer side of rs. The particular behaviour is actually the key factor that
drives K–H-type shear instabilities such that there exists a sharp radial gradient of axial
velocity. The flow accelerates on the outer side of the shear layer, r > rs, and it decelerates
on the inner side, r < rs, which causes the opposing momentum directions. The strong
scaling of peak values with local mean viscosity corroborates this argument. Since the
fluctuating term does not exhibit such behaviour, the gradient diffusion based method
with isotropic diffusion can not capture this behaviour so solving a separate equation with
a non-local model could hope to reproduce this behaviour.

Figure 15 shows the radial component of Dν̄ and Dν′′ . On contrary to the axial
component, the radial component of fluctuating terms shows comparable magnitudes
independent of the viscosity ratio. It is intuitive that the radial component velocity
gradients are less significant when compared with axial components whereas the local
viscosity is different in each case approximately by a factor of two. So it is unexpected
to register the viscosity-independent magnitude. This suggests that at low viscosity ratios
velocity fluctuations are greater while viscosity fluctuations are smaller, which leads to
comparable magnitude regardless of viscosity ratio. This evidence supports the leading
stabilization effect of higher viscosity ratios against viscosity gradient destabilization.

One of the major issues with standard RANS is that they overpredict the radial expansion
of the jet (see figures 5 and 7). Consistently observed negative values of the radial
component further suggest that viscosity fluctuations cause a momentum transport from
the outer fluid to inner fluid in this context so that the unclosed term in RANS is found to be
a significant cause of overpredicted jet expansion. In general, unlike the axial component,
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Figure 16. Contours of the angle between Dν̄ and Dν′′ , θν̄ , in degrees for m10, m20 and m40. Dashed lines
indicate isocontours of ξ = 0.8, 0.6, 0.4, 0.2 in the order from jet (ξ = 1) to coflow (ξ = 0).

fluctuating terms take larger values than the mean counterpart that suggests neglecting
the Dν′′ term in RANS modelling compromise the accuracy. Note that, theoretically, these
fluctuating components vanish when fluids are fully mixed; at x/D = 5 we already observe
magnitudes that are smaller than averaging noise meaning that no valid correlation can be
inferred.

Besides the magnitudes of each term, another valuable analysis is measuring the angle
between fluctuating and mean terms. This analysis has the potential to suggest whether
gradient diffusion hypothesis type models can be used to close these terms. The angle θν̄

is given by

θν̄ = arccos
( Dν̄Dν′′√Dν̄Dν̄

√Dν′′Dν′′

)
. (3.2)

Figure 16 shows colour contours of the angle θν̄ in early axial locations. When r/d > rs,
a ’true’ counter gradient is observed that suggests a non-local phenomenon independent of
the viscosity ratio. Aside from this, the overall misalignment is not too high, with angles
in the range ±20◦ being common. Hence, the counter gradient observed on the outer side
of the shear layer required solving additional equations for accurate predictions, although
a reasonable alignment is noted in other locations. This visualization also demonstrates
the axial location of attachment of viscous fluctuations to the outer pipe that occurs at
shorter distances in lower viscosity ratios. Especially, in m10 and m20, we can confirm the
presence of the counter gradient due to wall-bounded anisotropic turbulence.

The effect of viscosity fluctuation gradient terms cast a greater contribution to the
momentum field, as shown in figure 17. In general, the axial component of D∇ν̄

takes a positive value distribution centred around rs that later spread to high radial
locations in a quasi-symmetric manner (an exactly symmetric distribution is unattainable
in wall-bounded flows). The fluctuating counterpart, D∇ν′′ , shows similar behaviour to
the mean term in early mixing locations whereas further downstream it transitions to
centre-peak distribution that is an interesting finding such that its value is more than
one order of magnitude greater particularly when r/D < rs. Having such a different
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Figure 17. Radial profiles of the axial component of D∇ν̄ (solid line) and D∇ν′′ (dashed line) terms in (3.1).
Same description as figure 14. Profiles are shown at (a) x/D = 0.5, (b) x/D = 1, (c) x/D = 2, (d) x/D = 3,
(e) x/D = 4, ( f ) x/D = 5.

