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1. Introduction. In any first course on representation theory, the students will
become familiar with the representations of the algebraic group GL2(�), or with those
of some close relation of this group. It is therefore surprising that over a century after the
birth of group representation theory, anything remains to be said about GL2. However,
development in the modular theory has been much slower than in characteristic zero
and even in the smallest cases no full understanding has yet been reached. In this
paper, we wish to pursuade the reader that there is structure underlying the rational
representation theory of GL2 over a field of positive characteristics, as simple as the
structure appearing in characteristic zero, although quite different in nature.

Of course, even in positive characteristic, the usual first questions about GL2-
modules were answered long ago: irreducibles are parametrised by elements of the
dominant region of the weight lattice, and have realisations as tensor products of
Frobenius twists of socles of symmetric powers of the natural representation in small
degrees, and powers of the determinant representation. However, the situation is more
delicate than implied by these easy truths. There are homological interactions between
irreducible modules, and for a deeper understanding one ought to contemplate the
manner in which these interactions occur. This is the concern of our paper.

We shall be more precise. Let A be an algebra with a self-dual bimodule T . Let B be
the algebra whose category of ungraded representations is equivalent to the category
of graded representations of the trivial extension algebra of A by T . Let C be the trivial
extension algebra of B by its dual. Modulo the infinite dimensionality of C, we have a
map

C � {algebras with a self-dual bimodule},

which takes an algebra A, with an A-A bimodule T , such that ATA ∼= AT∗
A, to a

symmetric algebra C. The self-dual bimodule corresponding to C is the regular
bimodule CCC .
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For every n ∈ �, there is a localisation

Cn � {algebras with a self-dual bimodule}
of C. There is a canonical epimorphism

A � Cn(A).

Taking the inverse limit of the sequence

A � Cn(A) � Cn(Cn(A)) � Cn(Cn(Cn(A))) � . . . ,

we obtain an algebra C←−n(A). Taking the union of the corresponding sequence of fully
faithful embeddings of categories of finite dimensional modules

A → Cn(A) -mod ↪→ Cn(Cn(A)) -mod ↪→ Cn(Cn(Cn(A))) -mod ↪→ . . . ,

gives us a module category that we denote C←−n(A) -mod.
Let S(2) = ⊕

r≥0 S(2, r) be the Schur algebra associated to GL2, defined over an
algebraically closed field F of characteristic p > 0 [5]. There is a sequence of natural
surjections

S(2, r) � S(2, r + 2) � S(2, r + 4) � S(2, r + 6) � . . .

Let S(2, r) be the inverse limit of this directed sequence of algebra epimorphisms, and
S(2, r) -mod be the category of modules over this algebra, which are finite dimensional
modules for some S(2, r + 2x). The category of rational representations of GL2(F) is
equivalent to the direct sum of categories

⊕
r∈� S(2, r) -mod.

In the sequel, we define a certain filtration on S(2, r), refining the radical filtration,
and denote by G(2, r) the graded ring associated to this filtration. There is a compatible
sequence of surjections

G(2, r) � G(2, r + 2) � G(2, r + 4) � G(2, r + 6) � . . .

Let G(2, r) be the inverse limit of this directed sequence of algebra epimorphisms, and
G(2, r) -mod be the category of modules over this algebra, which are finite dimensional
modules for some G(2, r + 2x). Our main result is the following:

THEOREM 1. Every block of G(2, r) -mod is equivalent to C←−p(F) -mod.

Our proof of Theorem 1 is inductive. We apply the results of Erdmann, Henke
and Koenig concerning S(2, r) ([4, 7]) to prove that certain Ringel self-dual blocks of
G(2, r) are equivalent to Cd

p (F), for some d. Since every block of G(2, r) is a quotient of
such a Ringel self-dual block, the theorem follows.

In fact, we prove a rather stronger statement. Let S be a Ringel self-dual Schur
algebra S(2, r). We demonstrate the existence of a filtration by ideals,

S ⊃ N ⊃ N 2 ⊃ 0,

whose associated graded ring is Morita equivalent to Ca(A) ⊕ F⊕m, where A is a smaller
Ringel self-dual Schur algebra S(2, s), 2 ≤ a ≤ p, and m is some multiplicity.

In an earlier chapter, we give careful definitions of B, C and Cp, and prove that
under favourable conditions they respect the quasi-heredity condition.
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This is all very pleasing, but more is true. In fact S(2, r) ∼= G(2, r), for all r, and
therefore S(2, r) ∼= G(2, r). In other words, the following is true.

THEOREM 2. Every block of rational representations of GL2(F) is equivalent to
C←−p(F) -mod.

Theorem 2 is proved in a sequel to this paper [9].

2. Setup. Throughout this paper, F will be a field and A an F-algebra. Let J (A)
denote the Jacobson radical of A.

We suppose that A is a locally finite dimensional algebra. In other words,
there exists a set �, indexing a set of orthogonal idempotents {eλ}λ∈�, such that
A ∼= ⊕

λ,μ∈� eλAeμ, and Aeλ and eλA are finite dimensional. We assume that A/J (A) =⊕
λ∈� Mλ is a direct sum of matrix rings Mλ over F , where eλ is the unit of Mλ. Thus,

� is an indexing set for isomorphism classes of simple A-modules. By the idempotent
decomposition, simple modules have projective covers and injective hulls, providing 1–
1-correspondences between isomorphism classes of simples, projectives and injectives.

We denote by A -mod the category of finite dimensional left A-modules M such
that M = ⊕λeλM, and by mod- A the category of finite dimensional right A-modules
M such that M = ⊕λMeλ. Given a finite dimensional left/right module M, we write the
dual of M as M∗ = HomF (M, F), a right/left module. We write A -proj for the category
of finite dimensional projective left A-modules. Given a collection X ⊂ A -mod, we
denote by F(X) the category of modules filtered by objects in X .

Now let � be a poset which is interval-finite (i.e. for every μ ≤ λ ∈ � the set
{ν|μ ≤ ν ≤ λ} is finite).

Recall that mod- A is the highest weight category in the sense of Cline, Parshall and
Scott [1] if, for every λ ∈ � there exists an irreducible right module Lr(λ), a costandard
right module ∇r(λ), which embeds into the injective hull Ir(λ) of Lr(λ), such that the
cokernel of this inclusion is filtered by ∇r(μ) for μ > λ, and ∇r(λ)/ soc ∇r(λ) consists
of composition factors Lr(ν) for ν < λ. Dualizing with respect to F , we find this is
equivalent to the corresponding projective indecomposable left modules P(λ) ∈ A -mod
having standard filtrations. So, for every λ ∈ � there exists a standard module �(λ)
and an epimorphism P(λ) � �(λ), the kernel of which is filtered by modules �(μ) for
μ > λ, and the kernel of the map �(λ) � Ll(λ) consists of composition factors of the
form L(ν) for ν < λ.

