Contents

Preface page xvii

Part I Plasma Physics Preliminaries

1. **Introduction**
 1.1 Motivation 3
 1.2 Thermonuclear fusion and plasma confinement 4
 1.2.1 Fusion reactions 4
 1.2.2 Conditions for fusion 6
 1.2.3 Magnetic confinement and tokamaks 9
 1.3 Astrophysical plasmas 11
 1.3.1 Celestial mechanics 11
 1.3.2 Astrophysics 13
 1.3.3 Plasmas enter the stage 15
 1.3.4 The standard view of nature 17
 1.4 Definitions of the plasma state 19
 1.4.1 Microscopic definition of plasma 19
 1.4.2 Macroscopic approach to plasma 23
 1.5 Literature and exercises 24

2. **Elements of plasma physics** 27
 2.1 Theoretical models 27
 2.2 Single particle motion 27
 2.2.1 Cyclotron motion 27
 2.2.2 Excursion: Basic equations of electrodynamics and mechanics 30
 2.2.3 Drifts, adiabatic invariants 33
 2.3 Kinetic plasma theory 38
 2.3.1 Boltzmann equation and moment reduction 38
 2.3.2 Collective phenomena: plasma oscillations 43
 2.3.3 Landau damping 46
 2.4 Fluid description 52
 2.4.1 From the two-fluid to the MHD description of plasmas 53
 2.4.2 Alfvén waves 57
 2.4.3 Equilibrium and stability 59
2.5 In conclusion 63
2.6 Literature and exercises 64

3 ‘Derivation’ of the macroscopic equations* 66
3.1 Two approaches* 66
3.2 Kinetic equations* 67
 3.2.1 Boltzmann equation* 67
 3.2.2 Moments of the Boltzmann equation* 70
 3.2.3 Thermal fluctuations and transport* 72
 3.2.4 Collisions and closure* 75
3.3 Two-fluid equations* 78
 3.3.1 Electron–ion plasma* 78
 3.3.2 The classical transport coefficients* 79
 3.3.3 Dissipative versus ideal fluids* 83
 3.3.4 Excursion: waves in two-fluid plasmas* 86
3.4 One-fluid equations* 95
 3.4.1 Maximal ordering for MHD* 95
 3.4.2 Resistive and ideal MHD equations* 99
3.5 Literature and exercises* 101

Part II Basic Magnetohydrodynamics 103

4 The MHD model 105
4.1 The ideal MHD equations 105
 4.1.1 Postulating the basic equations 105
 4.1.2 Scale independence 110
 4.1.3 A crucial question 112
4.2 Magnetic flux 113
 4.2.1 Flux tubes 113
 4.2.2 Global magnetic flux conservation 114
4.3 Conservation laws 116
 4.3.1 Conservation form of the MHD equations 116
 4.3.2 Global conservation laws 118
 4.3.3 Local conservation of magnetic flux 121
 4.3.4 Magnetic helicity 124
4.4 Dissipative magnetohydrodynamics 128
 4.4.1 Resistive MHD 128
 4.4.2 (Non-)conservation form of the dissipative equations* 131
4.5 Discontinuities 133
 4.5.1 Shocks and jump conditions 133
 4.5.2 Boundary conditions for plasmas with an interface 136
4.6 Model problems 138
 4.6.1 Laboratory plasmas (models I–III) 138
 4.6.2 Energy conservation for interface plasmas 141
 4.6.3 Astrophysical plasmas (models IV–VI) 143
5 Waves and characteristics
5.1 Physics and accounting
 5.1.1 Introduction
 5.1.2 Sound waves
5.2 MHD waves
 5.2.1 Symmetric representation in primitive variables
 5.2.2 Entropy wave and magnetic field constraint
 5.2.3 Reduction to velocity representation: three waves
 5.2.4 Dispersion diagrams
5.3 Phase and group diagrams
 5.3.1 Basic concepts
 5.3.2 Application to the MHD waves
 5.3.3 Asymptotic properties
 5.3.4 Self-gravity and contraction in homogeneous media*
5.4 Characteristics*
 5.4.1 The method of characteristics*
 5.4.2 Classification of partial differential equations*
 5.4.3 Characteristics in ideal MHD*
5.5 Literature and exercises

