LOCALLY FLAT VECTOR LATTICES

MARLOW ANDERSON

1. Preliminaries. Let G be a lattice-ordered group (*l*-group). If $X \subseteq G$, then let

 $X' = \{g \in G : |g| \land |x| = 0, \text{ for all } x \text{ in } X\}.$

Then X' is a convex *l*-subgroup of G called a *polar*. The set P(G) of all polars of G is a complete Boolean algebra with ' as complementation and set-theoretic intersection as meet. An *l*-subgroup H of G is *large* in G (G is an *essential extension* of H) if each non-zero convex *l*-subgroup of G has non-trivial intersection with H. If these *l*-groups are archimedean, it is enough to require that each non-zero polar of G meets H. This implies that the Boolean algebras of polars of G and H are isomorphic. If K is a cardinal summand of G, then K is a polar, and we write $G = K \bigoplus K'$.

A convex *l*-subgroup *P* of *G* is *prime* if $a \wedge b = 0$ implies that *a* or *b* is in *P*. The set of primes forms a root system; that is, the primes containing a given prime form a totally ordered set. Each prime contains at least one minimal prime. A prime *P* is minimal if and only if $a' \not\subseteq P$ whenever $a \in P$. A normal prime *P* is maximal if and only if G/P is \circ -isomorphic to a subgroup of the reals **R**.

We denote the lattice of convex *l*-subgroups of G by C(G). If $g \in G$, the smallest element of C(G) containing g is denoted by G(g). If H and K are in C(G), then $H \vee K$ denotes the smallest element of C(G) containing H and K.

For further information about l-groups, the reader may consult [4] or [2].

The topological notation and terminology of [6] will be used. All topological spaces referred to will be Tychonoff. If X is a topological space, C(X) denotes the vector lattice of continuous real-valued functions on X. For f in C(X), $Z(f) = \{x \in X: f(x) = 0\}$ and $\cos(f) = X - Z(f)$. Sometimes, to emphasize the space on which f is defined, we will write $\cos(f, X)$ instead. We denote by $\overline{1}$ the element of C(X) which is equal to 1 at all x in X. If f is in C(X) and A is a clopen subset of X, then f | Ais the continuous function f times the characteristic function of A. The Stone-Čech compactification of a space X is denoted by βX ; its Hewitt

Received November 7, 1978. Much of the material presented in this paper appeared in a preliminary form in my Ph.D. thesis, completed at the University of Kansas in 1977, under the direction of Dr. Paul F. Conrad.

realcompactification by νX . If $f: X \to K$ is continuous and K is compact (realcompact), $f^{\beta}: \beta X \to K$ ($f^{\nu}: \nu X \to K$) denotes its extension.

The Boolean algebras of regularly open and clopen subsets of a topological space X will be denoted by $\mathscr{R}(X)$ and $\mathscr{C}(X)$, respectively. A space X is extremally disconnected if $\mathscr{R}(X) = \mathscr{C}(X)$; it is strongly zero dimensional if $\mathscr{C}(X)$ is a base for open sets. The Boolean algebras P(C(X)) and $\mathscr{R}(X)$ are always isomorphic [1].

The following construction of the *projective cover*, or *absolute*, of a topological space X will prove useful (see [7]). Let EX be the set of all fixed open ultrafilters on X. For each open set U of X, let

$$\mathfrak{O}(U) = \{ p \in EX \colon U \in p \}.$$

If the set of such $\mathfrak{O}(U)$ is used as a base for open sets, EX becomes an extremally disconnected space. The map $\pi: EX \to X$ that takes each ultrafilter to the point of X to which it converges is continuous, and the map

 $\mathfrak{O}:\mathscr{R}(X)\to\mathscr{C}(EX)$

is a Boolean algebra isomorphism.

A section of EX is a subspace \bar{X} contained in EX such that $\bar{X} \cap \pi^{-1}(x)$ is a singleton, for each x in X; such a space is dense in EX. If Y represents X equipped with a finer topology so that Y is extremally disconnected and $\mathscr{C}(Y)$ and $\mathscr{R}(X)$ are isomorphic in the natural way, then Y is homeomorphic to a section of EX [8]. Consequently, an extremally disconnected space X admits no such space Y.

Several of the topological proofs in this paper require that discrete spaces be realcompact, which is true if the cardinality of the space is non-measurable; since all cardinals obtainable from \aleph_0 by the standard processes of cardinal arithmetic are nonmeasurable [6], it is not a serious restriction to posit the following.

Axiom. All cardinals are nonmeasurable.

