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Abstract. Let M be a subset of R with the following two invariance properties:
(1) M + k € M for all integers k, and (2) there exists a positive integer / > 2 such that
%M C M. (For example, the set of Liouville numbers and the Besicovitch-Eggleston
set of non-normal numbers satisfy these conditions.) We prove that if /2 is a dimension
function that is strongly concave at 0, then the /-dimensional Hausdorff measure
H"(M) of M equals 0 or infinity.

2000 Mathematics Subject Classification. 28A80.

1. Introduction and statement of results. A dimension function h is an increasing
function 4 : [0, 00) — [0, o) with #(0) = 0. If & is a dimension function, we shall
denote the A-dimensional Hausdorff measure of a subset E of R by H"(E); the reader
is referred to [5] for the definition of H”(E). If t > 0 and / equals the power function
h(r) = r', then we shall write H"(E) = H!(E). Recall that a dimension function # is
called an exact dimension function of a subset E of R if H"(E) is positive and finite.
Finally, a subset E of R is called dimensionless if it does not have an exact dimension
function, i.e. if H"(E) equals 0 or infinity for all dimension functions .

In this paper we show that if a subset M of the real line satisfies two rather weak
invariance conditions shared by many naturally occurring sets (for example, the set of
Liouville numbers and the Besicovitch-Eggleston set of non-normal numbers satisfy
these invariance conditions), then the 4-dimensional Hausdorff measure of M equals
0 or infinity for a large class of dimension functions 4.

Observe that if a dimension function / is concave in a neighbourhood of 0, then

h(Ar) -

lim inf
RV

for all A € (0, 1). In this paper we consider dimension functions which satisfy a slightly
stronger condition. We shall say that a dimension function /4 is strongly concave at 0 if

for all A € (0, 1). We shall now give some examples of dimension functions that are
strongly concave at 0.

(1) Power functions A(r) = r’ with ¢ € (0, 1) are strongly concave at 0.
(2) Recall that a continuous function L : [0, o0) — [0, oo) with L(r) > 0 for all

r > 0 is called slowly varying if lim, o % =1 for all A > 0. Functions of the form
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h(r) = r'L(r), where t € (0, 1) and L : [0, c0) — [0, 00) is a slowly varying function, are
strongly concave at 0.

(3) The dimension function 4 defined by A(r) = @for re(0,1)and #(0) =01is
strongly concave at 0. !

We can now state the main result of this paper.

THEOREM 1. Let M be a subset of R satisfying the following two invariance
conditions:

(1) M +k < M, for all integers k;
(2) there exists a positive integer | > 2 such that %M cM.

Then H"(M) = 0 or H"(M) = oo, for all dimension functions h that are strongly concave
at 0.

The proof of Theorem 1 is given in Section 2.

REMARK 1. If a subset M of R satisfies condition (1) in Theorem 1;i.e.if M + k C
M for all integers k, then in fact M + k = M, for all integers k. Indeed, for all integers
kwehave M = (M —k)+kC M+ ksince M —k C M.

REMARK 2. If a non-empty subset M of R satisfies conditions (1) and (2) in
Theorem 1, i.e. if M +k C M for all integers k and there exists a positive integer
[ > 2 such that %M C M, then M is dense in R. Indeed, let x € R and r > 0. Since
M is non-empty there exists + € M. Next, choose integers p and ¢ with ¢ > 1 such
that |x — f7,| < g and IquI < g Then clearly ”TT’ € ,%,(p%—M) - IL,M - M%]M c...C

M and |x—”;[| < Ix—,%l—i-ll%l < 5 + 5 = r. This shows that M is dense in R.

Many naturally occurring sets of numbers satisfy the conditions in Theorem 1. We
shall now consider two examples.

ExAMPLE. The Liouville numbers. Let L denote the set of Liouville numbers, i.e.

for all n € N there exist integers p and ¢

p 1}
< — 7.
ql ¢

ﬂ.:{xeR\@

with ¢ > 1 such that |x — =

It is well known that the Hausdorff dimension of L is 0, cf. for example Oxtoby’s book
[6, Theorem 2.4] for a simple direct proof or [1, p. 69] for a proof based on Jarnik’s
theorem. In particular, this implies that the t-dimensional Hausdorff measure H'(L) of
LequalsO, forall z > 0. Itis therefore natural to ask whether or not L is dimensionless. It
follows easily from the definition of the Liouville numbers that L + & C [ and ,lcl]_ clL,
for all non-zero integers k, and, by applying Theorem 1 to L, we obtain the following
result.

THEOREM 2. Let h be a dimension function that is strongly concave at 0. Then
H'L) = 0 or H'(L) = oo.

