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Abstract. Let M be a subset of � with the following two invariance properties:
(1) M + k ⊆ M for all integers k, and (2) there exists a positive integer l ≥ 2 such that
1
l M ⊆ M. (For example, the set of Liouville numbers and the Besicovitch-Eggleston
set of non-normal numbers satisfy these conditions.) We prove that if h is a dimension
function that is strongly concave at 0, then the h-dimensional Hausdorff measure
Hh(M) of M equals 0 or infinity.
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1. Introduction and statement of results. A dimension function h is an increasing
function h : [0,∞) → [0,∞) with h(0) = 0. If h is a dimension function, we shall
denote the h-dimensional Hausdorff measure of a subset E of � by Hh(E); the reader
is referred to [5] for the definition of Hh(E). If t > 0 and h equals the power function
h(r) = rt, then we shall write Hh(E) = Ht(E). Recall that a dimension function h is
called an exact dimension function of a subset E of � if Hh(E) is positive and finite.
Finally, a subset E of � is called dimensionless if it does not have an exact dimension
function, i.e. if Hh(E) equals 0 or infinity for all dimension functions h.

In this paper we show that if a subset M of the real line satisfies two rather weak
invariance conditions shared by many naturally occurring sets (for example, the set of
Liouville numbers and the Besicovitch-Eggleston set of non-normal numbers satisfy
these invariance conditions), then the h-dimensional Hausdorff measure of M equals
0 or infinity for a large class of dimension functions h.

Observe that if a dimension function h is concave in a neighbourhood of 0, then

lim inf
r↘0

h(λr)
λh(r)

≥ 1

for all λ ∈ (0, 1). In this paper we consider dimension functions which satisfy a slightly
stronger condition. We shall say that a dimension function h is strongly concave at 0 if

lim inf
r↘0

h(λr)
λh(r)

> 1,

for all λ ∈ (0, 1). We shall now give some examples of dimension functions that are
strongly concave at 0.

(1) Power functions h(r) = rt with t ∈ (0, 1) are strongly concave at 0.
(2) Recall that a continuous function L : [0,∞) → [0,∞) with L(r) > 0 for all

r > 0 is called slowly varying if limr↘0
L(λr)
L(r) = 1 for all λ > 0. Functions of the form
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h(r) = rtL(r), where t ∈ (0, 1) and L : [0,∞) → [0,∞) is a slowly varying function, are
strongly concave at 0.

(3) The dimension function h defined by h(r) = 1
log 1

r
for r ∈ (0, 1) and h(0) = 0 is

strongly concave at 0.
We can now state the main result of this paper.

THEOREM 1. Let M be a subset of � satisfying the following two invariance
conditions:

(1) M + k ⊆ M, for all integers k;
(2) there exists a positive integer l ≥ 2 such that 1

l M ⊆ M.

Then Hh(M) = 0 or Hh(M) = ∞, for all dimension functions h that are strongly concave
at 0.

The proof of Theorem 1 is given in Section 2.

REMARK 1. If a subset M of � satisfies condition (1) in Theorem 1; i.e. if M + k ⊆
M for all integers k, then in fact M + k = M, for all integers k. Indeed, for all integers
k we have M = (M − k) + k ⊆ M + k since M − k ⊆ M.

REMARK 2. If a non-empty subset M of � satisfies conditions (1) and (2) in
Theorem 1, i.e. if M + k ⊆ M for all integers k and there exists a positive integer
l ≥ 2 such that 1

l M ⊆ M, then M is dense in �. Indeed, let x ∈ � and r > 0. Since
M is non-empty there exists t ∈ M. Next, choose integers p and q with q ≥ 1 such
that |x − p

lq | ≤ r
2 and |t|

lq ≤ r
2 . Then clearly p + t

lq ∈ 1
lq ( p + M ) ⊆ 1

lq M ⊆ 1
lq−1 M ⊆ . . . ⊆

M and |x − p + t
lq | ≤ |x − p

lq | + |t|
lq ≤ r

2 + r
2 = r. This shows that M is dense in �.

Many naturally occurring sets of numbers satisfy the conditions in Theorem 1. We
shall now consider two examples.

EXAMPLE. The Liouville numbers. Let � denote the set of Liouville numbers, i.e.

� =
{

x ∈ � \ �

∣∣∣∣ for all n ∈ � there exist integers p and q

with q > 1 such that

∣∣∣∣x − p
q

∣∣∣∣ <
1
qn

}
.

It is well known that the Hausdorff dimension of � is 0, cf. for example Oxtoby’s book
[6, Theorem 2.4] for a simple direct proof or [1, p. 69] for a proof based on Jarník’s
theorem. In particular, this implies that the t-dimensional Hausdorff measure Ht(�) of
� equals 0, for all t > 0. It is therefore natural to ask whether or not � is dimensionless. It
follows easily from the definition of the Liouville numbers that � + k ⊆ � and 1

k � ⊆ �,
for all non-zero integers k, and, by applying Theorem 1 to �, we obtain the following
result.

THEOREM 2. Let h be a dimension function that is strongly concave at 0. Then
Hh(�) = 0 or Hh(�) = ∞.

EXAMPLE. The Besicovitch-Eggleston set of non-normal numbers. Let N ≥ 2
be a fixed positive integer, and for x ∈ � let x = [x] + ∑∞

n=1
εn(x)
Nn , where [x] ∈ � and
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εn(x) ∈ {0, 1, . . . , N − 1}, denote the unique non-terminating N-adic expansion of x.
For each digit i ∈ {0, 1, . . . , N − 1}, we write

�i(x; n) = |{1 ≤ k ≤ n | εk(x) = i}|
n

;

so �i(x; n) denotes the frequency of the digit i among the first n digits in the N-adic
expansion of x. For a given probability vector p = (p0, p1, . . . , pN−1), the Besicovitch-
Eggleston set B(p) is defined by

B(p) = {x ∈ � | �i(x; n) → pi as n → ∞ for all i} .