2. Locally flat *l*-groups. An *l*-group is *hyperarchimedean* if each of its *l*-homomorphic images is archimedean. We state here for future reference a theorem listing several characterizations of such groups. This theorem is due to several authors, as discussed in [5]. In particular, condition (d) is due to Bigard.

THEOREM 2.1. Let G be an l-group. The following are equivalent:

- (a) G is hyperarchimedean.
- (b) Each prime subgroup of G is maximal and hence minimal.
- (c) $G = G(g) \bigoplus g'$, for all $g \in G$.
- (d) G can be represented as a group of real-valued functions on a topological space, with pointwise addition and order, such that,

(i) G separates points, and

(ii) the cozero set of each g in G is compact and open.

Condition (b) can be weakened in a natural way to define a somewhat larger class of *l*-groups, as follows. Call a prime subgroup of an *l*-group a *minimax* prime if it is both maximal and minimal. Then, for any *l*-group G, let M(G) be the set of all normal minimax primes of G. An *l*-group is *locally flat* if $\cap M(G) = 0$. The class of all locally flat *l*-groups is denoted by Φ .

THEOREM 2.2. Let G be an l-group. Then G is locally flat if and only if G can be embedded as a large l-subgroup of C(X), where $\{Z(f): f \in G\}$ is a clopen base for the closed sets of the topology.

Proof. (\Leftarrow) Let $\pi_x: G \to \mathbf{R}$ be defined by $\pi_x(g) = g(x)$, where $x \in X$, $g \in G$, and G has been identified with its *l*-isomorphic copy in C(X). Each such map is an *l*-homomorphism, and since $\pi_x(G) \subseteq \mathbf{R}$, its kernel P_x is either a maximal prime or G. Since G is embedded in C(X), $\bigcap \{P_x\} = 0$. If $0 < g \in P_x \subset G$, then $\cos g$ is closed and $x \notin \cos g$. Thus there exists Z(f) where $f \in G$ so that $Z(f) \supseteq \cos g$ and $x \notin Z(f)$. Without loss of generality we may assume that $f \in G$. Then $f \land g = 0$, while $0 \neq f(x) = \pi_x(f)$, and so $g' \nsubseteq P_x$. This shows that P_x is a minimal prime, and so $P_x \in M(G)$.

(⇒). Since G may be embedded into $\Pi\{G/P: P \in M(G)\}$, and each G/P is a subgroup of the real numbers (because P is a maximal prime), G is clearly archimedean. Any abelian *l*-group G admits a unique divisible hull G^d [4], and G^d is an *a*-extension of G (that is, the lattices C(G) and $C(G^d)$ are isomorphic) [3]. Consequently, if $G \in \Phi$, then $G^d \in \Phi$. Thus, we may assume that G is divisible.

Choose a maximal disjoint collection $\{g_{\gamma}\} \subseteq G^+$. Let

 $X = \{P \in M(G): g_{\gamma} \notin P, \text{ for some } \gamma\}.$

If $0 \leq h \in \bigcap X$, then $h \wedge g_{\gamma} \in \bigcap M(G) = 0$, and so by maximality h = 0; thus $\bigcap X = 0$. We henceforth will refer to elements of X as P_x or x, depending on context. Let

 $\operatorname{coz} g_{\gamma} = \{ x \in X \colon g_{\gamma} \notin P_x \}.$

Then $\{\operatorname{coz} g_{\gamma}\}_{\gamma}$ is a set-theoretic partition of *X*. Since for all $x \in X$, G/P_x is (isomorphic to) a subgroup of the real numbers and there exists a unique γ such that $g_{\gamma} \notin P_x$, we may choose an automorphism $r_x : \mathbf{R} \to \mathbf{R}$ so that $r_x \pi_x(g_{\gamma}) = 1$, if $g_{\gamma} \in P_x$, where π_x is the usual map, $\pi_x : G \to G/P_x$. Therefore, we have *l*-embedded *G* into $\Pi\{R_x : x \in X\}$, where $R_x \subseteq \mathbf{R}$, and each g_{γ} is (identified with) the characteristic function on $\operatorname{coz} g_{\gamma}$. We let $\{\operatorname{coz} g : g \in G\}$ be a base for open sets on *X*, where $\operatorname{coz} g = \{x \in X: g \in P_x\}$. Then Z(f) = Z(|f|) is open, for all $f \in G$, for if $x \in Z(f)$,

then $f \in P_x$ and thus there exists $g \in (f')^+ \setminus P_x$; consequently, $x \in \cos g$ and $\cos g \subseteq Z(f)$. (Furthermore, this topology is Hausdorff: given $x, y \in X$, choose $f \in P_x \setminus P_y$. Then $x \in Z(f)$, $y \in \cos(f)$, and both sets are open.)

