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Abstract

It is widely accepted by physicists and philosophers of physics alike that there are certain
contexts in which general relativity will “break down.” In such cases, one expects to need
some as-yet-undiscovered successor theory. This article discusses certain pathologies of gen-
eral relativity that might be taken to signal that the theory is breaking down and considers
how one might expect a successor theory to do better. The upshot is an unconventional inter-
pretation of the “strong cosmic censorship hypothesis.”

1. Introduction
As is often observed by physicists and philosophers alike, general relativity (GR) exhibits
some striking, even pathological, features (Earman 1995). The best known of these are
singularities, such as the Big Bang singularity in expanding cosmological spacetimes
or the singularities associated with black holes. A common refrain, particularly among
physicists, is that these singularities are “unphysical” in some sense. That is: even if we
take GR to be approximately true, we should not infer that truly singular behavior is
physically possible, even though the theory appears to predict it. Instead, we should take
singularities to indicate that GR will “break down” in application to certain situations, in
the sense that it will fail to be representationally adequate. An adequate description of
these physical situations would require a new theory, generally expected to be a quantum
theory of gravity. This expectation is often summarized by the claim that quantum grav-
ity will “resolve” singularities (Bojowald 2007).

This article is concerned with the question posed in the title: Where does GR break
down? The word where in this question is playing a double role: on the one hand, I will
ask for what physical situations, putatively within the domain of applicability of GR
the theory should be understood to be inadequate; and on the other hand, I wish to
insist that any satisfactory understanding of the breakdown of GR must be “local” in
the sense that, at least in some cases, the breakdown can be associated with some
region of space and time. That is, there is somewhere that the breakdown occurs,
in the sense that given a relativistic spacetime, one should expect to be able to
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identify some open set, with compact closure, such that the breakdown is localized to
that region and outside of that region GR is representationally adequate.

In the background of this question is a certain ideology, very common in physics,
that our current theories are merely “effective” descriptions of the world, approxi-
mately correct in some regimes but certain to fail in others.1 That any failures of GR
can be localized in the way I have indicated is essential to making sense of how the
breakdown of GR is understood in physics. But in fact, this ideology usually involves a
further claim, which is that not only can we be confident that our current theories,
including GR, will break down in some regimes, but in fact, we can anticipate where our
current theories will fail. They will fail at high energies.

In more detail: usually, one speaks of effective theories in the context of renorm-
alization group methods in particle physics. In this context, there is a single parame-
ter, the energy of a system, whose value signals whether the theory will break down.
When the energy associated with some system, process, or interaction approaches or
exceeds a characteristic value—the “cutoff”—associated with a given theoretical
description, that description should be expected to break down. This reasoning,
applied to GR, suggests that there, too, for sufficiently large energies, the theory will
fail.

But there are problems with this line of thought. One problem is that it is not clear
how to think about the high-energy regime in GR. Another problem is that, even if we
solve the first problem, it is not clear that all of the “pathologies” of GR can be iden-
tified with any one regime, high energy or not. Addressing these two problems is the
focus of the present article.

I will proceed as follows. I will begin by discussing what one might mean by the
“high-energy regime” in GR. I will argue that this concept is not as neatly described as
one might hope for, and there is not a single scalar quantity that always and only
“becomes large” in the high-energy regime. Next, I will consider whether GR breaks
down only in this high-energy regime. Here I consider two senses in which the theory
breaks down: singularities and certain Cauchy horizons. In the final section, I will dis-
cuss how an important conjecture, known as the strong cosmic censorship hypothesis
(SCCH), bears on these issues. The principal claim of this section is that if a certain
version of the SCCH is true, then singularity resolution and “Cauchy horizon resolu-
tion” are deeply connected.

2. What is the “high-energy regime” in general relativity?
Before we can evaluate whether GR should be expected to break down (only) in the
high-energy regime, we must first establish what the “high-energy regime” is in the
theory. Doing so is subtle. There is no fully satisfactory answer.