Let J ⊂ � be a non-empty finitely generated ideal. The subcategory mod- A[J]
of objects, which only have composition factors L(ν) for ν ∈ J is the highest weight
category, whenever mod- A is the highest weight category ([1], Theorem 3.5). Let
AJ = A/

∑
λ/∈J AeλA. Then AJ is a locally finite dimensional algebra and mod- A[J] ∼=

mod- AJ .
Let I ⊂ � be a non-empty finitely generated coideal and define AI := ⊕

λ,μ∈I
eλAeμ.

LEMMA 3. If mod- A is the highest weight category, then mod- AI is the highest
weight category.

Proof. We construct �-filtrations of projectives in AI -mod. Projectives in
AI -mod are of the form PAI (λ) := HomA(

⊕
μ∈I

Aeμ, PA(λ)). We define �AI (λ) :=
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HomA(
⊕
μ∈I

Aeμ,�A(λ)). Since HomA(
⊕
μ∈I

Aeμ,−) is exact, we obtain a filtration of PAI (λ)

respecting the necessary conditions on orders. �
Let us define AJ

I := (AJ)I∩J .
If I ∩ J is finite, then AJ

I is a finite dimensional quasi-hereditary algebra, whenever
mod- A is the highest weight category ([1], Theorem 3.5).

PROPOSITION 4. mod- A is the highest weight category if and only if AJ
I is quasi-

hereditary for all finitely generated coideals I and finitely generated ideals J such that
I ∩ J is finite.

Proof. As noted above, the ‘only if ’ statement is well known [1]. So, suppose AJ
I

is quasi-hereditary for all suitable I and J. By a standard argument of Dlab [2], the
existence of the highest weight structure on mod- A is equivalent to the surjective
multiplication map

Aeλ∑
μ>λ AeμAeλ

⊗F
eλA∑

μ>λ eλAeμA
−→

∑
μ≥λ AeμA∑
μ>λ AeμA

,

being an isomorphism, for all λ ∈ �. But this can be checked on arbitrarily large finite
truncations of � containing λ. �

COROLLARY 5. For a locally finite-dimensional algebra A, A -mod is a highest weight
category if and only if mod- A is a highest weight category.

Proof. Follows immediately from Proposition 4 and the same statement for finite-
dimensional algebras ([10], Section 4.3(b)). �

DEFINITION 6. A locally finite-dimensional algebra A is quasi-hereditary if A -mod
and mod- A are the highest weight categories.

Note that by Corollary 5, we can now move freely between left and right
modules, and standard and costandard filtrations and we have the usual duality
relations between standard modules on one side and costandard modules on the other:
�r(λ) ∼= ∇(λ)∗,∇r(λ) ∼= �(λ)∗.

For the rest of this chapter, let A be a locally finite-dimensional quasi-hereditary
algebra with poset � of weights, left standard modules �(λ), left costandard modules
∇(λ), right standard modules �r(λ) and right costandard modules ∇r(λ). The
remaining propositions in this chapter are all proved by cutting down to a suitable finite-
dimensional subquotient and applying Ringel’s tilting theory for finite-dimensional
quasi-hereditary algebras there [11]. We therefore omit the proofs.

DEFINITION 7. T ∈ A -mod is called tilting if it is filtered by standard and
costandard modules.

PROPOSITION 8. There is a one-to-one correspondence between � and the set of
indecomposable tilting modules in A -mod.

We denote by T(λ) the unique indecomposable tilting module such that [T(λ) :
L(λ)] = 1, and [T(λ) : L(μ)] �= 0 implies μ ≤ λ.

DEFINITION 9. We say that A′ is Ringel dual to A if there exist multiplicities
nλ ∈ �≥1, such that A′ ∼= End(T)op, where T = ⊕

λ∈� T(λ)nλ .
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If A, A′ are Ringel dual, then T = ⊕
λ∈� T(λ)nλ is an A-A′ bimodule. In these

circumstances, we call it a tilting bimodule.
For any subset � of � let �′ equal � as a set, but with the opposite order. Thus,

for an ideal J ⊆ � we obtain a coideal J ′ ⊆ �′, for a coideal I ⊆ � we obtain an ideal
I ′ ⊆ �′.

PROPOSITION 10. A′ is quasi-hereditary with poset �′.

PROPOSITION 11. A′′ ∼= A.

PROPOSITION 12.
(i) (AJ)′ ∼= A′

J ′ .
(ii) (AI )′ ∼= (A′)I ′

.

3. Algebraic constructions. Throughout this chapter A will be a finite-
dimensional algebra, endowed with an A-A-bimodule T . We also assume T is faithful,
meaning it is faithful as a left A-module.

Define B0 := ⊕
i∈�

Ai, where Ai ∼= A for all i ∈ �. Then B0 is a locally finite

dimensional algebra. We define B1 := ⊕
i∈�

iTi+1 as a B0, B0-bimodule, where each iTi+1

is isomorphic to T but with action of Ai on the left and of Ai+1 on the right.
Let B be the trivial extension of B0 by B1; we can think of this as a matrix

B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . . i−2Ti−1 0 · · ·
0 Ai−1 i−1Ti 0 · · ·

· · · 0 Ai iTi+1 0 · · ·
· · · 0 Ai+1 i+1Ti+2 0

Ai+2
. . .

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where the Ai is on the leading diagonal. The algebra B is locally finite dimensional. Let
ei = 1Ai . Let

B∗ =
⊕
i∈�

HomF (Bei, F),

a B-B-bimodule. Let C be the trivial extension of B by B∗. Then C is a locally finite
dimensional algebra. As a trivial extension of an algebra by its dual, C is a symmetric
algebra, thanks to a canonical isomorphism C ∼= C∗ of C-C-bimodules, where C∗ =⊕

i∈� HomF (Cei, F); this isomorphism identifies B∗ with B∗ via the identity and B with
(B∗)∗ via the canonical map.

Let Cn denote the quotient C/
∑

i>n CeiC of C. Let Cn
1 denote the subalgebra∑

i,j≥1 eiCnej of Cn.
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LEMMA 13. The algebra Cn
1 is �-graded, concentrated in degrees 0, 1 and 2. In

descending vertical order, its components in degrees 0, 1 and 2 are
⊕

1≤i≤n

Ai,

⊕
1≤i≤n−1

(iTi+1 ⊕ iTi+1
∗),

⊕
1≤i≤n−1

A∗
i .

Let D∞ = 〈σ, τ | σ 2 = 1, σ τσ = τ−1〉 denote the infinite dihedral group.