Now let $f \in G$. We claim that f, considered as a function on X, is continuous. Since G is a group, we need only show that $f^{-1}(a, \infty)$ is open, for all $a \in \mathbf{R}$. But

$$f^{-1}(a, \infty) = \bigcup \{ f^{-1}(b, \infty) : a < b, b \in \mathbf{Q} \},\$$

and so we may assume that $a \in \mathbf{Q}$. We claim that

$$f^{-1}(a,\infty) = \bigcup \{ \cos((f - ag_{\gamma}) \lor 0) \cap \cos g_{\gamma} \}.$$

Since each cozero set is open, this would show that f is continuous. Suppose that $x \in f^{-1}(a, \infty)$. Then f(x) > a. Choose γ such that $g_{\gamma}(x) = 1$. Then

$$(f - ag_{\gamma})(x) = f(x) - a > 0,$$

and so $x \in coz((f - ag_{\gamma}) \lor 0) \cap coz g_{\gamma}$. Conversely, if there exists γ such that $x \in coz((f - ag_{\gamma}) \lor 0) \cap coz g_{\gamma}$, then

 $g_{\gamma}(x) = 1$ and $(f - ag_{\gamma})(x) > 0;$

that is, f(x) > a, and so $x \in f^{-1}(a, \infty)$.

If P is a polar of C(X), then P is the set of all functions which live on some regularly open set U of X [1]; consequently, it is clear that G is large in C(X).

We can now derive as a corollary a characterization of locally flat *l*-groups which generalizes Bigard's condition (d) of Theorem 2.1.

COROLLARY 2.3. G is a locally flat l-group if and only if G can be represented as a group of real-valued functions on a topological space, with pointwise addition and order, such that

(ii) the support of each g in G is clopen.

Proof. The implication (\Rightarrow) is clear from the theorem, and since the proof of (\Leftarrow) above does not use that each g in G is continuous, but only that coz g is clopen, the corollary is proved.

3. Locally flat vector lattices. Henceforth, we shall restrict our attention to locally flat vector lattices; that is, locally flat *l*-groups, which are also real vector spaces. The most important example of such may be defined as follows.

For a topological space X, we call f in C(X) locally flat if, for all x in X, there exists a neighborhood U of x so that f is constant on U. Now let

⁽i) G separates points, and

F(X) be the set of all locally flat elements of C(X). It is easily verified that F(X) is an *l*-subgroup of C(X). Furthermore, if X is strongly zero dimensional, then F(X) is a large *l*-subgroup of C(X), because it contains all real multiples of characteristic functions of clopen sets.

THEOREM 3.1. Let G be a vector lattice. Then G is locally flat if and only if G can be embedded as a large l-subgroup of F(X), where $\{Z(f): f \in G\}$ is a clopen base for the closed sets of the topology of X.

Proof. It is easy to see that in the embedding of Theorem 2.2, G is included in F(X).

In light of Theorem 3.1, it is natural to ask whether *l*-groups of the form F(X) play a role as "maximal" locally flat vector lattices. It is in order to answer this question that we make the following definitions.

A vector lattice H is a Φ -extension of the vector lattice G if we have

(1) G is large in H,

(2) G is locally flat, and

(3) for all P in M(G) there exists Q in M(H) such that $Q \cap G = P$. We say that a locally flat vector lattice is Φ -closed if it admits no proper Φ -extensions.

Note that if G is locally flat and H is a Φ -extension, then H is locally flat. Also, if G is a locally flat vector lattice with weak order unit e (that is, e' = 0), then the embedding of Theorem 3.1 can be chosen so that X = M(G) and e is mapped to $\overline{1}$; in this case F(M(G)) is a Φ -extension of G, or rather, of an *l*-isomorphic copy of G. We shall regularly make this sort of identification.

We shall first examine the algebraic and topological properties possessed by F(X) and M(F(X)).

PROPOSITION 3.2. Let X be a topological space. Then F(X) is l-isomorphic to a direct limit of products of reals.