6 Spectral theory
6.1 Stability: intuitive approach
 6.1.1 Two viewpoints
 6.1.2 Linearization and Lagrangian reduction
6.2 Force operator formalism
 6.2.1 Equation of motion
 6.2.2 Hilbert space
 6.2.3 Proof of self-adjointness of the force operator
6.3 Spectral alternatives*
 6.3.1 Mathematical intermezzo*
 6.3.2 Initial value problem in MHD*
6.4 Quadratic forms and variational principles
 6.4.1 Expressions for the potential energy
 6.4.2 Hamilton’s principle
 6.4.3 Rayleigh–Ritz spectral variational principle
 6.4.4 Energy principle
6.5 Further spectral issues
 6.5.1 Normal modes and the energy principle*
 6.5.2 Proof of the energy principle*
 6.5.3 σ-stability
 6.5.4 Returning to the two viewpoints
6.6 Extension to interface plasmas
 6.6.1 Boundary conditions at the interface
Contents

6.6.2 Self-adjointness for interface plasmas 218
6.6.3 Extended variational principles 219
6.6.4 Application to the Rayleigh–Taylor instability 221

6.7 Literature and exercises 229

Part III Standard Model Applications 231

7 Waves and instabilities of inhomogeneous plasmas 233

7.1 Hydrodynamics of the solar interior 233
 7.1.1 Radiative equilibrium model 234
 7.1.2 Convection zone 237

7.2 Hydrodynamic waves and instabilities of a gravitating slab 239
 7.2.1 Hydrodynamic wave equation 239
 7.2.2 Convective instabilities 241
 7.2.3 Gravito-acoustic waves 242
 7.2.4 Helioseismology and MHD spectroscopy 245

7.3 MHD wave equation for a gravitating magnetized plasma slab 248
 7.3.1 Preliminaries 248
 7.3.2 MHD wave equation for a gravitating slab 252
 7.3.3 Gravito-MHD waves 258

7.4 Continuous spectrum and spectral structure 265
 7.4.1 Singular differential equations 265
 7.4.2 Alfvén and slow continua 269
 7.4.3 Oscillation theorems 273
 7.4.4 Cluster spectra* 278

7.5 Gravitational instabilities of a magnetized plasma slab 279
 7.5.1 Energy principle for a gravitating plasma slab 280
 7.5.2 Interchanges in shearless magnetic fields 283
 7.5.3 Interchange instabilities in sheared magnetic fields 285

7.6 Literature and exercises 289

8 Magnetic structures and dynamics of the solar system 292

8.1 Plasma dynamics in laboratory and nature 292

8.2 Solar magnetism 293
 8.2.1 The solar cycle 294
 8.2.2 Magnetic structures in the solar atmosphere 300
 8.2.3 Inspiration from solar magnetism 309
 8.2.4 Solar wind and heliosphere 309

8.3 Space weather 313
 8.3.1 Technological and economic implications 313
 8.3.2 Coronal mass ejections 314
 8.3.3 Numerical modelling of space weather 317
 8.3.4 Solar wind and planetary magnetospheres 320