LEMMA 14. Suppose that T ∼= T∗, as A-A-bimodules. Then D∞ acts as auto-
morphisms of C. The space

Tn
1 =

⊕
0≤j≤n−1

1≤i≤n

eiCej

has the structure of a faithful self-dual Cn
1-Cn

1-bimodule.

Proof. We define an action of D∞ on C as follows: The involution σ sends Ai

to A−i via the identity, A∗
i to A∗

−i via the identity, i−1Ti to (−(i−1)T−i)∗ via the iso-
morphism T ∼= T∗, and analogously (i+1Ti)∗ to −(i+1)T−i. Thanks to the assumption
that AT∗

A
∼= ATA, we see that this is indeed an algebra isomorphism. The translation τ

acts as the automorphism of C given by shifting indices by 1, e.g. τ (ei) = ei+1.
Of course, C itself is a C-C-bimodule, but what about the truncation Tn

1 ? The
idempotents ei, for i > n act as zero on Cej, for j < n. Therefore, Cn

1 acts naturally
on the left of Tn

1 . After twisting the right action of C on itself by the automorphism
σ ◦ τ−n, we can similarly observe a right action of Cn

1 on Tn
1 .

Now
⎛
⎜⎜⎝

⊕
0≤j≤n−1

1≤i≤n

eiCej

⎞
⎟⎟⎠

∗

∼=
⊕

0≤j≤n−1
1≤i≤n

ejCei = στ−n(Tn
1

)

via the canonical symmetric algebra structure on C, so Tn
1 admits the structure of a

Cn
1-Cn

1-bimodule, and is self-dual. To check that Tn
1 is faithful, it is enough to check

that each component of Cn
1 in the decomposition of Lemma 13 acts faithfully on the

left of Tn
1 . Each component acts as if by multiplication in Cn

1 , with the exception of the
component n−1Tn. To check this acts faithfully, consider its action on (n−1Tn)∗. Left
multiplication by an element t ∈ n−1Tn gives a map

αt : (n−1Tn)∗ → A∗
n−1,

which is the dual of the map

α∗
t : An−1 → n−1Tn
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given by right multiplication by t. Since α∗
t is non-zero, αt is non-zero, implying the

action of n−1Tn is faithful as required. �
DEFINITION 15. Let

Cn � {algebras with a self-dual faithful bimodule}
be the map which takes the pair (A, T) to the pair (Cn

1, Tn
1 ).

In this definition, by a self-dual A-A-bimodule, we mean a bimodule ATA, endowed
with an explicit isomorphism T ∼= T∗. When employing the above definition, we
sometimes forget the self-dual bimodules, and simply write Cn(A) for the algebra Cn

1 .
Assume now that A is a quasi-hereditary algebra with poset � of weights. Let

�1
B = �i∈��[i], with the same ordering as in � within each �[i], and λ[i] < μ[j] for

i �= j if and only if i > j ∈ �. Let �2
B = �i∈��[i], with the same ordering as in � within

each �[i], and λ[i] < μ[j] for i �= j if and only if i < j ∈ �.
The partially ordered sets �1

B,�2
B index the irreducible B0-modules. The algebra B0

is obviously locally finite-dimensional and quasi-hereditary with respect to the posets
�1

B and �2
B.

For the remainder of this chapter, we assume that A is Ringel self-dual, and that
T is a tilting bimodule for A, such that TA ∼= (AT)∗. Thus, TA ∈ F(�r) ∩ F(∇r).

THEOREM 16. B is quasi-hereditary with respect to the poset �1
B, with standard and

costandard modules

�1
B(λ[i]) = �B0 (λ[i]) and ∇1

B(λ[i]) = HomB0 (B,∇B0 (λ[i])).

B is quasi-hereditary with respect to �2
B, with standard and costandard modules

�2
B(λ[i]) = B ⊗

B0

�B0 (λ[i]) and ∇2
B(λ[i]) = ∇B0 (λ[i]).

B is Ringel self-dual and Ringel duality exchanges the two quasi-hereditary structures
on B.

Proof. First observe that indeed B is locally finite-dimensional and �1
B and �2

B
index simple modules since B1 forms a nilpotent ideal in B.

(1) �1
B(λ[i]) has a simple top and the radical consists of composition factors with

smaller indices.
Obvious from B0,
(2) B -proj ⊂ F(�1

B) with order relations as required.
We show that BBei ∈ F(�1

B) for all i ∈ �. But BBei has a filtration with a submodule
i−1Ti as the first composition factor of the filtration and Ai as the second. As left B-
module, i−1Ti is filtered by �B0 (λ[i − 1]) and Ai is filtered by �B0 (λ[i]) with λ ∈ �.
Since for Ai the filtration by �B0 s is in the right order (on every direct summand)
and �B0 (λ[i − 1]) > �B0 (μ[i]) for all λ,μ ∈ �, the filtration respects the necessary
inequalities on labels.

(3) �2
B(λ[i]) has a simple top and the radical consists of composition factors with

smaller indices.
�2

B(λ[i]) has a submodule isomorphic to B1 ⊗
B0

�B0 (λ[i]) ∼= i−1Ti ⊗
Ai

�Ai (λ), the quo-

tient by which is isomorphic to B0 ⊗
B0

�B0 (λ[i]) ∼= �B0 (λ[i]). The latter has simple head,

and all other composition factors have smaller indices by the quasi-hereditary structure
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of B0. The former has composition factors with labels in �[i − 1], which, since in this
ordering i − 1 < i, are smaller as desired. Furthermore, B1 is a nilpotent ideal in B,
thus the above submodule does not contribute to the head of the module.

(4) B -proj ⊂ F(�2
B) with order relations as required.

BB0
∼= (B0)B0 ⊕ (B1)B0 and (B0)B0 is projective, hence flat. We claim that (B1)B0 ⊗

B0

−
is exact on F(�B0 ). To prove this, it suffices to check that i−1Ti ⊗

Ai

− is exact on

F(�Ai ). So let M ∈ F(�Ai ) and consider i−1Ti ⊗
Ai

M. This being in F(�Ai−1 ), is

equivalent to (i−1Ti ⊗
Ai

M)∗ being in F(∇r
Ai−1

). Now (i−1Ti ⊗
Ai

M)∗ = HomF (i−1Ti ⊗
Ai

M, F) ∼= Hommod- Ai (Ti, M∗). But M ∈ F(�Ai ) implies M∗ ∈ F(∇r
Ai

) and, by the
assumption that TA ∼= (AT)∗, TA is also a tilting module for mod- A. Therefore,
Hommod- Ai (Ti,−) is exact on F(∇r

Ai
) by [3], A4 (1), and thus (i−1Ti ⊗

Ai

M)∗ ∈ F(∇r
Ai−1

).