Proof. Let $\Gamma(X)$ be the collection of all set-theoretic clopen partitions of X. For each α in $\Gamma(X)$ let

 $\Pi(\alpha) = \Pi\{\mathbf{R}_a: a \in \alpha\}.$

Define ρ_{α} : $\Pi(\alpha) \to F(X)$ by the following:

 $\rho_{\alpha}(- - r_a - -) = f,$

where $f(x) = r_{\alpha}$, if $x \in a$. Because α is a clopen partition, f is in F(X). Clearly ρ_{α} is an *l*-monomorphism. Now $\Gamma(X)$ is partially ordered by \gg , where $\alpha \gg \beta$ means that β refines α . If α and β are in $\Gamma(X)$, define $\alpha \cap \beta$ to be

$$\{a \cap b = : a \in \alpha \text{ and } b \in \beta\};$$

then $\alpha \cap \beta \in \Gamma(X)$, and $\Gamma(X)$ is lower-directed. If $\alpha \gg \beta$, define

$$\pi_{\alpha\beta} \colon \Pi(\alpha) \to \Pi(\beta) \text{ by}$$
$$\pi_{\alpha\beta}(f)(b) = f(a),$$

where $a \supseteq b$. This is clearly a well-defined *l*-monomorphism. But now

 $F(X) = \bigcup \{ \rho_{\alpha}(\Pi(\alpha)) \colon \alpha \in \Gamma(X) \},\$

because if f is in F(X), then

 $\{f^{-1}(r): r \in \operatorname{Range}(f)\}$

is a clopen partition of X.

Let X be a strongly zero dimensional space. A filter \Im on $\mathscr{C}(X)$ has the *countable intersection property* (CIP) if each countable subset of has nonvoid intersection. Such a filter has the *partition-meeting property* (PMP) if each clopen set-theoretic partition of X has nonvoid intersection with \Im . Let

 $mX = \{ p \in \beta X : \text{ there is a filter } \Im \text{ on } \mathscr{C}(X) \text{ such that } \Im \text{ has} \\ \text{CIP and PMP and } \Im \to p \}.$

THEOREM 3.3. Let X be a strongly zero dimensional space. Then there is a one-to-one correspondence between M(F(X)) and mX. (This theorem and subsequent results depend on the axiom mentioned in Section 1).

Proof. For P in M(F(X)), let \mathfrak{F} be $\{Z(f): f \in P\}$. If f and g are in P, then

 $Z(f) \cap Z(g) = Z(|f| \vee |g|),$

and so is in \mathfrak{J} . Let K be a clopen set containing Z(f), where f is in P. Because P is minimal, there exists g in $f' \setminus P$. But then

 $|g| \wedge \overline{1}|(X \setminus K) = 0$

and so $\overline{1}|(X \setminus K)$ is in P and K is in \mathfrak{F} . Therefore \mathfrak{F} is a filter on $\mathscr{C}(X)$.

To show that \mathfrak{F} has CIP, suppose that $\bigcap_{i=1}^{\infty} Z(f_i) = \emptyset$, where we may assume that $Z(f_i)$ contains $Z(f_{i+1})$. Let

 $A_0 = X \setminus Z(f_1)$, and $A_i = Z(f_i) \setminus Z(f_{i+1})$.

Then $\{A_i\}$ is a clopen partition of X and so if we define f by setting $f(A_i) = i$, then f is in F(X). But $Z(f) = X \setminus Z(f_1)$ and so $f \notin P$. But

 $P + f \gg P + \bar{1},$

which contradicts the fact that P is a maximal prime.

Finally, we show that \Im has PMP. Suppose that α is a clopen partition of X, and let II be $\rho_{\alpha}(\Pi(\alpha))$, with notation as in the proof of 3.2. Then $P \cap \Pi$ is a proper maximal prime of II. Because the discrete space α is

realcompact,

 $P \cap \Pi = \{ f \in \Pi : f \mid a = 0, \text{ some fixed } a \in \alpha \}.$

Thus, $\overline{1}|(X \setminus a)$ is in $P \cap \Pi$ and so $a \in \mathfrak{J}$.

On the other hand, suppose that p is in mX, and let

 $P = \{ f \in F(X) : f^{\beta}(p) = 0 \},\$

where $f^{\beta}:\beta X \to \mathbf{R} \cup \{\infty\}$ is the unique extension of f. Because $p \in \nu X$, P is a maximal prime. To show that P is a minimal prime, suppose that f is in P, and let

$$\alpha = \{ f^{-1}(r) \colon r \in \text{Range}(f) \}.$$

Then $a \in \mathfrak{J}$, for some a in α , and so p is in $cl_{\beta X} a$. But because f is constant on a and $f^{\beta}(p) = 0$, this means that f | a = 0. But then $\overline{1} | a$ is in $f' \setminus p$ and so P is a minimal prime.

Note. It is clear that the topology on M(F(X)) induced by F(X) is contained in the topology it inherits from βX . The latter topology, however, may be finer (see Example 4.2).