Consider, for instance, an answer motivated by how the high-energy regime is usu-
ally characterized in particle physics. There, one associates “high energy” with large
particle/field kinetic energies (or high temperature, as in the early universe). The idea
here is that large kinetic energy leads to high-energy scattering and that GR will break

1 This ideology is at odds with how the truth and falsity of scientific theories have traditionally been
understood by general philosophers of science, but it has been widely accepted among physicists since
the 1970s. For recent work connecting these ideas about “effective” theories and scientific realism, see
Williams (2019).
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down as part of the description of those scattering events. In this proposal, the high-
energy regime is signaled by “large” stress–energy—with large in scare quotes
because stress–energy is a tensor, and it is not clear that there is a physically mean-
ingful and observer-independent characterization of its size.

But this is not a satisfactory answer. Although it is certainly plausible that, given
some physically salient measure of “large stress–energy,” large stress–energy will sig-
nal the high-energy regime in GR, it does not suffice as a definition of that regime
because it precludes any vacuum spacetimes—that is, solutions to Einstein’s equation
with vanishing stress–energy tensor—as having high-energy regions. This, in turn,
means that neither black holes nor high-frequency gravitational waves are necessar-
ily high-energy phenomena, and it would mean that modifications of GR that affected
only the high-energy regime would not resolve singularities.

There is a natural reply: one needs to consider not (just) stress–energy but (also)
gravitational energy. This, presumably, is what makes black holes and some gravita-
tional waves high-energy phenomena. But this answer does not help. “Gravitational
energy” in GR is a deeply vexed problem, with a century of literature highlighting the
difficulties. As Dewar and Weatherall (2018) argue, the basic problem is that energy is
a measure of the degree of excitation or deviation from some background standard of
motion, but in “geometrized” theories such as GR, the only physically significant
background is the spacetime structure itself.

One can, at least in some cases, introduce further background structure, such as a
fixed Minkowski metric at spatial infinity in the case of asymptotically flat spacetimes
or a frame field on some region of spacetime, and define energy relative to that. Some
versions of this strategy lead to the definition of so-called energy “pseudotensors,”
which are frame-dependent quantities; others lead to nonlocal definitions of gravita-
tional energy, such as ADM mass, Bondi energy, or Hawking mass. Each of these is
physically significant in some contexts. But none of them are suitable for the present
purposes, for several reasons. First, whether a theory breaks down should be an
invariant fact: it does not depend on a choice of background structure. And second,
as argued earlier, we should expect GR to break down “locally.” Thus nonlocal defini-
tions of energy, such as the ADM mass or Bondi energy, will not suffice, either.2

There is another answer available—although it leaves behind the idea that
“energy” is the crucial quantity to consider. In GR, it is natural (and common) to asso-
ciate the “strong-field regime”with large tidal forces, that is, large geodesic deviation.
This can be thought of as a measure of the degree to which gravitational influences
pull inertial matter at nearby points in different directions. Tidal forces, meanwhile,
are determined by curvature. One might identify the high-energy regime with the
strong-field regime and thus with large curvature.

Of course, this proposal, too, has challenges. For one, just as with stress–energy,
curvature is a tensor, and so it is unclear how to measure its “size.” A solution is to

2 One might think that quasi-local definitions of energy, such as the Hawking mass, would be more
satisfactory because then one could presumably localize energy blowups to within certain two-spheres
in space-time. But in fact, this will not work. Consider, for instance, that the ADMmass of a Schwarzschild
black hole is always a finite number M and that a standard desideratum for any quasi-local definition of
energy (satisfied by, e.g., the Hawking mass) is that it be both monotonic and asymptotic, for appropriate
two-surfaces, to the ADM mass. It follows that standard quasi-local definitions of energy will be finite
(indeed, bounded by ADM mass) even for regions that “contain” the Schwarzschild singularity.
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construct scalar quantities from curvature, such as the Ricci scalar, R � Rabab, or the
Kretschman scalar, K � RabcdRabcd. These are physically significant (e.g., the Ricci sca-
lar appears in the Einstein–Hilbert action), and their values can be understood as
invariant measures of curvature. On the other hand, one can generally find examples
where only some curvature scalars diverge in a given region of spacetime, so it is not
clear that any single curvature scalar can suffice as the measure of the high-energy
regime. Indeed: the situation is somewhat worse than this. There exist singular sol-
utions (e.g., plane waves) of Einstein’s equation in which curvature “becomes large”
but all curvature scalars vanish (Geroch 1968; Ellis and Schmidt 1977)! These are sol-
utions in which the curvature tensor is null, and thus any contractions yield zero.