So B ⊗
B0

− is exact on F(�B0 ), and BB ∈ F(�2
B). The required ordering conditions

follow immediately from those for B0.
This finishes the proof of B having two quasi-hereditary structures.
Similarly, we find that for the right module categories, with respect to �1

B, we have

�
1,r
B (λ[i]) = �r

B0
(λ[i]) ⊗

B0

B,

and with respect to �2
B,

�
2,r
B (λ[i]) = �r

B0
(λ[i]).

By duality, we now see that

∇1
B(λ[i]) = (�1,r(λ[i]))∗ = HomF (�r

B0
(λ[i]) ⊗

B0

B, F)

∼= HomB0 (B, (�r
B0

(λ[i]))∗) ∼= HomB0 (B,∇B0 (λ[i])),

∇1,r(λ[i]) = (�1(λ[i]))∗ = (�B0 (λ[i]))∗ = ∇r
B0

(λ[i]),

∇2
B(λ[i]) = (�2,r(λ[i]))∗ = (�r

B0
(λ[i]))∗ = ∇B0 (λ[i]),

and

∇2,r(λ[i]) = (�2(λ[i]))∗ = HomF (B ⊗
B0

�B0 (λ[i]), F)

∼= Hommod- B0 (B, (�B0 (λ[i]))∗) ∼= HomB0 (B,∇r
B0

(λ[i])).

To prove the Ringel self-duality of B, we need the following lemma.

LEMMA 17. �2
B(λ[i]) ∼= ∇1

B(λ′[i − 1]).

Proof of the lemma. We know that (∇1
B(λ′[i − 1]))∗ ∼= �

1,r
B (λ′[i − 1])), so it suffices

to show that there exists a non-degenerate bilinear form 〈 , 〉 : �
1,r
B (λ′[i − 1]) ×

�2
B(λ[i]) −→ F with the property that 〈x, by〉 = 〈xb, y〉 for

x ∈ �
1,r
B (λ′[i − 1]), y ∈ �2

B(λ[i]), b ∈ B.
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This is equivalent to having a non-zero linear map

�
1,r
B (λ′[i − 1]) ⊗F �2

B(λ[i]) −→ F,

which factors over

�
1,r
B (λ′[i − 1])) ⊗B �2

B(λ[i]) = �r
B0

(λ′[i − 1]) ⊗
B0

B ⊗
B

B ⊗
B0

�B0 (λ[i])

∼= �r
B0

(λ′[i − 1]) ⊗
B0

B ⊗
B0

�B0 (λ[i])

∼= �r
B0

(λ′[i − 1]) ⊗
B0

B0 ⊗
B0

�B0 (λ[i])

⊕ �r
B0

(λ′[i − 1]) ⊗
B0

B1 ⊗
B0

�B0 (λ[i]).

But �r
B0

(λ′[i − 1]) ⊗
B0

B0 ⊗
B0

�B0 (λ[i]) ∼= �r
B0

(λ′[i − 1])ei−1 ⊗
B0

ei�B0 (λ[i]) ∼= 0 and we

claim that �r
B0

(λ′[i − 1]) ⊗
B0

B1 ⊗
B0

�B0 (λ[i]) is isomorphic to ∇r
B0

(λ[i]) ⊗
B0

�B0 (λ[i]).

Indeed,

(
i−1Ti ⊗

Ai

�Ai (λ)
)∗ = HomF

(
i−1Ti ⊗

Ai

�Ai (λ), F
) ∼= Hommod- Ai (i−1Ti, (�Ai (λ))∗)

∼= Hommod- Ai

(
i−1Ti,∇r

Ai
(λ)

) ∼= �r
Ai−1

(λ′),

whence i−1Ti ⊗
B0

�B0 (λ[i]) = i−1Ti ⊗
Ai

�Ai (λ) ∼= ∇Ai (λ
′) = ∇B0 (λ′[i − 1]). But ∇r

B0
(λ[i])

and �B0 (λ[i]) are dual to one another, which implies that

∇r
B0

(λ[i]) ⊗
B0

�B0 (λ[i]) ∼= F.

Thus

�
1,r
B (λ′[i − 1])) ⊗B �2

B(λ[i]) ∼= F,

as required. This completes the proof of the lemma. �
Proof of theorem, continued. By the lemma B -proj ⊂ F(∇1

B) = F(�2
B), but we also

have B -proj ⊂ F(�1
B), hence projective modules are tilting modules in the first highest

weight structure on B -mod. But clearly

⊕
λ[i],μ[j]∈�B

HomB(P(λ[i]), P(μ[j])) ∼= B,

so B is indeed Ringel self-dual. Denoting the new standard modules by �̃B, we obtain

�̃1
B(λ[i]) = HomB

(
B,∇1

B(λ[i])
) ∼= ∇1

B

(
λ[i]

) ∼= �2
B

(
λ′[i + 1]

)
.

By the right analogue of the lemma we see that (right) projectives are tilting modules
for the second highest weight structure on mod- B, and by the same computation as
above, we obtain

�̃
2,r
B (λ[i]) = HomB

(
B,∇2,r

B (λ[i])
) ∼= ∇2,r

B

(
λ[i]

) ∼= �
1,r
B

(
λ′[i − 1]

)
.
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Dualizing we see that

∇̃1,r
B (λ[i]) ∼= (

�̃1
B(λ[i])

)∗ ∼= (
�2

B(λ′[i + 1])
)∗ ∼= ∇2,r

B

(
λ′[i + 1]

)

and

∇̃2
B(λ[i]) ∼= (

�̃
2,r
B (λ[i])

)∗ ∼= (
�

1,r
B (λ′[i − 1])

)∗ ∼= ∇1
B

(
λ′[i − 1]

)
.

Since �’s and ∇’s determine each other, this completes the proof of the theorem.

Let �1
C = �1

B, and �2
C = �2

B.

THEOREM 18. C is quasi-hereditary with poset �1
C, as well as with poset �2

C. We
have

∇1
C(λ[i]) = ∇1

B(λ[i]), �2
C(λ[i]) = �2

B(λ[i]).

Furthermore, C is Ringel self-dual, and Ringel duality exchanges the two highest weight
structures on C.