behaviour, especially toward the centreline is intuitive as viscosity fluctuations are taking
their greatest value in the centreline whereas the mean viscosity gradient does not exist
in early locations and it converges equilibrium in a few diameters downstream. If this
term remains unclosed in RANS, turbulent jet momentum is expected to be transported
more in the radial direction with lacking axial transport. This argument corroborates with
overprediction of jet expansion in RANS predictions (see figures 5 and 7). Along the same
lines of discussion regarding the axial component of Dν′′ , overall the magnitude is a strong
function of the viscosity ratio.

As the profiles in figure 18 show, the radial component of D∇ν′′ is independent of
viscosity ratio whereas D∇ν̄ appears to be a weak function of viscosity ratio. Similar to
the radial component of Dν′′ , the interplay between viscosity gradient and velocity strain
results in comparable magnitudes. In the early locations, in the turbulent jet side of the
shear layer, r/D < 0.1, the magnitude of the fluctuating term takes significantly larger
values when compared with mean values. The peak location is skewed toward the jet side
that ultimately implies that higher strain rooted in the wall-bounded inner jet interacts with
the viscosity gradient resulting in this skewed behaviour. Note that further downstream,
data remain inaccessible due to the high signal to averaging noise as described earlier.

A similar analysis shown in figure 16 is extended here by calculating the angle between
D∇ν̄ and D∇ν′′ , which is given by

θ∇ν̄ = arccos
( D∇ν̄D∇ν′′√D∇ν̄D∇ν̄

√D∇ν′′D∇ν′′

)
. (3.3)

Figure 19 shows colour contours of θ∇ν̄ . The largest angle is observed near the outer
wall that is expected due to turbulent anisotropy, as discussed earlier. Besides, the angle
takes ±20◦ arising from local effects that is not a ’true’ counter momentum, unlike θν̄ .
These calculations reveal that D∇ν′′ is mostly aligned with the mean counterpart such that
one can hope to close these terms using some form of an isotropic coefficient approach.
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Figure 18. Radial profiles of the radial component of D∇ν̄ (solid line) and D∇ν′′ (dashed line) terms in (3.1).
Same description as figure 14. Profiles are shown at (a) x/D = 0.5, (b) x/D = 1, (c) x/D = 2, (d) x/D = 3,
(e) x/D = 4, ( f ) x/D = 5.
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Figure 19. Contours of the angle between D∇ν̄ and D∇ν′′ , θ∇ν̄ , in degrees for m10, m20 and m40. Dashed
lines indicate isocontours of ξ = 0.8, 0.6, 0.4, 0.2 in the order from jet (ξ = 1) to coflow (ξ = 0).

Overall, the analysis of viscous terms in the momentum equation reveals several
key understandings. The magnitude of fluctuating terms in the axial direction strongly
scales with local viscosity whereas the radial terms remain comparable regardless of
local viscosity. The magnitudes of viscosity gradient fluctuations, D∇ν′′ , registered to
be significantly greater when compared with mean counterparts. In Dν′′ the magnitude
is small but still comparable to its mean counterparts. With all of these quantitative
evidences, we can deduce that leaving these terms unclosed in RANS simulations is
expected to result in major inaccuracies. From a modelling perspective, a brief analysis of
momentum directions reveals that Dν′′ exhibits a counter momentum direction in certain
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Figure 20. Axial profiles of the angle between − 〈
u′′

i ξ ′′〉 and ∇ξ̄ , θ∇ξ̄ in degrees for m10, m20 and m40. The
profiles are shown at rs (centre of the shear layer). See figure 14 for profile legends.

regions that could require solving additional equations for the accurate reproduction of
results.

