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Introduction

The notion of the elliptic polylogarithm functions as a natural generalization of
the usual polylogarithms was introduced in [BL, 4.8]. In this article we study the
properties of these functions. Some of these properties are equivalent to theorems
of [BL] but I will prove them purely analytically.

The paper is organized as follows. In the first section we introduce some ver-
sion of usual polylogarithms which are more convenvient for generalization and
describe their properties. In the second section we define the elliptic polyloga
rithms and prove the simplest facts about them. The modular properties of eliptic
polylogarithms are discussed in the third section. In the fourth section we relate
eliptic polylogarithms with classical Eisenstein series.

I’ll usesomestandard notations: H := (7 € C, 37 > 0), &(t) := exp(2nit), z =
e(¢), g = &(7),w = €(n);

der) = Y 3+ PTG+ o)
j=—00
= R [[(- )3 - )L Y,
j=1
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268 ANDREY LEVIN
1. Debye polylogarithms

DEFINITION 1.1. Thenth Debyepolylogarithm A, (¢) isthemultivalued analytic
function on C\ Z given by the integral

oo yn—1 dt
A, (6) = /5 (n— 1)l exp(—2nit) — 1’

For ¢ in the upper half-plane thisis a one-valued function by choosing the vertical
path of integration from ¢ to ioo; it is clear that the integral converges and is
bounded by

A (€) = O(le[* T exp(=273(¢)),  (3(&) > D). D

We will use two single-valued branches A;f(¢) and A7 (£) which are defined on
the plane C without (—oo,0) U (1, c0) and (—oo, —1) U (0, co) respectively and
are the analytic continuations to the lower half-plane across (0, 1) or (—1, 0).

Recall the definition of the classical (Euler) polylogarithms as the analytic
continuations of the series

Liyn(z Zﬁ
Jj= 1]

Itisclear that Li1(z) = —log(1 — z) and Liy(z) = [y Lin—1(t)dlog(t).
The relation between A () and Li.(x) isthe following:

PROPOSITION 1.1.

n n—k
@ A0 = 30 gy (2r0) i),
no( #\n—=~k
) Lia(s) = (21" 32 LA

Recall that z = e(¢) = exp(2nif).
PROPOSITION 1.2.
1 ifn=1

@ A:(a—A;(a:{o w1 T9@<0

n—1 -k

) Anle+9) = X Fpha (@) 190> 04 €2,

© A+ (= 1)”1\ ( §) =

1
n!
Nlnl . <

@ vy Y S

7=0 k=0
(€ (n—1)dA,(§) =&dA, _4(8);

Herethe B,, are Bernoulli numbers.

1 (&" —( 1)"Bn);

https://doi.org/10.1023/A:1000193320513 Published online by Cambridge University Press


https://doi.org/10.1023/A:1000193320513

ELLIPTIC POLYLOGARITHMS: AN ANALYTIC THEORY 269

To prove this proposition we introduce the generating function
> 7 i exp(Kt)dt
=Y A (OE" = e
nZ::l n(6) ¢ exp(—2mit) — 1

and similarly for A*(¢; K). Then Proposition 1.2 can be reformulated in terms of
this generating function in avery simple manner.

PROPOSITION 1.3.

0 if3(¢) >0
@) A*(ﬁ;K)—A(é;K)Z{l i 5(6) < 0
(b) A€+ K)=exp(jK)A(EK), if3(E)>0,5€Z;
K el
© MEE) =A (6K + 5 — g
N-1 . .
(d) ' exp(%)A(&Jr%;K):A(N&%) if (&) > 0;

J
© (5 —¢) dAEx) =0

Proof. (a) The first statement is evident. The difference between the two con-
tinuations s equal to the residue of — S&RED A 4t the point £ = 0, which is 1.

exp(—2mit)—
(b) Putt’ = ¢ — 5. Then:

o [P exp(Kt)dt
AME+TK) = c+j exp(—2mit) — 1

oo exp(K (t' + 7)) dt’
¢ exp(—2mit’) —1

o exp(Kt')dt/
¢ exp(—2mit') — 1
= eXp(jK)A(& K).

The paths of integration are homotopical because of the restriction (&) > 0.
(c) Wefirst check that the differentials of both sides of the equation are equal.

= exp(K3j)

Indeed
AN K) = — g Pe SIS
. eXp(KE)\ _ _exp(K¢)dE
d <A (—&-K) + 282 ) = op(zrie 1+ PO
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and

1 B 1
Cexp(—2mif) — 1 exp(2ri€)

1
_1+

So our statement is valid with some function F'( K') instead of —%. To calculate

thisfunctionweput 0 > K > —2x. Thenexp(K¢) tendsto 0 as¢ tendsto —ioo,
SO

o exp(Kt)dt

F(K) = —ico &Xp(—2mit) — 1

Theintegral convergesat both limits according to the conditions on the imaginary
part of K. Thepath of integration goesacross (0, 1). Now consider the sameintegral
with the path of integration going across (—1, 0). The changeof ¢ to ¢+ 1 showsthat
the second integral is equal to exp(— K ) F(K). On the other hand, the difference
between these integrals equal sthe residue of the differential form — % at
the point ¢ = O, whichis1, soexp(—K)F(K) — F(K) = 1.