Proof. The equality of the indexing sets for simple modules follows from the
nilpotency of B∗ in C. Now, Cei has a filtration with submodule B∗ei ∼= (eiB)∗ and
quotient Bei. The latter has a filtration by �2

B(λ[i]), where λ ∈ �, with the necessary
properties of Theorem 16. The former has a filtration by (�1,r

B (λ[i]))∗ ∼= ∇1
B(λ[i]) ∼=

�2
B(λ′[i + 1]). So, as i + 1 > i we have a filtration respecting the necessary inequalities

on labels.
The fact that C is symmetric follows from the general statement that the trivial

extension of an algebra by its dual is symmetric.
Ringel self-duality follows immediately from symmetry, since projectives have a

�-filtration, but as they are the same as injectives, also a ∇-filtration, thus projectives
are tilting modules, implying Ringel self-duality. �

Set Jn := ⋃
j≤n

�[j] and Ik := ⋃
i≥k

�[i] and adopt the notational convention Cn := CJn ,

Ck := CIk , and Cn
k := CJn

Ik
. These definitions agree with the definition of Cn

1 given
previously.

Let us now assume that AT∗
A

∼= ATA as a bimodule. Recall that in these
circumstances, D∞ =< σ, τ > acts on C. Note that in the Ringel duality in Theorem 18,
C′ = τ−1(C), since the projective P(λ[i]) has a submodule �C(λ′[i + 1]), implying
P(λ[i]) ∼= TC(λ[i + 1]) and PC′(λ[i]) = HomC(

⊕
j∈�
λ∈�

P(λ[j]), P(λ[i − 1])).

THEOREM 19. Cn
1 for n ≥ 1 is Ringel self-dual, and the tilting bimodule TCn

1
is a

self-dual bimodule.

Proof. By Proposition 12, (Cn
1)′ ∼= (C′)I ′

1
J ′

n
with the ordering i > i + 1 on �.

Therefore,

(Cn
1)′ ∼= (τ−1C)

I ′
1

J ′
n
∼= CI ′

0
J ′

n−1

σ∼= C0
−(n−1)

τ n

∼= Cn
1 .
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The tilting module TCn
1

satisfies

TCn
1
=

⊕
j≤n
λ∈�

HomC

⎛
⎝⊕

i≥1

Cei, TC(λ[j])

⎞
⎠

∼=
⊕
j≤n
λ∈�

HomC

⎛
⎝⊕

i≥1

Cei, PC(λ[j − 1])

⎞
⎠

∼=
⊕

j≤n−1
λ∈�

HomC

⎛
⎝⊕

i≥1

Cei, PC(λ[j])

⎞
⎠

=
⊕

0≤j≤n−1
1≤i≤n

HomC(Cei, Cej)

∼=
⊕

0≤j≤n−1
1≤i≤n

eiCej.

The first equality comes from the fact that factoring out a heredity ideal doesn’t change
the tilting modules for the remaining labels and that the tilting module for a heredity
subalgebra is the tilting module multiplied by the idempotent. The fourth equality
takes into account that we only have non-zero maps from Cei to itself or to C1Ai±1 .
Now ⎛

⎜⎜⎝Cn
1
(

⊕
0≤j≤n−1

1≤i≤n

eiCej)(Cn
1 )′

⎞
⎟⎟⎠

∗

= (Cn
1 )′

⎛
⎜⎜⎝

⊕
0≤j≤n−1

1≤i≤n

ejCei

⎞
⎟⎟⎠

Cn
1

(by self-duality of C), but to view this as a (Cn
1, (Cn

1)′)-bimodule we have to twist
with σ ◦ τ−n on the left and its inverse on the right, which yields

⊕
0≤j≤n−1

1≤i≤n

eiCej as

desired. �
COROLLARY 20. The map Cn restricts to a map

Cn � {quasi-hereditary algebras with a self-dual tilting bimodule}.

4. Schur algebras. Let M denote the algebra of n × n matrices over F . Recall
that the Schur algebra S(n, r) is defined to be the subalgebra (M⊗r)�r of fixed points
under the action of the symmetric group �r on M⊗r. The category of representations
of S(n, r) can be identified with the category of polynomial representations of GLn(F),
of degree r [5].

Let �+(n, r), the set of partitions of r with n parts or fewer, given the dominance
ordering. The algebra S(n, r) is quasi-hereditary with respect to the poset �+(n, r). We
write ξλ ∈ S(n, r) for Green’s idempotents in S(n, r), for λ ∈ �(n, r) (the definition of
these objects, consult Green’s monograph [5]).

https://doi.org/10.1017/S0017089510000686 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089510000686


268 VANESSA MIEMIETZ AND WILL TURNER

In this paper, we are only concerned with S(2, r), but it will be useful to recall some
facts about Ringel duality, which hold for general n.

LEMMA 21. (Donkin [3], Section 4.1). Let n ≥ r. Then
∧r(M) is a tilting S(n, r)-

S(n, r)-bimodule.

When n ≥ r, let S ′(n, r) = S(n, r). When n < r, let

S ′(n, r) ∼= S(r, r)/
∑

λ/∈�(n,r)

S(r, r)ξλS(r, r).

The algebras S(n, r),S ′(n, r) are Ringel dual.
The Schur algebra possesses a natural anti-automorphism inherited from the

transpose operator on M. We also call this anti-automorphism the transpose operator,
and denote by sT the twist of an element s by the transpose operator. Since ξT

λ = ξλ

for all λ, the transpose operator descends to an anti-automorphism of S ′(n, r).
If A is an algebra, endowed with an anti-automorphism x, then given any left/right

A-module M, we define the right/left A-module Mop to be that obtained by twisting the
action of A on M by x. If A1 and A2 are algebras, endowed with anti-automorphisms
x1 and x2, then given an A1-A2-bimodule M, we define the A2-A1-bimodule Mop to be
that obtained by twisting the actions of A1 and A2 on M by x1 and x2.

LEMMA 22. Let S(n,r)TS ′(n,r) be a tilting bimodule. Then Top ∼= T∗, as S ′(n, r)-S(n, r)-
bimodules, where Top is obtained after twisting T by the transpose anti-automorphisms
of S ′(n, r) and S(n, r).

Proof. In case n ≥ r, we have T ∼= ∧r(M). However, it is well known that
∧r(M)

is self-dual, which is to say
∧r(M)op ∼= ∧r(M)∗.

The case n < r follows by truncation from the case n = r. Indeed, in this case, we
have T = (

∑
λ∈�(n,r) ξλ)

∧r(M). Since ξT
λ = ξλ, this bimodule is also self-dual. �

We now restrict our study to the case n = 2. Suppose F is a field of characteristic
p > 0. Let S = S(2, r) be the Schur algebra over F , where r = apk − 2 or r = apk − 3
for some k ≥ 1 and 2 ≤ a ≤ p. Along with the cases r < p2 and r = apk − 1, these are
exactly the Schur algebras, which are Ringel self-dual ([4], Theorem 27). Furthermore,
S(2, apk − 1) is Morita equivalent to S(2, apk − 3) ⊕ F ([4], Corollary 2).