8.4 Perspective 321

8.5 Literature and exercises 322
Contents

9 Cylindrical plasmas
9.1 Equilibrium of cylindrical plasmas
 9.1.1 Diffuse plasmas
 9.1.2 Interface plasmas
9.2 MHD wave equation for cylindrical plasmas
 9.2.1 Derivation of the MHD wave equation for a cylinder
 9.2.2 Boundary conditions for cylindrical interfaces
9.3 Spectral structure
 9.3.1 One-dimensional inhomogeneity
 9.3.2 Cylindrical model problems
 9.3.3 Cluster spectra*
9.4 Stability of cylindrical plasmas
 9.4.1 Oscillation theorems for stability
 9.4.2 Stability of plasmas with shearless magnetic fields
 9.4.3 Stability of force-free magnetic fields*
 9.4.4 Stability of the ‘straight tokamak’
9.5 Literature and exercises

10 Initial value problem and wave damping*
10.1 Implications of the continuous spectrum*
10.2 Initial value problem*
 10.2.1 Reduction to a one-dimensional representation*
 10.2.2 Restoring the three-dimensional picture*
10.3 Damping of Alfvén waves*
 10.3.1 Green’s function*
 10.3.2 Spectral cuts*
10.4 Quasi-modes*
10.5 Leaky modes*
10.6 Literature and exercises*

11 Resonant absorption and wave heating
11.1 Ideal MHD theory of resonant absorption
 11.1.1 Analytical solution of a simple model problem
 11.1.2 Role of the singularity
 11.1.3 Resonant ‘absorption’ versus resonant ‘dissipation’
11.2 Heating and wave damping in tokamaks and coronal loops
 11.2.1 Tokamaks
 11.2.2 Coronal loops and arcades
 11.2.3 Numerical analysis of resonant absorption
11.3 Alternative excitation mechanisms
 11.3.1 Foot point driving
 11.3.2 Phase mixing
 11.3.3 Applications to solar and magnetospheric plasmas
11.4 Literature and exercises