COROLLARY 3.4. Let X be an extremally disconnected space. Then M(F(X)) is homeomorphic to νX , and so F(X) and F(M(F(X))) are *l*-isomorphic.

Proof. Because νX consists of the z-ultrafilters on X with CIP [6], it is clear that mX is contained in νX . Suppose that there exists p in $\nu X \setminus mX$. Then the clopen ultrafilter \mathfrak{F} which converges to p does not have PMP. So, we can choose a clopen partition α which is disjoint from \mathfrak{F} . Let \mathfrak{l} be the set of all families \mathfrak{T} of α such that p is in $\operatorname{cl}_{\nu X} \cup \mathfrak{T}$. Because the discrete space α is realcompact, \mathfrak{l} has a countable subset $\{\mathfrak{D}_i\}$ such that $\cap \mathfrak{D}_i = \emptyset$, where without loss of generality $\mathfrak{D}_i \supset \mathfrak{D}_{i+1}$. If we let $A_0 = X \setminus \mathfrak{D}_1$ and $A_i = \mathfrak{D}_i \setminus \mathfrak{D}_{i+1}$ and define f as in the proof of Theorem 3.3, we obtain an element of F(X). But there exists an extension f^{ν} : $\nu X \to \mathbf{R}$, which is impossible, because $f^{\nu}(p)$ cannot be finite. Thus, \mathfrak{F} has PMP. Now, we may identify νX and M(F(X)) as sets; then νX and M(F(X)) are extremally disconnected spaces with the same Boolean algebra of clopen sets, and are thus homeomorphic.

We can now characterize vector lattices of the form F(X), where X is an extremally disconnected space. In order to do this we make use of the absolute introduced in Section 1.

THEOREM 3.5. Let G be a vector lattice with weak order unit. Then G is Φ -closed if and only if G is l-isomorphic to F(X), where X is an extremally disconnected space.

Proof. (\Rightarrow) Let G be Φ -closed, with weak order unit e. Consider the *l*-embedding $G \rightarrow F(M(G))$ which takes e to $\overline{1}$, given by 3.1, and the

l-embedding $F(M(G)) \to F(EM(G))$ given by $f \to f \circ \pi$. The composition of these maps makes F(EM(G)) a Φ -extension of G, and so G is *l*-isomorphic to F(EM(G)).

 (\Leftarrow) . Let X be an extremally disconnected space, and suppose that H is a Φ -extension of F(X). We may assume that X is in a one-to-one correspondence with M(F(X)), because of Theorem 3.4. Choose \bar{X} , a dense subspace of M(H), so that for each x in X, there is a unique \bar{x} in \bar{X} such that,

$$\bar{x} \cap F(X) = \{ f \in F(X) : f(x) = 0 \}.$$

Now *l*-embed *H* into $F(\bar{X})$, so that $\bar{1}$ is mapped to $\bar{1}$. We may identify *X* and \bar{X} set-theoretically; but then they are extremally disconnected spaces with the same clopen sets, and so identical topologically. Thus, F(X) is *l*-isomorphic to *H*.

We see from the proof of Theorem 3.5 that each locally flat vector lattice G with weak order unit admits a Φ -closed Φ -extension F((EM(G))). However, Φ closed Φ -extensions need not be unique (see Example 4.3). In order to identify F(EM(G)) algebraically, we need to consider more restrictive classes of extensions.

If H is a Φ extension of the locally flat vector lattice G and, for each P in M(H), $P \cap G$ is in M(G), we say that H is a strong Φ -extension of G.

Unfortunately, if G is a locally flat vector lattice with weak order unit, F(M(G)) need not be a strong Φ -extension of G (see Example 4.1). We consequently define $M^2(G)$ to be the set of all primes of G of the form $Q \cap G$, where Q is in M(F(M(G))). Then a Φ -extension H of G is called an *intermediate* Φ -extension if, for each P in M(H), $P \cap G$ is in $M^2(G)$. Clearly F(M(G)) is such an extension. We will now identify $M^2(G)$ algebraically.

Let G be a locally flat vector lattice. A polar K of G is a Φ -summand if

 $K \vee K' \not\subseteq P$,

for all minimax primes P. The following proposition, which is easy to prove, identifies Φ -summands as coming from cardinal summands of F(M(G)):

PROPOSITION 3.6. For a locally flat vector lattice G with weak order unit, the following are equivalent:

- (a) K is a Φ -summand of G.
- (b) K^{**} is a cardinal summand of F(M(G)) (where * is the polar operation for F(M(G))).
- (c) $\{P \in M(G): K \not\subseteq P\}$ is a clopen subset of M(G).