Before we conclude this subsection, another synergistic analysis is presented briefly to
complement the potential effects of anisotropic scalar distribution on turbulent scalar flux.
In doing so, the validity of the gradient diffusion hypothesis is tested by simply calculating
the angle between turbulent scalar flux and scalar gradient, θ∇ξ̄ , which reads

θ∇ξ̄ = arccos

⎛
⎜⎜⎜⎜⎝

− 〈
u′′

i ξ
′′〉 ∂

〈
ξ̄
〉

∂xi√〈
u′′

i ξ
′′〉 〈u′′

i ξ
′′〉√∂

〈
ξ̄
〉

∂xi

∂
〈
ξ̄
〉

∂xi

⎞
⎟⎟⎟⎟⎠ . (3.4)

Figure 20 plots this angle that reveals the discrepant nature of the gradient diffusion
method. At its lowest, 60◦ discrepancy is registered that even increases with the increasing
viscosity ratio. Here the mixture fraction gradient is almost perpendicular to the flow
direction whereas the turbulent scalar flux, provided by highly resolved LES, is mainly in
the flow direction with a small component in the radial direction (individual components
are not shown in the figure). Eventually, the discrepancy reaches up to 75◦. The
discrepancy is even increased with the increasing viscosity ratio that corroborates with
the earlier discussion on jet scalar penetration through TNTI (see figure 11). Using the
gradient diffusion hypothesis in the Reynolds-averaged AD equation simply imposes a
spurious flux in the positive radial direction. It is worth mentioning that using the gradient
diffusion hypothesis in LES SGS modelling is not expected to be erroneous since the
turbulent motions are mostly isotropic in the inertial subrange of scales. This analysis
provides great insight into the discrepant nature of standard RANS models (see figure 7).
From a modelling perspective, solving an additional transport equation for the turbulent
scalar flux term could be invoked to capture the physics of this mixing that exhibit such a
non-local discrepancy.

3.4. Evolution of TKE and decay of turbulence with increasing viscosity
The evolution of the shear layer is found to be quite distinct in TTT and TLL and it has
certain implications for the TKE evolution. The TLL cases have additional complexities
due to the variable viscosity and TNTI. As a way to discuss the interplay between TKE
and mixing zones, figure 21 shows colour contours of normalized TKE overlaid by isolines
of the mixture fraction at two levels. In this study, the half-mixing ξh = 0.5 differs from
the equilibrium mixing ξeq = 0.2 so that these are overlaid to complement the discussion.

955 A43-32

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

10
76

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.1076


Mixing of fluids with disparate viscosity

0.5(a)

(b)

(c)

( f )

m = 1

m = 10

m = 20

r/D

m = 40

0

0.5

r/D
0

0.5

r/D
0

0.5

r/D
0

0 1 2

x/D
3 4 5

0 1 2 3 4 5

0 1 2 3 4 5

0 1 2 3 4 5

0.8

k/Ub
2

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

Figure 21. Contours of resolved TKE overlaid with half-mixing, ξh = 0.5 (black) and equilibrium mixing,
ξeq = 0.2 (white) isolines. Contours are rendered for m1, m10, m20 and m40. The TKE, k = 0.5u′′2

i , is
normalized by the bulk velocity energy, U2

b . The equilibrium mixture fraction is calculated based on the flow
rates of the coflow and jet.

Evidently, in the earlier locations (0.5 < x/D < 2), m1 exhibits turbulence activity in the
inner and outer side of half-mixing whereas in m10, m20 and m40 it is encapsulated in the
inner region indicating an asymmetric shear layer development. In other words, in TLL the
radial location of the TKE peak (rkp) is always smaller than the half-mixing radius (rξh),
rkp < rξh . This phenomenon coincides with the earlier observations about the shear layer
asymmetry in the case of TNTI by the present authors (Pathikonda et al. 2021).