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Cylindrical plasmas</td>
<td>325</td>
</tr>
<tr>
<td></td>
<td>9.1</td>
<td>Equilibrium of cylindrical plasmas</td>
</tr>
<tr>
<td></td>
<td>9.1.1</td>
<td>Diffuse plasmas</td>
</tr>
<tr>
<td></td>
<td>9.1.2</td>
<td>Interface plasmas</td>
</tr>
<tr>
<td></td>
<td>9.2</td>
<td>MHD wave equation for cylindrical plasmas</td>
</tr>
<tr>
<td></td>
<td>9.2.1</td>
<td>Derivation of the MHD wave equation for a cylinder</td>
</tr>
<tr>
<td></td>
<td>9.2.2</td>
<td>Boundary conditions for cylindrical interfaces</td>
</tr>
<tr>
<td></td>
<td>9.3</td>
<td>Spectral structure</td>
</tr>
<tr>
<td></td>
<td>9.3.1</td>
<td>One-dimensional inhomogeneity</td>
</tr>
<tr>
<td></td>
<td>9.3.2</td>
<td>Cylindrical model problems</td>
</tr>
<tr>
<td></td>
<td>9.3.3</td>
<td>Cluster spectra*</td>
</tr>
<tr>
<td></td>
<td>9.4</td>
<td>Stability of cylindrical plasmas</td>
</tr>
<tr>
<td></td>
<td>9.4.1</td>
<td>Oscillation theorems for stability</td>
</tr>
<tr>
<td></td>
<td>9.4.2</td>
<td>Stability of plasmas with shearless magnetic fields</td>
</tr>
<tr>
<td></td>
<td>9.4.3</td>
<td>Stability of force-free magnetic fields*</td>
</tr>
<tr>
<td></td>
<td>9.4.4</td>
<td>Stability of the ‘straight tokamak’</td>
</tr>
<tr>
<td></td>
<td>9.5</td>
<td>Literature and exercises</td>
</tr>
<tr>
<td>10</td>
<td>Initial value problem and wave damping*</td>
<td>372</td>
</tr>
<tr>
<td></td>
<td>10.1</td>
<td>Implications of the continuous spectrum*</td>
</tr>
<tr>
<td></td>
<td>10.2</td>
<td>Initial value problem*</td>
</tr>
<tr>
<td></td>
<td>10.2.1</td>
<td>Reduction to a one-dimensional representation*</td>
</tr>
<tr>
<td></td>
<td>10.2.2</td>
<td>Restoring the three-dimensional picture*</td>
</tr>
<tr>
<td></td>
<td>10.3</td>
<td>Damping of Alfvén waves*</td>
</tr>
<tr>
<td></td>
<td>10.3.1</td>
<td>Green’s function*</td>
</tr>
<tr>
<td></td>
<td>10.3.2</td>
<td>Spectral cuts*</td>
</tr>
<tr>
<td></td>
<td>10.4</td>
<td>Quasi-modes*</td>
</tr>
<tr>
<td></td>
<td>10.5</td>
<td>Leaky modes*</td>
</tr>
<tr>
<td></td>
<td>10.6</td>
<td>Literature and exercises*</td>
</tr>
<tr>
<td>11</td>
<td>Resonant absorption and wave heating</td>
<td>399</td>
</tr>
<tr>
<td></td>
<td>11.1</td>
<td>Ideal MHD theory of resonant absorption</td>
</tr>
<tr>
<td></td>
<td>11.1.1</td>
<td>Analytical solution of a simple model problem</td>
</tr>
<tr>
<td></td>
<td>11.1.2</td>
<td>Role of the singularity</td>
</tr>
<tr>
<td></td>
<td>11.1.3</td>
<td>Resonant ‘absorption’ versus resonant ‘dissipation’</td>
</tr>
<tr>
<td></td>
<td>11.2</td>
<td>Heating and wave damping in tokamaks and coronal loops</td>
</tr>
<tr>
<td></td>
<td>11.2.1</td>
<td>Tokamaks</td>
</tr>
<tr>
<td></td>
<td>11.2.2</td>
<td>Coronal loops and arcades</td>
</tr>
<tr>
<td></td>
<td>11.2.3</td>
<td>Numerical analysis of resonant absorption</td>
</tr>
<tr>
<td></td>
<td>11.3</td>
<td>Alternative excitation mechanisms</td>
</tr>
<tr>
<td></td>
<td>11.3.1</td>
<td>Foot point driving</td>
</tr>
<tr>
<td></td>
<td>11.3.2</td>
<td>Phase mixing</td>
</tr>
<tr>
<td></td>
<td>11.3.3</td>
<td>Applications to solar and magnetospheric plasmas</td>
</tr>
<tr>
<td></td>
<td>11.4</td>
<td>Literature and exercises</td>
</tr>
</tbody>
</table>
Part IV Flow and Dissipation

12 Waves and instabilities of stationary plasmas 435
 12.1 Laboratory and astrophysical plasmas 437
 12.1.1 Grand vision: magnetized plasma on all scales! 437
 12.1.2 Laboratory and astrophysical plasmas 440
 12.1.3 Interchanges and the Parker instability 441
 12.2 Spectral theory of stationary plasmas 445
 12.2.1 Plasmas with background flow 445
 12.2.2 Frieman–Rotenberg formulation 448
 12.2.3 Self-adjointness of the generalized force operator* 453
 12.2.4 Energy conservation and stability 456
 12.3 The Spectral Web 462
 12.3.1 Opening up the boundaries 462
 12.3.2 Oscillation theorems in the complex plane 466
 12.4 Literature and exercises 471