If r is odd, our index set � for the quasi-hereditary structure of S consists of all
odd natural numbers up to r; if r is even, it consists of all even natural numbers up to
r, including 0. Here, we identify an element j of � in this index set with the two-part
partition (r − j, j) ∈ �+(2, r).

The following definitions assume p as odd. If r is odd, let A = S(2, pk − 2) and if
r is even, let A = S(2, pk − 3). We define subsets Ij, for 1 ≤ j ≤ a, of � as follows:

r odd

j odd Ij = {λ ∈ � | (j − 1)pk + 1 ≤ λ ≤ jpk − 2}
j even Ij = {λ ∈ � | (j − 1)pk ≤ λ ≤ jpk − 3}

r even

j odd Ij = {λ ∈ � | (j − 1)pk ≤ λ ≤ jpk − 3}
j even Ij = {λ ∈ � | (j − 1)pk + 1 ≤ λ ≤ jpk − 2}

.
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In case p = 2 (and thus necessarily a = 2), let A = S(2, 2k − 3) if r is odd, and
A = S(2, 2k − 2) if r is even. We define subsets Ij, for j = 1, 2, of � as follows:

r odd

j = 1 Ij = {1, 3, . . . , 2k−1 − 3}
j = 2 Ij = { 2k−1 + 1, 2k−1 + 3, . . . , 2k − 3}

r even

j = 1 Ij = {0, 2, . . . , 2k−1 − 2}
j = 2 Ij = {2k−1, 2k−1 + 2, . . . , 2k − 2}

.

Let us define I0 := � \ (
⋃

1≤j≤a
Ij).

For 1 ≤ j ≤ a, set bj := min{Ij}, rj := max{Ij}.
We choose orthogonal idempotents {eλ}λ∈� in S, such that S ∼= ⊕

λ,μ∈� eλSeμ,
and S/J (S) = ⊕

λ∈� Mλ is a direct sum of matrix rings Mλ over F , where eλ is the
unit of Mλ.

Let fj := ∑
λ∈Ij

eλ, where eλ ∈ S is the primitive idempotent corresponding to the
projective P(λ). Let εj = ∑

i≥j fi.
By the work of Henke and Koenig, there are idempotents ηj ∈ S (denoted

ξ o
l in [7]), and explicit isomorphisms �j : A → ηjSηj/ηjSηj+1Sηj, for 1 ≤ j ≤ a ([7],

Theorem 3.3).
We now assume that the idempotents eλ are chosen in such a way that eληj = ηjeλ,

for λ ∈ �, 1 ≤ j ≤ a. It therefore follows that the idempotents ηj commute with fi, εi

as well, and we have εkηj = ηk, for 1 ≤ j ≤ k ≤ a.
Let Rj := fjSfj/fjSfj+1Sfj, for 1 ≤ j ≤ a.

LEMMA 23. The algebra Rj is Morita equivalent to A, for 1 ≤ j ≤ a. We have
fjSfi = 0 unless j − 1 ≤ i ≤ j + 1, and

S =
a⊕

j=1

fjSfj ⊕
a−1⊕
j=1

(fjSfj+1 + fj+1Sfj) ⊕
⊕
λ∈I0

eλSeλ. (1)

Proof. From the decomposition matrix of S [6], we see that fjSfi = 0 unless j − 1 ≤
i ≤ j + 1 and that for λ ∈ I0, eλSeμ = eμSeλ = 0 unless μ = λ, when it is isomorphic
to F . Hence,

Rj = fjSfj/fjSfj+1Sfj ∼= εjSεj/εjSεj+1Sεj.

This algebra is Morita equivalent to ηjSηj/ηjSηj+1Sηj, which is isomorphic to A. This
completes the proof of the lemma. �

REMARK 24. It will be important to us that the Henke–Koenig isomorphism �j

between A and ηjSηj/ηjSηj+1Sηj is compatible with the transpose operators on S, A.
To be more explicit, ηT

j = ηj, and �j(aT ) = �j(a)T , for a ∈ A.

LEMMA 25. We have faSfa−1Sfa = 0.

Proof. This is a reformulation of [4], Proposition 25. Indeed, according to this
proposition, Sfa−1Sfa is the submodule of Sfa consisting of all composition factors of
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the form L(λ), λ ∈ Ia−1, implying

faSfa−1Sfa ∼= HomS (Sfa,Sfa−1Sfa) = 0. �
LEMMA 26. Xj = fjSfj+1 is an Rj-Rj+1-tilting bimodule.

Proof. By Lemmas 23 and 25, the fjSfj-fj+1Sfj+1-bimodule Xj is in fact an Rj-Rj+1-
bimodule. It remains to show that Rj Xj is a full tilting module, and EndRj (Xj) = Rj+1.

By the same argument as in Lemma 23, we can reduce to the case where a = 2
by considering all modules for the subalgebra εjSεj/εjSεj+2Sεj. So let S = S(2, r),
where r ∈ {2pk − 2, 2pk − 3} and use the notation from above. We need to show that
f1Sf2 ∈ S/Sε2S -mod is a tilting module. But by [4], Proposition 25, Sf1Sf2 ⊆ Sf2 is
the submodule consisting of all composition factors of the form L(λ) for λ ∈ I1 and is
isomorphic to the full tilting module for S(2, max{I1}). But by the first of these facts
the action factors over R1 = S/Sε2S ∼= S(2, r1), so that it is a full tilting module for
this algebra.

Now we have a canonical map from R2 = f2Sf2 to EndR1 (f1Sf2). Given the fact
that A is Ringel self-dual, we know that R2, A and EndR1 (f1Sf2) are Morita equivalent,
thus R2 and EndR1 (f1Sf2) are isomorphic. It therefore suffices to prove injectivity of
this map. So, suppose it has a nontrivial kernel. This is equivalent to the existence of
an endomorphism φ of Sf2, annihilating all composition factors of the form L(λ) for
λ ∈ I1 (namely Sf1Sf2). But all composition factors of the socle of Sf2 are of the form
L(λ) for λ ∈ I1, by [4], Lemma 3, and thus im φ ∩ socSf2 = 0 forcing φ to be zero. �

REMARK 27. Note that it follows from the proof of the lemma that fjSfj+1Sfj is
the annihilator of fjSfj+1 in fjSfj. Since by Remark 23 fj−1SfjSfj+1 ⊆ fj−1Sfj+1 = 0, it
follows that fjSfj−1Sfj ⊆ fjSfj+1Sfj.