Even so, several considerations recommend this proposal. A preliminary observa-
tion is that in other (classical) field theories, such as Maxwell’s theory, curvature sca-
lars (i.e., scalars constructed from the field strength Fab, which can be interpreted as a
curvature tensor) measure energy density. Moreover, in standard black-hole space-
times, curvature scalars diverge along trajectories approaching a singularity, suggest-
ing that these quantities can capture the sense in which the region near a singularity
is where the theory breaks down. Finally, in effective field theory, it is common to
identify the “high-energy regime” as one in which the terms in an effective
Lagrangian become large relative to a fixed energy scale. But it is the Ricci curvature
scalar that appears in the Einstein–Hilbert action (and one would expect other cur-
vature scalars to appear in any extension to that action). Thus, one might expect the
theory to break down when curvature scalars get large relative to an energy cutoff. So
the large-curvature regime seems like the most likely one for a successor theory to
become relevant.

What is the upshot? I suggest that taking large curvature scalars to signal the high-
energy regime is the best option available. Curvature scalars are defined locally, and
they are frame/coordinate independent. Moreover, they appear in the Einstein–
Hilbert action, and effective extensions to it and they measure a physically meaning-
ful sense in which “field strength” becomes large, corresponding to large tidal forces.
But even so, there is apparently no single scalar quantity whose large value always
and unambiguously signals this regime. This means we cannot set a scale by a (scalar)
cutoff, such that GR breaks down (only) when some curvature scalar approaches this
value. Some care is needed in assessing whether a given solution has regions in the
“high-energy” regime.

3. Does general relativity fail (only) at high energies?
Now that we have established what should count as the high-energy regime in GR, we
can turn to a second question. To what extent are the “pathologies” of GR associated
with the high-energy regime? This question is salient because if a higher-energy suc-
cessor theory should be expected to modify GR (only) in the high-energy regime, then
such a successor can “resolve” these pathologies only if the pathologies themselves
occur in the high-energy regime.

Unfortunately, the answer is no, at least on a first pass. Suppose we adopt the com-
mon view that singularities signal a failure of GR, and suppose we take geodesic
incompleteness (i.e., the existence of inextendible geodesics of finite parameter
length) as sufficient for a relativistic spacetime to be singular (Hawking and Ellis
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1973). Then it immediately follows that there are “low-energy” breakdowns of GR.
This is because there exist spacetimes that are flat, inextendible, and geodesically
incomplete (Manchak 2014). Such spacetimes are singular but have vanishing curva-
ture (and curvature scalars). “High-energy physics” is not relevant.

How are we to think of such examples? Philosophers and mathematicians empha-
size such examples because they show that there is no necessary connection between,
say, curvature and geodesic incompleteness. On the other hand, one could reasonably
argue that such examples are “unphysical” and that physically realistic singularities
will always be “curvature singularities”—that is, that along all incomplete geodesics,
some curvature scalar will diverge in finite parameter time. Curvature singularities
are generically the ones that will model singular behavior that could arise via the
dynamical coevolution of matter and geometry because any kind of dynamical “col-
lapse” (or its time reverse, as in expanding FLRW spacetimes) will be associated with
unbounded curvature.

Making this sort of intuition fully precise, such that one can identify a subset of
just those solutions (singular or otherwise) to Einstein’s equation that are “physically
reasonable,” is notoriously difficult (Manchak 2011). But suppose we grant it for pres-
ent purposes. In what follows, let us stipulate that only curvature singularities
(broadly construed) are “physical.” Then it is plausible to think that physically sig-
nificant singularities will be resolved by quantum gravity because they are associated
with the high-energy regime.3 Of course, this is a claim about plausibility because we
do not have a theory of quantum gravity in which we can confirm that it holds. But
once again, suppose we grant it.