Note. If M is a collection of primes of an arbitrary *l*-group and $\bigcap M = 0$, then it is clearly possible to define *M*-summand in an analogous way. In particular, if M is the set of all primes (or all minimal

primes), then an M-summand is just a cardinal summand. For further discussion of this case, see [9].

PROPOSITION 3.7. Let G be a locally flat vector lattice with weak order unit. Then $M^2(G)$ is the set of maximal primes P of G such that if $\{K_{\alpha}\}$ is a partition of P(G) consisting of Φ -summands, then K_{α} is not contained in P, for some α . Furthermore, if $M^2(G)$ is equipped with the topology induced by G, then $F(M^2(G))$ and F(M(G)) are l-isomorphic.

Proof. Suppose that F is a minimax prime of F(M(G)). Then $\overline{1} \in G \setminus Q$ and so $Q \cap G$ is a proper maximal prime of G. If $\{K_{\alpha}\}$ is a partition of Φ -summands and $K_{\alpha} \subseteq P$ for all α , then $K_{\alpha}' \not\subseteq P$, for all α . But then $K_{\alpha}^{**} \subseteq Q$. Let

 $\Pi = \{ f \in F(M(G)) : f \mid \operatorname{coz} K_{\alpha} \text{ is constant for all } \alpha \},\$

an *l*-subgroup of F(M(G)) isomorphic to a product of reals. Because $Q \cap \Pi$ is a maximal prime of Π ,

 $Q \cap \Pi = \{ f \in \Pi : f \mid \text{coz } K_{\alpha} = 0, \text{ some fixed } \alpha \},\$

which is a contradiction. Therefore, $Q \cap G$ is as required.

On the other hand, suppose that P is a maximal prime of G so that if $\{K_{\alpha}\}$ is a partition of Φ -summands, then some $K_{\alpha} \not\subseteq P$. Let Q be a maximal prime of C(M(G)) such that $Q \cap G = P$. Then,

$$Q \cap F(M(G)) = \{ f \in F(M(G)) : f^{\nu}(p) = 0 \}$$

for some fixed p in $\nu M(G)$. But if α is a clopen partition of M(G), then $\{K \in P(G): \operatorname{coz} K \in \alpha\}$ is a partition of Φ -summands and so some such K is not contained in P. That is, $\operatorname{coz} K \in p$. Thus, by Theorem 3.3, Q is in M(F(M(G))).

Because M(G) is a dense subspace of $M^2(G)$, we have the natural *l*-embedding $F(M^2(G)) \rightarrow F(M(G))$. If α is a clopen partition of M(G), and $a \in \alpha$, let

 $K_a = \{ f \in G: \operatorname{coz} f \subseteq a \}.$

Then $\{K_a\}$ is a partition of Φ -summands and so if P is in $M^2(G)$, then some K_a is not contained in P. Thus, $\{coz(K_a, M^2(G))\}$ is a clopen partition of $M^2(G)$. This means that the *l*-embedding above is onto.

PROPOSITION 3.8. Let X be a strongly zero dimensional space. Then F(EX) is a strong Φ -extension of F(X).

Proof. We here identify F(X) with its image under the *l*-embedding $f \rightarrow f \circ \pi$. Let *P* be a minimax prime of F(X). The proof of 3.3 shows that

$$P = \{ f \in F(X) : f^{\nu}(p) = 0 \},\$$

for some p in vX. If we consider π as a map from EX into vX, then we

have the map $\pi^{\nu}: \nu EX \to \nu X$. Choose r in $(\pi^{\nu})^{-1}(p)$. Then r is in νEX , which is homeomorphic to M(F(EX)), because EX is extremally disconnected. Thus, $\{f \in F(\nu EX): f(r) = 0\}$ is a minimax prime of F(EX) which cuts down to P, and so F(EX) is a Φ -extension of F(X).

Now, suppose Q is a minimax prime of F(EX). Then Q corresponds to a clopen ultrafilter \mathscr{G} on EX with CIP and PMP. Let \mathfrak{F} be $\pi(\mathscr{G}) \cap \mathscr{C}(X)$. It is easy to check that \mathfrak{F} is a clopen ultrafilter on X with CIP and PMP, which corresponds to the minimax prime $Q \cap F(X)$. Thus, F(EX) is a strong Φ -extension of F(X).

THEOREM 3.9. Let G be a locally flat vector lattice with weak order unit. Then F(EM(G)) is the unique minimal Φ -closed intermediate Φ -extension of G.