A similar argument on asymmetric development can be observed in the differing radial
growth of these two isolines with respect to viscosity ratios. Specifically in the near jet
entry, x/D < 1, of m40 the separation between isolines is indiscernible, which indicates
that very limited to no entrainment happens in this region. This observation is supported
by the fact that the formation of folded-segregated structures start at x/D > 1.5 (see
figure 9). When comparing different TLL cases, the radial separation distance between
isolines increases with decreasing viscosity ratio. The early entrainment across TNTI
remains limited, which is also clearly shown by the mixture fraction coloured isosurfaces
of the Q criterion in figure 10. While having matching initial momentum and shear
profiles, such a different development in early mixing has a clear implication. Although
increasing the viscosity ratio means a higher viscosity gradient at the shear layer, the
critical ingredient of viscosity stratification instabilities (Selvam et al. 2007), it does not
necessarily always translate into better mixing. Hence, we can infer that the stabilization
effect of higher viscosity (lower shear Reynolds number) at the shear layer prevails.
However, a direct comparison of m1 (TTT) and m10 (TLL) proves that the viscosity
gradient induces additional instabilities that manifest itself as the incoming jet disperses
down to half-life (ξh = 0.5) within a significantly shorter distance in m10. Now, observing
an increase in half-mixing length with an increasing viscosity ratio complements the
previous point in prevailing viscosity-related stabilization. To sum up, viscosity gradients
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Figure 22. Radial profiles of the resolved TKE normalized by U2
b . Profiles are shown at x/D = 0.5 (a),

x/D = 1 (b), x/D = 2 (c), x/D = 3 (d), x/D = 4 (e) and x/D = 5 ( f ) for m1, m10, m20 and m40. The radial
axis is normalized by the radius of the equilibrium distance, where the jet mixture fraction is reduced to the
equilibrium value, from the centreline, rξeq .

cause additional instabilities to some extent but the stabilization effect of elevated viscosity
overall predominates.

Speaking of turbulent intensity, it is worth mentioning that, in m1 the coflow is also
turbulent but the magnitude is negligibly small when compared with shear layer turbulence
so that it is not noticeable with the selected contour levels.

The asymmetric development of the shear layer is further quantified at several axial
locations in figure 22 by plotting TKE profiles against the radial distance normalized by the
radial location where the jet mixture fraction is reduced to equilibrium value (ξeq = 0.2).
In the early mixing (x/D ≤ 1), TKE is mostly contained in r/rξeq ≤ 1 with a peak whose
radial location is dictated by the near-wall TKE peak of the jet at x/D < 0 (see figure 3).
The fluctuation intensity diffuses beyond r/rξeq ≥ 1 at an increasing rate with decreasing
viscosity ratio. At x/D ≥ 2 overall, the fluctuation intensity penetrates into the outer fluid
that betokens to different levels of entrainment. The radial location of peak intensity
converges r/rξeq ≈ 1 with relatively symmetric behaviour at low and moderate viscosity
ratios. However, at increasing viscosity ratios, the presence of fluctuation intensity is
skewed toward the jet which exposes the asymmetric development of the shear layer.

Another interesting observation is on the magnitude of fluctuation intensities and their
evolution in the axial direction. In m1 (TTT), the peak value of the TKE monotonically
decreases in the flow direction, which is anticipated as shear-induced turbulent production
gradually diminishes. However, in TLL cases the peak value of the TKE increases initially
from x/D = 0.5 to x/D = 1. This finding further supports the fact that, at matching jet
and coflow momentum conditions, variable viscosity causes additional flow instabilities
leading to higher turbulent fluctuations. This is also observed by Selvam et al. (2007) that,
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at high Schmidt numbers (Sc ≥ 500), the viscosity gradient in the radial direction and the
base flow shear become the main producer of perturbation energy, but not the Reynolds
stresses. As a natural extension to this analysis, we can also plainly uncover that increasing
the viscosity ratio attenuates the viscosity gradient instabilities by means of increased local
viscosity. With this analysis, we unravel the critical interplay between the laminarization of
flow with lowering effective Reynolds number that stabilizes the flow and destabilization
of flow with viscosity gradient instabilities. Note that overall the magnitudes in all cases
are comparable regardless of viscosity ratio, which is counter-intuitive to some extent as
increasing the viscosity ratio is expected to lower the effective Reynolds number. This
suggests that viscosity gradients induce instabilities even further downstream until the
mixture fraction gradient disappears with homogenized mixing. To complement this point,
figure 8( f ) plots clear evidence that mixture fraction variance, so viscosity variance, is
even greater than m1 at all axial locations. For a meaningful investigation of these flow
fluctuations under various effective Reynolds numbers resulting from variable viscosity, it
is necessary to explore the spectral density of fluctuations.