Does this mean that GR breaks down (only) in the high-energy regime, at least once
we restrict attention to physically reasonable spacetimes? It is not clear that it does
mean that. The reason is that singularities are only one of the problematic features of
GR. There is another kind of situation where, I would argue, the theory should also be
said to break down—or at least, it changes qualitatively in character (c.f. Hawking and
Ellis 1973, 265). The feature I have in mind is the existence of extendible maximally
globally hyperbolic spacetimes. The boundary of a maximally globally hyperbolic
spacetime across which the spacetime can be extended is known as a Cauchy horizon,
and so I will refer to the pathological feature of the theory as the existence of Cauchy
horizons.4

To see the problem, suppose one specifies initial data for the vacuum Einstein
equation on a surface S, satisfying the Einstein constraint equations. Then there
always exists a maximal solution �M; gab�, unique up to isometry, that agrees with
those initial data under some embedding of S into M (Choquet-Bruhat and Geroch
1969; Hawking and Ellis 1973). Any such solution is automatically globally hyperbolic,
which means that there exists a Cauchy surface—in this case, the image of S in M—
which is a surface such that every inextendible smooth timelike curve intersects that

3 What about other singular spacetimes? Perhaps those solutions will be eliminated by other means,
such as kinematic constraints necessary for quantization.

4 Cauchy horizons are often defined more generally, as the boundary of the domain of well-posedness
of any initial value problem. In that definition, Cauchy horizons are not necessarily problematic. I have in
mind specifically the situation where one has a Cauchy horizon in a maximally globally hyperbolic space-
time and the spacetime is extendible.
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surface exactly once. When this holds, the domain of dependence of S (i.e., the col-
lection of points whose field values are determined by the initial data on S) is the
entire manifold M.

There are now several possibilities. It is possible that �M; gab� is inextendible—that
is, there is no spacetime �M0; g0ab�, such that �M; gab� is isometric to some part of
�M0; g0ab�. In that case, the spacetime that results from evolving the initial data on
S is “as big as it can be.”5 This case is not problematic—or at least, insofar as it is
problematic, it is because curvature singularities form in the course of the evolution,
and we have already discussed that case. Another possibility is that the spacetime is
extendible, but it admits a globally hyperbolic extension. In that case, evolution could
continue in accordance with Einstein’s equation, but more data are needed: the sur-
face S has turned out to be too small to uniquely specify what happens beyond
�M; gab�. Further data need to be specified on a Cauchy surface for the extended space-
time. This case is also unproblematic.

But there is also another possibility. There exist cases in which, given initial data
on a surface S, the maximal Cauchy evolution for these initial data admits no globally
hyperbolic extension. Such spacetimes are maximally globally hyperbolic. But the fact
that the spacetime is maximally globally hyperbolic does not imply that it does not
admit any extension, �M0; g0ab�, at all. Of course, any extension will not be globally
hyperbolic. But it will nonetheless solve Einstein’s equation, everywhere, for some
stress–energy tensor Tab. The most famous example of a family of such spacetimes
is the Kerr family, which describes rotating black holes. In that case, as in many such
cases, the reason there is a Cauchy horizon is that the maximal extension of the maxi-
mally globally hyperbolic part of Kerr spacetime contains closed timelike curves
(O’Neill 1995). A causal pathology forbids further local evolution, but a solution none-
theless exists.

The boundary of the image of M in the extended spacetime manifold M0 is the
Cauchy horizon for this initial value problem. It is a surface beyond which the local
evolution of the specified initial data cannot continue. Given an extendible maximally
globally hyperbolic spacetime, there is no way to add more initial data to evolve the
spacetime further in time. No amount of information in the past of the Cauchy hori-
zon can uniquely determine how the universe will continue past that horizon—at
least, not in the sense of local evolution as determined by Einstein’s equation.
Nonetheless, the universe may continue past the horizon. The result is that the
future—that is, the extension past the Cauchy horizon—is not “determined,” in
the sense of local evolution given by the initial value formulation, by the past.
There is a breakdown of the Einstein evolution equations.