Proof. It is clear that F(EM(G)) is a Φ -closed intermediate Φ -extension of G, because F(EM(G)) is a strong Φ -extension of F(M(G)). Suppose then that F(X) is a Φ -closed intermediate Φ -extension of G. We may assume that the same weak order unit e of G is mapped to $\overline{1}$ in both F(X) and F(EM(G)). We may also assume that each minimax prime of F(X) is the form P_x , where

$$P_x = \{ f \in F(X) : f(x) = 0 \}.$$

Define $\tau: X \to M^2(G)$ by $\tau(x) = P_x \cap G$. Let g be in G; then

 $\tau^{-1}(\operatorname{coz}(g, M^2(G))) = \operatorname{coz}(g, X),$

and so τ is continuous. We then define

$$\tau^* \colon F(M^2(G)) \to F(X)$$

by $\tau^*(g) = g \circ \tau$. This is an *l*-monomorphism which makes the following diagram commute:

We now show that F(EM(G)) can be *l*-embedded into F(X). We do this by showing that each set-theoretic clopen partition of $\nu EM(G)$ induces one on *X*, in a way that preserves the elements of *G*. Note that we may define a continuous map

$$\pi: \nu EM(G) \to M^2(G)$$

in the same way that we defined τ . (This map is called π because $\pi | EM(G)$ is the usual map from EM(G) to M(G)). If α is a clopen set-theoretic partition of $\nu EM(G)$, then {Int cl $a: a \in \alpha$ } is a maximal disjoint collection of regularly open subsets of $M^2(G)$, whose closures cover $M^2(G)$.

But then $\{\tau^{-1}(\text{Int cl } a)\}\$ is a clopen set-theoretic partition of X. Consequently, we may *l*-embed F(EM(G)) into F(X) in a way which preserves the elements of G. If F(X) were another minimal Φ -closed intermediate Φ -extension, then we could in turn *l*-embed F(X) into F(EM(G)); the composition of these maps would be the identity. Thus F(EM(G)) is the unique minimal Φ -closed intermediate Φ -extension of G.

It is also possible to identify certain maximal Φ -closed Φ -extensions, in the following sense. A Φ -extension H of a locally flat vector lattice Gwith weak order unit is a Φ -closure of G if whenever $G \subseteq H \subseteq K$, and K is a Φ -extension of G, then H = K. It is of course clear that a Φ closure is Φ -closed.

THEOREM 3.10. Let G be a locally flat vector lattice with weak order unit. Then G has Φ -closures, and each is of the form F(X), where X is a section of EM(G).

Proof. If X is a section of EM(G), then the *l*-embedding $f \to f | X$ of F(EM(G)) into F(X) clearly makes F(X) a Φ -extension of G. If $F(X) \subseteq K$, a Φ -extension of G, then we choose $\overline{X} \subseteq M(K)$, so that X and \overline{X} are in a one-to-one correspondence. Then we can *l*-embed K into $F(\overline{X})$. But X and \overline{X} are both extremally disconnected and so homeomorphic; thus K = F(X).

Suppose now that H is a Φ -closure of G. Then we may assume that H is of the form F(Y), where Y is extremally disconnected and realcompact. For each P in M(G), choose y in Y so that $P_y \cap G = P$. Then the set X of such y is a dense subspace of Y, and so there exists the *l*-embedding of F(Y) into F(X) taking f to f | X. Now F(X) is a Φ -extension of G, and so F(Y) is *l*-isomorphic to F(X). But X is homeomorphic to a section of EM(G) [8].

4. Examples, remarks and open questions.

4.1. A locally flat vector lattice G where F(M(G)) is not a strong Φ -extension of G.

Let W be the topological space consisting of all countable ordinals, and let W^* be $W \cup \{\omega_1\}$, where ω_1 is the first uncountable ordinal. Then

$$W^* = \beta W = \nu W.$$

Define X to be the topological sum of countably many copies W_i of W. If x is the point ω_1 in W_1 , and $P = \{f \in F(X) : f(x) = 0\}$, then P is a minimax prime of F(X). Let

$$\Sigma = \left(\sum_{i=1}^{\infty} F(W_i)\right) \cap P,$$

https://doi.org/10.4153/CJM-1980-070-9 Published online by Cambridge University Press

a convex *l*-subgroup of F(X). Define the element *h* of F(X) by the following:

$$h|W_n = 0$$
 if *n* is odd;
 $h|W_n = 1/n$ if *n* is even.