13 Shear flow and rotation 473
 13.1 Spectral theory of plane plasmas with shear flow 473
 13.1.1 Gravito-MHD wave equation for plane plasma flow 473
 13.1.2 Kelvin–Helmholtz instabilities in interface plasmas 478
 13.1.3 Continua and the real oscillation theorem 480
 13.1.4 Spectral Web and the complex oscillation theorem 484
 13.2 Analysis of flow-driven instabilities in plane plasmas 486
 13.2.1 Rayleigh–Taylor instabilities of magnetized plasmas 488
 13.2.2 Kelvin–Helmholtz instabilities of ordinary fluids 489
 13.2.3 Combined instabilities of magnetized plasmas 494
 13.3 Spectral theory of rotating plasmas 498
 13.3.1 MHD wave equation for cylindrical flow in 3D 498
 13.3.2 Reduction to a second order differential equation 500
 13.3.3 Singular expansions* 502
 13.3.4 Doppler–Coriolis shift and solution path 505
 13.4 Rayleigh–Taylor instabilities in rotating theta-pinches 506
 13.4.1 Hydrodynamic modes (\(k = 0 \)) 507
 13.4.2 Magnetohydrodynamic modifications (\(k \neq 0 \)) 511
 13.5 Magneto-rotational instability in accretion discs 513
 13.5.1 Analytical preliminaries 514
 13.5.2 Numerical Spectral Web solutions 518
 13.6 Literature and exercises 523

14 Resistive plasma dynamics 525
 14.1 Plasmas with dissipation 525
 14.1.1 Conservative versus dissipative dynamical systems 525
 14.1.2 Stability of force-free magnetic fields: a trap 525
 14.2 Resistive instabilities 532
 14.2.1 Basic equations 532
Contents

16.2.3 Large aspect ratio expansion: external solution 642
16.3 Exact equilibrium solutions 647
 16.3.1 Poloidal flux scaling 647
 16.3.2 Soloviev equilibrium 652
 16.3.3 Numerical equilibria* 655
16.4 Extensions 660
 16.4.1 Toroidal rotation 660
 16.4.2 Gravitating plasma equilibria* 662
 16.4.3 Challenges 663
16.5 Literature and exercises 664

17 Linear dynamics of static toroidal plasmas 667
 17.1 “Ad more geometrico” 667
 17.1.1 Alfvén wave dynamics in toroidal geometry 667
 17.1.2 Coordinates and mapping 667
 17.1.3 Geometrical–physical characteristics 668
 17.2 Analysis of waves and instabilities in toroidal geometry 674
 17.2.1 Spectral wave equation 674
 17.2.2 Spectral variational principle 676
 17.2.3 Alfvén and slow continuum modes 677
 17.2.4 Poloidal mode coupling 680
 17.2.5 Alfvén and slow ballooning modes 683
 17.3 Computation of waves and instabilities in tokamaks 690
 17.3.1 Ideal MHD versus resistive MHD in computations 690
 17.3.2 Internal modes 695
 17.3.3 Edge localized modes 697
 17.3.4 Toroidal Alfvén eigenmodes and MHD spectroscopy 701
 17.4 Literature and exercises 704

18 Linear dynamics of toroidal plasmas with flow* 707
 18.1 Transonic toroidal plasmas 707
 18.2 Axi-symmetric equilibrium of transonic stationary states* 709
 18.2.1 Equilibrium flux functions* 709
 18.2.2 Equilibrium variational principle and rescaling* 712
 18.2.3 Elliptic and hyperbolic flow regimes* 715
 18.2.4 Expansion of the equilibrium in small toroidicity* 716
 18.3 Equations for the continuous spectrum* 722
 18.3.1 Reduction for straight-field-line coordinates* 722
 18.3.2 Continua of poloidally and toroidally rotating plasmas* 725
 18.3.3 Analysis of trans-slow continua for small toroidicity* 731
 18.4 Trans-slow continua in tokamaks and accretion discs* 737
 18.4.1 Tokamaks and magnetically dominated accretion discs* 738
 18.4.2 Gravity dominated accretion discs* 740
 18.4.3 Trans-slow Alfvén continuum instabilities 742
 18.5 Literature and exercises* 744
Contents