Suppose we stipulate that Cauchy horizons signal a breakdown of GR, for the rea-
sons just given or other ones. Where does this leave us, vis-à-vis quantum gravity and
the high-energy regime? First, note that Cauchy horizons are physical, insofar as they
appear in black-hole spacetimes that presumably at least approximately describe real
physical situations. But they are not necessarily high-energy phenomena, in the sense
that, like singularities, Cauchy horizons are logically unrelated to curvature. There
exist flat, extendible, maximally globally hyperbolic spacetimes, such as Misner

5 Although see Manchak (2017) for a discussion of the problems with such modal properties.
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spacetime. And even in Kerr spacetime, curvature is bounded in the vicinity of the
Cauchy horizon.

4. Cauchy horizons, strong cosmic censorship, and the breakdown of GR
We have just seen that Cauchy horizons, like singularities, are not necessarily high-
energy phenomena. Is there nonetheless a sense in which the “physically salient”
Cauchy horizons may be resolved by quantum gravity, just as we argued for singu-
larities? I suggest that the answer depends on the resolution of the SCCH. This obser-
vation, in turn, suggests a new perspective on the SCCH. In particular, if the
significance of the SCCH is taken to be that it establishes that Cauchy horizons
may be (generically) resolved by quantum gravity, then only some versions of the
SCCH are physically relevant.

The SCCH may be stated roughly as follows:
Conjecture. Generically, the maximal Cauchy evolution of (suitable) initial data is

(locally) inextendible.
This is not a precise conjecture. It involves the terms generically and suitable, which

have not been defined. This is not an idiosyncrasy of my presentation; to the contrary,
part of the work in settling the conjecture is to identify a precise formulation that
captures the underlying idea in a fruitful, physically meaningful way (see Wald
1984, ch. 12).

The SCCH should be interpreted as saying that, except for very special initial con-
ditions, GR is deterministic in the sense of local Cauchy evolution. In other words,
Cauchy horizons, of the problematic sort described previously, should be extremely
rare. This notion of “extremely rare” is supposed to be the converse of “generic” in
the conjecture; it is sometimes taken to mean that such spacetimes form a sparse set
in the space of all spacetimes, relative to some topology. This in turn means that
Cauchy horizons would be unstable under small perturbations, in the sense that if
one begins with a spacetime, such as the maximal Cauchy evolution of Kerr initial
data, which is maximally globally hyperbolic but also extendible, and one makes arbi-
trarily small changes to the initial data, the maximal Cauchy evolution of that modi-
fied spacetime should be inextendible. But this gloss does not fully specify what these
terms mean because they are defined only relative to some topology, which we have
not specified.

One physical intuition behind the SCCH comes from a famous argument due to
Simpson and Penrose (1973), based on numerical methods. The idea is that if a space-
time has a Cauchy surface, signals—in the form, say, of a matter field perturbing the
spacetime or gravitational waves—that approach the Cauchy horizon will be blue-
shifted to an arbitrarily high frequency near the horizon, generating curvature sin-
gularities. These singularities would then prevent the spacetime from continuing
beyond the horizon. More importantly, it would follow that generically, Cauchy hori-
zons would fall in the high-energy regime of GR. Curvature scalars would blow up as
one approaches the Cauchy horizon.

Many physically interesting formulations of the SCCH are still open. But recently,
Dafermos and Luk (2017) have settled one precise version. They show that, assuming
the exterior region (i.e., outside of the event horizon) of Kerr spacetimes is stable in a
way that they make precise, then for small perturbations to initial data in the interior
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region of a Kerr black hole, the maximal Cauchy evolution can be extended continu-
ously across the Cauchy horizon. As they put it, “it will follow that the C0 inextend-
ibility formulation of Penrose’s celebrated strong cosmic censorship conjecture is in
fact false” (abstract). If we interpret generic in terms of instability in a particular
topology (here, a Sobolev topology) and we take extendible to mean “continuously
(but not necessarily differentiably) extendible,” the SCCH fails.