Let G be $\Sigma \oplus \mathbb{R}\overline{1} \oplus \mathbb{R}h$, a large *l*-subgroup of F(X). Note that $P \cap G$ is not a minimax prime of G because $h \in P \cap G$, while $h' \subseteq P$. Thus, there is a one-to-one correspondence between M(G) and $X \setminus \{x\}$. However,

$$F(X) = F(X \setminus \{x\}) = F(M(G)),$$

and so $P \cap G$ is in $M^2(G)$.

4.2. A strongly zero-dimensional space X where the topology on M(F(X)) induced by F(X) is coarser than the topology it inherits from νX .

In problems 16M, 16N, and 16P of [6], the topological spaces Δ_1 and Δ are defined so that

 $\Delta_1 \subset \Delta \subset W^* \times [0, 1].$

They show that Δ_1 has a clopen base, but $\Delta_1 \cup \{p\}$ does not, for any p in $\Delta \setminus \Delta_1$. Furthermore, Δ_1 is *C*-embedded in Δ . If p is chosen in $\{\omega_1\} \times \{\text{irrationals}\}$ it is easy to check that

 $F(\Delta_1) = F(\Delta_1 \cup \{p\}).$

But $\Delta_1 \cup \{p\}$ given the subspace topology from $M(F(\Delta_1))$ has a clopen base, and so the topology on $\Delta_1 \cup \{p\}$ from $\nu \Delta_1$ must be finer.

4.3. A locally flat vector lattice G with distinct Φ -closed Φ -extensions H and K. Also, H is contained in K, and so K is not a Φ -extension of H.

Let G be $F(\beta \mathbf{Q})$, where \mathbf{Q} is the space of rationals. Then let H be $F(E\beta \mathbf{Q})$, clearly a proper Φ -closed Φ -extension of G. Now $E\beta \mathbf{Q}$ is compact, and so each clopen partition of it is finite. However, it is easy to choose a section Y of $E\beta \mathbf{Q}$ which has an infinite clopen partition, and so K = F(Y) is a Φ -closed Φ -extension of G so that $K \supset H$.

4.4. In Theorem 5.3 of [9], Šik in effect claims that if X is an extremally disconnected space, then C(X) is locally flat. However, it can be shown that C(X) is locally flat if and only if νX contains a dense subset of *P*-points (a point at which every continuous function is locally flat). If X has nonmeasurable cardinality, however, an extremally disconnected space has no *P*-points (see exercise 12 H in [6]).

4.5. Suppose that G is an arbitrary l-group, and the intersection of the collection of all (not necessarily normal) minimax primes is zero. Is G

locally flat? The answer is of course yes if this condition implies representability.

4.6. Is Theorem 3.1 true if we don't assume that G is a vector lattice? In other words, if G is a locally flat l-group, is the minimal vector lattice which contains G locally flat? If the answer is yes, all of the theory of Section 3 applies to locally flat l-groups.

4.7. How much of the theory of Section 3 can be extended to locally flat vector lattices without weak order unit?

4.8. The class of locally flat *l*-groups is closed under taking convex *l*-subgroups, but not under taking *l*-subgroups. Is it closed under taking large *l*-subgroups?

4.9. Does a locally flat vector lattice with weak order unit admit distinct Φ -closures? For an example it is only necessary to obtain a strongly zero dimensional space X and sections Y and Z of EX so that F(Y) and F(Z) are not *l*-isomorphic.

References

- 1. M. Anderson, The essential closure of C(X), Proc. AMS 76 (1979), 8-10.
- 2. A. Bigard, K. Keimel and S. Wolfenstein, *Groupes et anneaux réticulés* (Springer-Verlag, Berlin, 1977).
- P. Conrad, Archimedean extensions of lattice-ordered groups, J. Indian Math. Soc. 30 (1966), 131–160.
- 4. ———Lattice-ordered groups, Tulane Lecture Notes (1970).
- 5. Epi-archimedean groups, Czech. Math. J. 24 (1974), 192-218.
- L. Gillman and M. Jerison, *Rings of continuous functions* (Van Nostrand Reinhold, New York, 1960).
- S. Iliadis and S. Fomin, The method of centred systems in the theory of topological spaces, Uspekhi Mat. Nank 21 (1966), 47–76. English translation: Russian Math. Surveys 21 (1966), 37–62.
- J. Porter and R. G. Woods, Minimal extremally disconnected Hausdorff spaces, Gen. Top. and Appl. 8 (1978), 9-26.
- F. Šik, Closed and open sets in topologies induced by lattice ordered vector groups, Czech. Math. J. 23 (1973), 139-150.

Purdue University at Fort Wayne, Fort Wayne, Indiana