To distinguish the eddies that follow the typical turbulence energy cascade scaling from
the unsteady laminar shedding, the energy spectrum of temporal velocity fluctuations in
the streamwise direction is presented in figure 23. The data are obtained via probes placed
in various locations in the computational domain that collect the value of flow properties
at each time step. The insets show compensated spectra to highlight different scaling for
TTT and TLL in the inertial range. The plots are depicted at four different streamwise
locations with data obtained from highly resolved (G4 mesh) LES. The selected filter
size resolves the inertial range. In the current flow configuration the kinetic energy is
produced in the shear layer driven by K–H-type instabilities in all cases and viscosity
gradient induced instabilities for TLL cases. In m1, TKE produced in the shear layer
is transported and transitioned to a fully developed turbulent flow. Albeit the transition
is not complete in the current domain, the energy cascade scaling in the inertial range
converges to −5/3. Especially at x/D = 8, a clear scale separation is achieved with more
than one order of magnitude in St. On the other hand, in TLL cases, separation of scales
is not registered at −5/3 instead the scaling converges to −14/3 regardless of viscosity
ratio in the inertial subrange. A reasonable scale separation is observed at −14/3 as well.
Although we show highly resolved LES results, we observe similar scaling with other grid
resolutions. Furthermore, this scaling also reveals that lacking turbulent scalar flux at high
frequencies (limited homogenization). Thus, the folded-segregated scalar structures as a
result of entrainment sustain longer distances with dispersing (see figure 11).

On the axial evolution of scaling, three different viscosity ratios in TLL reveal key
insights. At the highest viscosity ratio, a converged −14/3 scaling is achieved at x/D = 4
whereas this transition is delayed with decreasing viscosity ratios. This is expected since
at the lower viscosity ratios the jet laminarization occurs at longer axial distances as
the effective Reynolds number is inversely related to local viscosity. Ultimately, the
manifestation of −14/3 in TLL, irrespective of viscosity ratio and grid resolution, suggests
that until the flow transitions to a fully developed laminar flow, there exists an intermediate
region of unsteady flow that does not adhere to classical turbulent cascade scaling. This
finding asserts the contribution of viscosity gradient instabilities to the −14/3 scaling
registered here.

To gain a deeper understanding of the laminarization phenomenon including
intermittency and scaling, a detailed TKE budget analysis with adequate normalization
has to be performed that is outside the scope of this work. Also including TLL
cases with constant viscosity could reveal laminarization mechanics without viscosity
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Figure 23. Representation of the normalized energy spectra as a function of Strouhal number, St = fD/Ub
for m1, m10, m20 and m40, at x/D = 2 (a), x/D = 4 (b), x/D = 6 (c) and x/D = 8 (d). The insets show
compensated spectra with ( )St5/3 (a,b) and ( )St14/3 (c,d). The data are collected on the centreline r = 0.

gradient instabilities. However, to say the least, RANS models fail as they overpredict
the turbulent kinematic viscosity by definition in the absence of a typical turbulent energy
cascade. Similarly, the turbulent scalar flux is also overpredicted as it can be deduced from
the gradient diffusion hypothesis.