This work is undoubtedly important progress on a very significant open question.
But given the foregoing, the version of the SCCH that Dafermos and Luk disprove is
not the physically salient version. That is because the existence of C0 extensions of
Kerr data across the Cauchy horizon is compatible with the Cauchy horizon being in
the “high-energy regime” because it may still be the case that curvature blows up as
one approaches the horizon. In other words, even though the metric may be extended
across the horizon, it may fail to be (second) differentiable at the horizon. If so, one
should still expect curvature singularities to form as one approaches the Cauchy hori-
zon in Kerr spacetime and thus for the Cauchy horizon to lie in the high-energy
regime.

These remarks suggest that the SCCH should be seen as the conjecture that Cauchy
horizons are high-energy phenomena because they are generically associated with
unbounded or undefinable curvature. From this perspective, falsifying the C0 conjec-
ture does not address the physically relevant question because only the Ck conjecture,
for k � 2, implies finite curvature extensions. Dafermos and Luk (2017) do not settle
this version of the conjecture. But they do make some highly suggestive remarks. In
particular, they argue that in their proof, there are hints that curvature does diverge
for small perturbations. They conjecture (but do not prove) that in Kerr spacetime,
the maximal Cauchy evolution of perturbed initial data will be C2 inextendible.6

Of course, even if interior Kerr initial data are locally C2 inextendible, it does not
follow that the C2 extendibility version of the SCCH is true, even for the topology that
Dafermos and Luk adopt. This is because their conjecture applies only to a single fam-
ily of examples, whereas the SCCH concerns generic initial data. But even so, it would
provide compelling evidence for what would be, from the perspective of this article,
the most physically relevant SCCH. In particular, it would show that a version of
Penrose’s argument would work in one case, suggesting it is likely to work in other
cases. If this is true, then if quantum gravity resolves curvature singularities, one
should expect quantum gravity to resolve generic Cauchy horizons as well.

5. Conclusion
This article has addressed two related questions, both salient in the context of the
idea that a successor theory to GR that modifies that theory in the high-energy regime
will “resolve” pathologies of the theory, such as singularities. These were, “What is
the high-energy regime of GR?” and “Are all pathologies of GR high-energy
phenomena?”

In response to the first question, I argued that unbounded curvature should be
taken to signal the “high-energy regime” of GR—even though curvature cannot

6 In recent conversations, Luk has expressed continued optimism that this conjecture is true and indi-
cated that he and his collaborators were close to settling it.
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generally be identified with energy. I also observed, however, that measuring “large
curvature” is subtle and that in general, there is no single scalar quantity whose
divergence can be identified with the high-energy regime. Instead, one must consider
both various curvature scalars and the behavior of the Riemann tensor itself to assess
whether a given region of a spacetime is “high energy.” One cannot identify a fixed
energy cutoff and claim that GR breaks down whenever a single scalar quantity
exceeds that value.

In response to the second question, I argued that, strictly speaking, the answer is
no. For instance, singularities can occur even in flat spacetime, and thus not all sin-
gularities are associated with divergent curvature. On the other hand, I also argued
that the most physically salient singularities are curvature singularities, which are
singularities with the property that curvature scalars diverge as one approaches
the singularity. These are the singularities that can emerge dynamically, such as
through gravitational collapse or via divergent matter fields. And these singularities
are associated, by definition, with large curvature and thus may be expected to be
resolved by a high-energy successor to GR.

Finally, I argued that whether another class of pathologies in GR—namely, the
Cauchy horizons in extendible maximally globally hyperbolic spacetimes—should
be associated with the high-energy regime in GR depends on the resolution of a par-
ticular version of the SCCH. This version of the SCCH would forbid the C2 extendibility
of the maximal Cauchy evolution of generic initial data. I noted that this is a weaker
conjecture than the C0 version recently shown to be false by Dafermos and Luk (2017),
and I argued that if a conjecture due to Dafermos and Luk, that perturbed Kerr initial
data are C2 inextendible, it would provide evidence for this version of the SCCH. The
upshot is a new interpretation of the physical significance of the SCCH, which is that if
the C2-extendibility version of the hypothesis holds, then the sort of breakdown of GR
signaled by failures of the local evolution equation may be resolved by a high-energy
successor theory.
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