Let X̄j = fj+1Sfj. By Lemmas 23 and 25, X̄j is an Rj+1-Rj-bimodule.
Let Xop

j be the Rj+1-Rj-bimodule obtained by passing Rj XjRj+1 via the established
Morita equivalences to the category of A-A-bimodules, twisting on both sides by the
transpose automorphism of A, and then passing via Morita equivalence to the category
of Rj+1-Rj-bimodules.

LEMMA 28. There is an isomorphism of Rj+1-Rj-bimodules, X̄j ∼= Xop
j .

Proof. We have

Xj = fjSfj+1
∼= εjεj+1/εj+1Sεj+1.

This passes, via Morita equivalence, to the A-A-bimodule

ηjSfj ⊗
fjSfj

fjSfj+1 ⊗
fj+1Sfj+1

fj+1Sηj+1

∼= ηjfjSfj+1ηj+1
∼= ηjSηj+1/ηjεj+1Sηj+1.

Since twisting by the transpose operator exchanges the irreducible modules L(λ), Lr(λ),
the projective S-modules Sfj and Sf T

j are isomorphic. We therefore have

X̄j = fj+1Sfj = fj+1Sf T
j+1Sf T

j Sfj

∼= fj+1Sf T
j+1 ⊗

εT
j+1SεT

j+1

(εT
j+1SεT

j /εT
j+1SεT

j+1) ⊗
εT

j SεT
j

f T
j Sfj.

https://doi.org/10.1017/S0017089510000686 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089510000686


RATIONAL REPRESENTATIONS OF GL2 271

This passes, via Morita equivalence, to the A-A-bimodule

ηj+1Sf T
j+1 ⊗

f T
j+1Sf T

j+1

f T
j+1Sf T

j ⊗
f T
j Sf T

j

f T
j Sηj+1

∼= ηj+1f T
j+1Sf T

j ηj ∼= ηj+1Sηj/ηj+1SεT
j+1ηj.

Applying the transpose anti-automorphism to S, we exchange the bimodules ηjSηj+1/

ηjεj+1Sηj+1 and ηj+1Sηj/ηj+1SεT
j+1ηj, the left and right actions being twisted by the

transpose operator. However, the transpose operator is compatible with the Henke–
Koenig isomorphisms, and therefore an equivalent statement is that passing to the
opposite exchanges Xj and X̄j. We therefore have X̄j ∼= Xop

j , as required. �
Let us define

N :=
a−1∑
j=1

(fjSfj+1 + fj+1Sfj + fjSfj+1Sfj),

N2 :=
a−1∑
j=1

fjSfj+1Sfj.

PROPOSITION 29. We have a filtration of S by ideals,

S ⊃ N ⊃ N 2 ⊃ 0. (2)

Furthermore, N 2 = N2, and N 3 = 0. We have isomorphisms of S-S-bimodules,

S/N ∼=
⊕

1≤j≤a

Rj ⊕
⊕
λ∈I0

eλSeλ,

N /N 2 ∼=
⊕

1≤j≤a−1

(Xj ⊕ X∗
j ),

N 2 ∼=
⊕

1≤j≤a−1

R∗
j .

Proof. The first statement as well as N 2 = N2 and N 3 = 0, are easily verified using
Lemmas 23 and 25 and Remark 27. From (1) we see that

S/N ∼=
⊕

1≤j≤a

fjSfj/(fjSfj+1Sfj)

∼=
⊕

1≤j≤a

Rj ⊕
⊕
λ∈I0

eλSeλ,

and by Lemmas 22, 26 and 28,

N /N 2 ∼=
⊕

1≤j≤a−1

(fjSfj+1 + fj+1Sfj)

∼=
⊕

1≤j≤a−1

(Xj + Xop
j ) ∼=

⊕
1≤j≤a−1

(Xj + X∗
j ).
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Now all that is left to show is that fjSfj+1Sfj ∼= R∗
j . To see this, note that by

repeatedly applying Remark 23

fjSfj+1Sfj = fjSεrj+1Sfj ∼= fjSεrj+1 ⊗
εrj+1Sεrj+1

εrj+1Sfj

∼= fjSfj+1 ⊗
Rj+1

fj+1Sfj.

But

HomF

(
fjSfj+1 ⊗

Rj+1

fj+1Sfj, F
)

∼= Hommod-Rj+1

(
Xj, Xop∗

j

)
∼= Endmod-Rj+1 (Xj) ∼= Rj,

thus fjSfj+1Sfj ∼= R∗
j , as claimed. �

Let Ca
1 = Ca

1 (A) be the algebra obtained by applying the construction Ca
1 of the

previous chapter to the algebra A, and its self-dual bimodule T .

THEOREM 30. The graded algebra Sgr associated to the filtration S ⊃ N ⊃ N 2 ⊃ 0
is Morita equivalent to Ca

1 ⊕ F⊕I0 .

Proof. By Proposition 29, we know that Sgr is Morita equivalent to C̃a
1 ⊕ F⊕I0 ,

where C̃a
1 is �-graded, concentrated in degrees 0, 1 and 2. In descending vertical order,

the components of C̃a
1 in degrees 0, 1 and 2 are,

⊕
1≤i≤a

Ãi,

⊕
1≤i≤a−1

(iT̃i+1 ⊕ iT̃∗
i+1),

⊕
1≤i≤a−1

Ã∗
i ,

where Ãi is isomorphic to A, and iT̃i+1 is a tilting Ãi-Ãi+1-bimodule. Twisting the
isomorphisms Ãi ∼= A by automorphisms of A if necessary, we may assume that iT̃i+1

∼=
ATA. We proceed to piece together an algebra isomorphism between C̃a

1 and Ca
1 itself.

We know from the proof of the previous proposition that multiplication fjSfj+1 ⊗
F

fj+1Sfj � R∗
j is surjective, for 1 ≤ j ≤ a − 1. Therefore, multiplication jT̃j+1 ⊗

F
jT̃∗

j+1 �
Ã∗

j is also surjective.
Since we have a canonical isomorphism jTj+1 ⊗

Aj+1
jT∗

j+1
∼= A∗

j , we consequently

obtain an isomorphism Ã∗
j

∼= A∗ of A-A-bimodules.
We now claim that multiplication jT̃∗

j+1 ⊗
F

jT̃j+1 � Ã∗
j+1 is also surjective, for

1 ≤ j ≤ a − 2. Equivalently, we claim that multiplication fj+1Sfj ⊗
F

fjSfj+1 → R∗
j+1 is

surjective. Indeed, this multiplication is inherited from the left module structure on the
maximal submodule M of Sfj+1 whose composition factors L(λ) respect λ ∈ Ij+1. The
submodule M has a filtration with submodule R∗

j+1 and quotient fjSfj+1. Note that
Sfj is a tilting module ([4], Corollary 21, Lemma 24) and therefore self-dual. Therefore
Mop∗ is the maximal quotient of Sfj+1, all of whose composition factors L(λ) respect
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λ ∈ Ij+1. Mop∗ has a filtration with submodule fjSfj+1 and quotient isomorphic to Rj+1.
However, we precisely know the structure of this module. For instance, the product
fjSfj+1 ⊗