4. Conclusion

Highly resolved three-dimensional LES and RANS simulations are carried out for a
co-axial co-annular turbulent jet with and without fluids having disparate viscosity. The
cases are identified as TTT and TLL where the acronyms refer to a priori condition
of flow, i.e. T for turbulent and L for laminar. Particular attention is given to assessing
the performance of LES and standard RANS models that are compared against in-house
simultaneous experimental measurements of velocity and mixture fraction fields using
PIV and PLIF methods, respectively. It is found that the Smagorinsky model (LES) and
RANS approaches severely fail to capture mixing physics distinctively in the disparate
viscosity case (m40) whereas the dynamic LES subgrid-scale models provide quite
satisfactory agreement. Subsequently, using highly resolved LES data (a DNS-like solution
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for variable viscosities), the underlying causes of RANS discrepancies and physics of
variable viscosity are studied by investigating the evolving interfacial dynamics of the
shear layer including TNTI phenomena, budget analysis of the momentum equation,
mixing characteristics and laminarization of the turbulent jet with increasing viscosity.

The evolution of the interfacial waves follows different pathways such that, in m1,
it breaks the axis symmetry that rapidly homogenizes the inner outer flow, even at
early locations. However in m40, although the waves grow in amplitude leading to
large-scale engulfment, these engulfed fluids do not undergo intense mixing processes
to break down these large structures and disperse the fluids within the evolving shear
layer. This behaviour results in the formation of ‘mushroom’-like structures that later
transition to folded-segregated patterns that remain intact until they are fully stretched and
homogenized by the wall-bounded shear and molecular diffusion, respectively. In m10 the
shear layer becomes relatively more unstable that results in better early mixing, although
all TLL cases exhibit some level of folded-segregated structures. Moreover, in TLL cases
the p.d.f. of the mixture fraction exhibits either a skew-normal or bimodal distribution
in early locations. At x/D = 8 all cases present Gaussian distribution while m1 is always
Gaussian regardless of axial or radial location. This anisotropic scalar distribution proves
that standard RANS models are doomed to fail in predicting scalar distribution.

Given the modelling difficulties and RANS failures associated with additional
variable-viscosity terms, the magnitude and orientation of variable-viscosity terms that
appear in RANS equations are quantified using highly resolved LES data. It is found that
the magnitude of fluctuating terms in the axial direction strongly scales with local viscosity
whereas the radial terms remain comparable regardless of local viscosity. The magnitudes
of viscosity gradient fluctuations are significantly greater when compared with their mean
counterparts. On the other hand, the term with viscosity fluctuations is small but still
comparable to its mean counterparts. Modelling these terms using mean counterparts is
not easily accessible since the fluctuating term shows a counter direction in the outer fluid
side of the jet. A synergistic analysis to quantify the angular discrepancy between turbulent
scalar flux and mean scalar gradient emphasizes that the gradient diffusion hypothesis is
doomed to fail, which explains RANS overprediction in jet expansion.

In TLL cases asymmetric growth of the shear layer is observed where the turbulent
activity remains bounded inside the equilibrium mixing interface. In TLL cases the peak
value of TKE increases whereas it is monotonically decreasing in TTT. However, the
highest viscosity ratio does not necessarily produce a higher level of flow instabilities
due to decreasing effective viscosity. So it supports the fact that viscosity gradients cause
additional instabilities to some extent, but the stabilization effect of elevated viscosity
prevails. To elucidate more on this behaviour, the energy spectra of the temporal velocity
fluctuations are computed. In the inertial range, a −14/3 cascade scaling is attained in all
variable-viscosity cases while it is approximately −5/3 in the constant-viscosity case. It
is believed that this scaling is relevant to viscosity gradient instabilities, which could be
the focus of investigation in future studies. All of these findings enabled us to attribute
the velocity fluctuations to unsteady laminar shedding. Hence, the lack of typical energy
cascade in m40 delineates another drawback of conventional RANS models in these hybrid
flow conditions.

While in the present study we have explored the performance of LES and
standard RANS on predicting the mixing with disparate viscosity and unraveled key
physical insights for VVM, further investigations should be carried out to assess the
energy transport mechanism during laminarization and adequate approached to model
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variable-viscosity terms in RANS equations. Such an analysis can naturally be followed
by the investigation of self-similar solutions independent of the viscosity ratio.
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