Part VI Nonlinear Dynamics
747

19 Turbulence in incompressible magneto-fluids
749

19.1 Incompressible hydrodynamics preliminaries
19.1.1 The incompressible hydro model
19.1.2 Two-dimensional formulations
19.1.3 ‘Wave’ analysis for incompressible Euler
19.1.4 Energy equation and Kolmogorov scaling
19.1.5 Selected numerical examples
19.2 Incompressible magnetohydrodynamics
19.2.1 Governing equations
19.2.2 Elsässer formulation
19.2.3 Kinematic MHD modelling
19.2.4 Dynamo aspects
19.3 Waves in incompressible MHD
19.3.1 Linear wave analysis
19.3.2 Nonlinear wave solutions and conservation laws
19.3.3 MHD turbulence scaling laws
19.4 Incompressible MHD simulations
19.4.1 Structure formation in incompressible MHD studies
19.4.2 Dynamo aspects continued
19.5 Extension to compressible MHD and concluding remarks
19.6 Literature and exercises

20 Computational nonlinear MHD
780

20.1 General considerations for nonlinear conservation laws
20.1.1 Conservative versus primitive variable formulations
20.1.2 Scalar conservation law and the Riemann problem
20.1.3 Numerical discretizations for scalar conservation
20.1.4 Finite volume treatments
20.2 Upwind-like finite volume treatments for one-dimensional MHD
20.2.1 The Godunov method
20.2.2 A robust shock-capturing method: TVDLF
20.2.3 Approximate Riemann solver schemes
20.2.4 Simulating 1D MHD Riemann problems
20.3 Multi-dimensional MHD computations
20.3.1 $\nabla \cdot B = 0$ condition for shock-capturing schemes
20.3.2 Example nonlinear MHD scenarios
20.3.3 Alternative numerical methods
20.4 Implicit approaches for extended MHD simulations
20.4.1 Semi-implicit methods
20.4.2 Simulating ideal and resistive instabilities
20.4.3 Global simulations for tokamak plasmas
20.5 Literature and exercises

21 Transonic MHD flows and shocks 837
 21.1 Transonic flows 837
 21.1.1 Characteristics and shocks 838
 21.1.2 Gas dynamic shocks 840
 21.1.3 Misnomers 845
 21.2 MHD shock conditions 846
 21.2.1 MHD discontinuities without mass flow 846
 21.2.2 MHD discontinuities with mass flow 848
 21.2.3 Slow, intermediate and fast shocks 852
 21.3 Advanced classification of MHD shocks 854
 21.3.1 Distilled shock conditions 854
 21.3.2 Time reversal duality 859
 21.3.3 Angular dependence of MHD shocks* 865
 21.3.4 Observational considerations of MHD shocks 870
 21.4 Example astrophysical transonic flows 871
 21.5 Literature and exercises 876

22 Ideal MHD in special relativity 879
 22.1 Four-dimensional space-time: special relativistic concepts 879
 22.1.1 Space-time coordinates and Lorentz transformations 880
 22.1.2 Four-vectors in flat space-time and invariants 882
 22.1.3 Relativistic gas dynamics and stress-energy tensor 885
 22.1.4 Sound waves and shock relations in relativistic gases 889
 22.2 Electromagnetism and special relativistic MHD 895
 22.2.1 Electromagnetic field tensor and Maxwell’s equations 895
 22.2.2 Ideal MHD in special relativity 900
 22.2.3 Wave dynamics in a homogeneous plasma 902
 22.2.4 Shock conditions in relativistic MHD 906
 22.3 Computing relativistic magnetized plasma dynamics 908
 22.3.1 Numerical challenges from relativistic MHD 910
 22.3.2 Pulsar Wind Nebulae modelling 911
 22.4 Outlook: General relativistic MHD simulations 915
 22.5 Literature and exercises 916

Appendices 919

A Vectors and coordinates 919
 A.1 Vector identities 919
 A.2 Vector expressions in orthogonal coordinates 920
 A.3 Vector expressions in non-orthogonal coordinates 927

B Tables of physical quantities 931

References 937

Index 964