ExampLE. The Besicovitch-Eggleston set of non-normal numbers. Let N > 2

be a fixed positive integer, and for x € R let x = [x] + Zflil 8}’\(,;1*), where [x] € Z and
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en(x) €{0,1,..., N — 1}, denote the unique non-terminating N-adic expansion of x.
For each digiti € {0, 1, ..., N — 1}, we write

Wl =k=nleax)=il,

IT;(x; n) . ;

so IT;(x; n) denotes the frequency of the digit i among the first z digits in the N-adic
expansion of x. For a given probability vector p = (po, p1, - .., py—1), the Besicovitch-
Eggleston set B(p) is defined by

B(p) = {x e R|;(x;n) > p;asn — oo for all i} .

Besicovitch [2] and Eggleston [4] computed the Hausdorff dimension, dim B(p), of B(p).
In fact, they proved that dim B(p) = —%; the reader is referred to the textbook
[3, p. 142] for a contemporary proof of this result based on the ergodic theorem. It is
natural to ask whether or not the Besicovitch-Eggleston set B(p) is dimensionless.
Since clearly B(p) + k C B(p) for all integers k& and %B(p) C B(p), an application of

Theorem 1 gives the following result.

THEOREM 3. Let h be a dimension function that is strongly concave at 0. Then
H"(B(p)) = 0 or H"(B(p)) = oc.

In fact, using the law of the iterated logarithm (rather than relying on the invariance
properties of the set B(p)), Smorodinsky [7] proved the following stronger version of
Theorem 3: H"(B(p)) = 0 or H"(B(p)) = oo for all concave dimension functions.

2. Proof of Theorem 1. We shall now prove Theorem 1. We first state and prove
an auxiliary result. For a dimension function /4 and a positive real number s write

.. h(sr)
6_1;1(S)=11rrn\10nf 7o)
and
— ) h(sr)
dy(s) = limsu .
(s) ns, p 0

PROPOSITION 4. Let h be a dimension function and let f : R" — R" be a similarity
with ratio equal to s > 0, i.e. | f(x) — f(y)| = s|x — y|, for all x, y € R". Then

dy(sYH'(E) < H'f(E)) < di(s)H"(E),

forall E C R".

Proof. We write | B| for the diameter of a subset B of R". For a positive real number
8, we denote the § approximative 4-dimensional Hausdorff measure by H”; the reader
is referred to [5] for the definition of Hf;.

Part 1. We first prove that H"(f(E)) > d,(syH"(E). Let & > 0, and choose r, > 0
such that % > d,(s)—e for all 0 < r < r,. Next, fix 0 < § < r,, and let (B;); be an
s8-cover of f(E). Since | f~1(B;)| = §|Bi|, we conclude that (f~!(B,)); is a 8-cover of E.
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Hence

h(B) , .\ .
mehixﬁzyw”@mzZ@@—@mﬁww

> (d,(s) — &) HE(E).

i

This implies that H( f(E)) > (d,(s) — e)HI(E) for all 0 < § < r,. Letting first § \, 0
and then letting ¢ \, 0 gives H"( f(E)) > d h(s)Hh(E).

Part Z.h Next we prove that H'( f(E)) < du(syH"(E). Let ¢ > 0, and choose r, > 0
(s7)

such that o = d_h(s) +e¢eforall0 <r<r.. Next, fix 0 <§ < r,, and let (B;); be an
8-cover of E. Since |f(B;)| = s|B;|, we conclude that (f(B;)); is an sé-cover of f(E).
Hence

h(|Bi) 1

h(|Bi|) = W f(B)) = )  ———h(If(B)))
Z Z h(s|Bil) ~ diy(s)+ ¢
1
= dh(S) +e Aé(f( ))

This implies that (d),(s) 4 &) HA(E) > H/( f(E)) for all 0 < § < r,. Letting first § \ 0
and then letting & \ 0 gives H"( f(E)) < dj(s)H"(E). O

We can now prove Theorem 1.

Proof of Theorem 1. It follows from the assumptions on M that M N[0, 1) =
(M N[k, k4 1)) — k, for all integers k, and Proposition 4 therefore implies that

HNM N[0, 1)) = H'(M N[k, k + 1)).

Hence, it suffices to prove that H"(M N[0, 1)) equals 0 or infinity. Write I = [0, 1), and
fork=0,1,...,/—1putl = [’%, k—*l'l). Also define maps fi. : I — I by fi(x) = le
Since M + k C M, for all integers k, and %M C M, we conclude that fi(M NI)C

M N Iy, whence U,lc_zlofk(M N I) € M N 1. This implies that

-1
H'MNI) = H" ( A 1))

k=0

~
|

1
H'(fi(M N 1))

~ >
- o

=Y d,(7)arnn
0

= zg,(%) H'(M N ). (1)

~
Il
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However, since / is strongly concave at 0, we have

()

14,1(;) = liminf\o %}Zm > 1. (2)
It now follows from (1) and (2) that H(M N I) equals 0 or infinity. (]
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