Besicovitch [2] and Eggleston [4] computed the Hausdorff dimension, dim B(p), of B(p).
In fact, they proved that dim B(p) = −

∑
i pi log pi

log N ; the reader is referred to the textbook
[3, p. 142] for a contemporary proof of this result based on the ergodic theorem. It is
natural to ask whether or not the Besicovitch-Eggleston set B(p) is dimensionless.
Since clearly B(p) + k ⊆ B(p) for all integers k and 1

N B(p) ⊆ B(p), an application of
Theorem 1 gives the following result.

THEOREM 3. Let h be a dimension function that is strongly concave at 0. Then
Hh(B(p)) = 0 or Hh(B(p)) = ∞.

In fact, using the law of the iterated logarithm (rather than relying on the invariance
properties of the set B(p)), Smorodinsky [7] proved the following stronger version of
Theorem 3: Hh(B(p)) = 0 or Hh(B(p)) = ∞ for all concave dimension functions.

2. Proof of Theorem 1. We shall now prove Theorem 1. We first state and prove
an auxiliary result. For a dimension function h and a positive real number s write

dh(s) = lim inf
r↘0

h(sr)
h(r)

and

dh(s) = lim sup
r↘0

h(sr)
h(r)

.

PROPOSITION 4. Let h be a dimension function and let f : �n → �n be a similarity
with ratio equal to s > 0; i.e. | f (x) − f ( y)| = s|x − y|, for all x, y ∈ �n. Then

dh(s)Hh(E) ≤ Hh( f (E)) ≤ dh(s)Hh(E),

for all E ⊆ �n.

Proof. We write |B| for the diameter of a subset B of �n. For a positive real number
δ, we denote the δ approximative h-dimensional Hausdorff measure by Hh

δ ; the reader
is referred to [5] for the definition of Hh

δ .

Part 1. We first prove that Hh( f (E)) ≥ dh(s)Hh(E). Let ε > 0, and choose rε > 0
such that h(sr)

h(r) ≥ dh(s) − ε for all 0 < r < rε. Next, fix 0 < δ < rε, and let (Bi)i be an
sδ-cover of f (E). Since | f −1(Bi)| = 1

s |Bi|, we conclude that ( f −1(Bi))i is a δ-cover of E.
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Hence

∑
i

h(|Bi|) =
∑

i

h(|Bi|)
h
( 1

s |Bi|
)h(| f −1(Bi)|) ≥

∑
i

(dh(s) − ε) h(| f −1(Bi)|)

≥ (dh(s) − ε)Hh
δ (E).

This implies that Hh
sδ( f (E)) ≥ ( dh(s) − ε)Hh

δ (E) for all 0 < δ < rε. Letting first δ ↘ 0
and then letting ε ↘ 0 gives Hh( f (E)) ≥ dh(s)Hh(E).

Part 2. Next we prove that Hh( f (E)) ≤ dh(s)Hh(E). Let ε > 0, and choose rε > 0
such that h(sr)

h(r) ≤ dh(s) + ε for all 0 < r < rε. Next, fix 0 < δ < rε, and let (Bi)i be an
δ-cover of E. Since | f (Bi)| = s|Bi|, we conclude that ( f (Bi))i is an sδ-cover of f (E).
Hence

∑
i

h(|Bi|) =
∑

i

h(|Bi|)
h(s|Bi|)h(| f (Bi)|) ≥

∑
i

1

dh(s) + ε
h(| f (Bi)|)

≥ 1

dh(s) + ε
Hh

sδ( f (E)) .

This implies that (dh(s) + ε)Hh
δ (E) ≥ Hh

sδ( f (E)) for all 0 < δ < rε. Letting first δ ↘ 0
and then letting ε ↘ 0 gives Hh( f (E)) ≤ dh(s)Hh(E). �

We can now prove Theorem 1.

Proof of Theorem 1. It follows from the assumptions on M that M ∩ [0, 1) =
(M ∩ [k, k + 1)) − k, for all integers k, and Proposition 4 therefore implies that

Hh(M ∩ [0, 1)) = Hh(M ∩ [k, k + 1)).

Hence, it suffices to prove that Hh(M ∩ [0, 1)) equals 0 or infinity. Write I = [0, 1), and
for k = 0, 1, . . . , l − 1 put Ik = [ k

l ,
k + 1

l ). Also define maps fk : I → Ik by fk(x) = x + k
l .

Since M + k ⊆ M, for all integers k, and 1
l M ⊆ M, we conclude that fk(M ∩ I) ⊆

M ∩ Ik, whence ∪l−1
k=0 fk(M ∩ I) ⊆ M ∩ I . This implies that

Hh(M ∩ I) ≥ Hh

(
l−1⋃
k=0

fk(M ∩ I)

)

=
l−1∑
k=0

Hh( fk(M ∩ I))

≥
l−1∑
k=0

dh

(
1
l

)
Hh(M ∩ I)

= ldh

(
1
l

)
Hh(M ∩ I). (1)
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However, since h is strongly concave at 0, we have

ldh

( 1
l

) = lim infr↘0
h
(

1
l r
)

1
l h(r)

> 1 . (2)

It now follows from (1) and (2) that Hh(M ∩ I) equals 0 or infinity. �
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