F
Rj+1 → fjSfj+1 corresponds to the right action of T ⊗ A → T . Since the

product on M is dual to that on M, the map fj+1Sfj ⊗
F

fjSfj+1 � Ã∗
j+1 is dual to the

map A ↪→ T ⊗ T∗, and is therefore surjective, as required.
We have now proven that fiSfi−1Sfi = fiSfi+1Sfi, for 2 ≤ i ≤ a − 1. We therefore

have isomorphisms

Ã∗
i

∼= iT̃i−1 ⊗
Ãi−1

i−1T̃i ∼= iT̃i+1 ⊗
Ãi+1

i+1T̃i ∼= Ã∗
i ,

of Ãi-Ãi-bimodules. Let us denote this chain of isomorphisms φi. We have

HomA⊗Aop (A∗, A∗) ∼= HomA⊗Aop (A, A) ∼= Z(A),

and thus φi is multiplication by a central element in Ãi. Multiplying the bimodules
iT̃i+1 by these central elements, if necessary, we can assume that in fact φi = 1, for
1 ≤ i ≤ a − 1.

It is now clear that the sum of our bimodule isomorphisms

Ãi ∼= Ai, iT̃i+1
∼= iTi+1, iT̃∗

i+1
∼= iT∗

i+1, Ã∗
i

∼= A∗
i

defines an algebra isomorphism from C̃a
1 to Ca

1 , as required. �

5. GL2. In this chapter, we give precise statements for Theorems 1 and 2, together
with a justification of Theorem 1.

The determinant representation of GLn(F) is a polynomial representation of degree
n. Therefore, tensoring with the determinant representation defines an exact functor
from the category of polynomial GLn(F) representations of degree r to the category
of polynomial GLn representations of degree r + n, carrying simple modules to simple
modules. Correspondingly, the Schur algebra S(n, r) can be realised as a quotient of
S(n, r + n) by an idempotent ideal S(n, r + n)iS(n, r + n). We denote by S(n, r) the
inverse limit of the sequence of algebra epimorphisms

S(n, r) � S(n, r + n) � S(n, r + 2n) � . . .

The centre Z of GLn(F) is isomorphic to F×, and its group of rational characters is
therefore isomorphic to �. The category of rational representations of GLn(F) on which
Z acts by the character r ∈ � is naturally equivalent to S(n, r) -mod. The category of
rational representations of GLn(F) is therefore isomorphic to the module category of⊕

r∈� S(n, r).
For any finite dimensional algebra A, the algebra Cn(A) has an ideal

⊕
1≤i≤n−1

(Ai+1 ⊕ iTi+1 ⊕ iT∗
i+1 ⊕ A∗

i ),

the quotient by which is A1
∼= A. In this way, we obtain a sequence of algebra

epimorphisms,

A � Cn(A) � Cn(Cn(A)) � . . .
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We denote by C←−n(A) the inverse limit of this sequence of maps. The statement of
Theorem 2 is now completely precise.

THEOREM 2. Every block of rational representations of GL2(F) is equivalent to
C←−p(F) -mod.

An equivalent statement is that every block of S(2, r) is Morita equivalent to
C←−p(F). Another is that S ∼= Sgr, in the notation of the last chapter. The proof of these

equivalent statements is to be found in the sequel to this paper [9].
We now give some corollaries of our work in Chapter 4. Let S,N , A, T be as

defined there, and let U be an S-S-tilting bimodule.

LEMMA 31. We have NU = UN , and NS∗ = S∗N .

Proof. A tilting bimodule for S is given by U = (
⊕p−1

i=1 Sfi) ⊕ T . Thus,

NU =
⊕

1≤i,j≤p−1

fjN fi = UN .

We have S∗ ∼= (
⊕p−1

i=1 Sfi) ⊕ Sf ∗
p . Making this identification, we find

NS∗ ∼=
⎛
⎝ ⊕

1≤i,j≤p−1

fjN fi

⎞
⎠ ⊕ A∗

p
∼= S∗N . �

COROLLARY 32. The space

Ugr =
⊕

i=0,1,2

N iU/N i+1U

is a Sgr-Sgr-tilting bimodule. The space

(S∗)gr =
⊕

i=0,1,2

N iS∗/N i+1S∗

is a Sgr-Sgr-bimodule, isomorphic to (Sgr)∗.

By Theorem 30, Sgr is Morita equivalent to Cp(A) ⊕ F⊕I0 , where A is another
Ringel self-dual Schur algebra. By induction we obtain the following:

COROLLARY 33. There is a filtration of S by ideals, refining the radical filtration,
whose associated graded ring G is Morita equivalent to a direct sum of algebras of the
form C←−

d
p(F), for d ∈ �+.

Given r ∈ �+, we choose d ≥ r, such that S = S(2, d) is Ringel self-dual, and
d = r (mod 2). We have S(2, r) ∼= S/SjS, for some idempotent j. We define G(2, r) to
be G/GjG, where G is the graded ring associated to S by Corollary 33. The algebra
G(2, r) is independent of choice of d, and we have algebra epimorphisms

G(2, r) � G(2, r + 2) � G(2, r + 4) � . . .

between graded rings G(2, r) = G(S(2, r)) of Schur algebras.
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The statement of Theorem 1 is now completely precise. Its truth is clear from
Corollary 33.

THEOREM 1. Every block of G(2, r) -mod is Morita equivalent to C←−p(F) -mod.

6. Epilogue. We end with some remarks.
The problem of finding gradings on modular representation categories is rather a

general one, related to the celebrated conjecture of G. Lusztig concerning irreducible
characters of algebraic groups (see [8]). For example, one expects blocks of Schur
algebras S(n, n) to have a grading refining the radical filtration, at least when the
weight of the block is less than p (for the definition of a weight, and more context for
this conjecture, see [12]).

We have conjectured that blocks of Schur algebras S(n, n) are all derived
equivalent to certain subquotients of a symmetric quasi-hereditary algebra, the
Schiver double DA∞ (see [12, 13]). The most obvious barrier to a proof of this is
the difficulty of finding a suitable grading on the Rock blocks. Theorem 2 can be
thought of as a simple analogue of the Schiver double conjecture, the algebra Cp(A)
playing a similar role in this paper, to that played by the algebra DA∞ in the theory of
Rock blocks. Indeed, the development of Theorem 2 was made with a view towards
understanding better the Schiver double conjecture.
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