(d) Thisfollows from the identity

1 1 B 1
N = exp(-2mi(t + 4)) -1 exp(=2miNt) -1

together with the evident changes of variables.
(e) Thisisevident.

2. Elliptic polylogarithms

The elliptic polylogarithms are single-valued analytic functions on the universal
covering of apunctured universal elliptic curve. Wewill definethem as multival ued
analytic functionsonthepartial covering (Cx H)\ L, where L istherelativelattice
L:={¢=m+n7,7}|m,n € Z).Itiswell known that the universal covering
of the universal dlliptic curveisthe product C x H and its fundamental group is
the semidirect product SL»(Z) x Z?, actingon C x H in the usual way:

((22) @0)en - (55

10
((O 1) ,(m,n)) &7)=(E+m+nt,T1).

So the preimage of the zero sectionis L, and (C x H) \ L coversthe punctured
universal elliptic curve.
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DEFINITION 2.1. The(Debye) elliptic polylogarithm A, ,, (&, 7) withindex (m, n)
is the multivalued analytic function on (C x H) \ L which is given in the strip
(0 < S¢ < Q1) by the series

1 oo o
Mnl67) = — (ijms )+ (SIS A (<€ + )

= gn—ka Bm—l—k—i—l
1
+,§(n—k)!k!m+k+1+( )

n+1 Ban+l
n!(m + 1)

The convergence of the infinite seriesis an evident consequence of (1).
This formula defines a single-valued branch of A,, ,,(¢,7) on C x H without
the set
{5 :j7.+3|j €Z,s¢€ (—O0,0] U [1700)}

Remark 1. The origin of this definition is the following. The series

> FmAS(E A+ )

j=—00

diverges and one can regulariseit by the following trick:

Z FTA(E+ T)

j=—00

_ZJmA+§+JT + Z FAT (€ +4T)

j=0 j=—00
00 00
Z TAF(E+T) + D (~DITEYTAL (=€ 4+ )

FY DT )"~ (<1)"By),
=

where the last ‘equation’ follows from part (c) of Proposition 1.2. The first and
second series converge according to the bound (1) and the third, which is a series
of polynomialsin the variable j, can be defined using the formal equality

> i"=((=m) = (=1)"Bps1/(m + 1).

https://doi.org/10.1023/A:1000193320513 Published online by Cambridge University Press


https://doi.org/10.1023/A:1000193320513
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Remark 2. A one-valued version of theelliptical polylogarithmswasintroduced
by Bloch[B] inthecasem+n = 3andby Zagier [Z2] [Prop. 2(ii), (iii)] for arbitrary
m,n (See aso Theorem 4.2).

The generating function

AT X Y) = Y Apallm)(=Y) X
m30m1
isequal to
iexp(jX)Aﬂsw:— +21exp XA (=€ + 1Y)
i exp(—Y¢) ]

1 1
Y (exp(—YT +X)-1 -Yr +X>

vty (-3
e —1\e¥X-1 X/’

Evidently Ao1(€,7) = 257 109(0(¢, ) /n(7)), n(r) = ¢/* T15721(1 — o).
Many of the transformation properties of the A, ,,(£, 7) become simpler if we
introduce the modified generating function

exp(=Y¢) N 1
(—Y)(=Y7+ X) ' (expY — 1)X

AT X,Y)=AE 1 X,Y)+

=Y ep(fX)AT(E + 7Y +Zexp (—JX)A™ (=€ +jm;Y)
j=0 j=1
exp(—Y¢) 1 L1 1
-Y exp(-YT+X)—-1 expY —lexpX -1
The reason is that in the domain {0 < RX, 0 < R(-Y7 + X) < 2737}
Yjeze! X AT (€ + jm; —Y) convergesand equals A (¢, 7; X, Y).

+

PROPOSITION 2.1. (8) Let0 < $(¢) < (7). Then

A(&-{—l,T,X,Y) :e_Y (A(f,T,X,Y)—i—W) .

(b) Let0 < R((1) — S(§)R(7) < X(7). Then
A+mmX,Y)=e YA T X,Y).
(c) Let0 < (&) < (7). Then

NZ ( )A(§+N,TXY): (Nf,NﬂX,%).

=0

<.
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(d)
0 0
((9_Y +7’8—X +§> dgyTA(f,T,X,Y) =0.

Sketch of the proof. Statement (a) is obtained after a simple calculation by
summing part (b) of Proposition 1.3 over theargumentsé + 5 or —&+j7. Statement
(b) istheresult of substituting ¢ + 7 for ¢ in the definition and changing the limits
of summation in the first and second sums, part (c) of Proposition 1.3. Statement
(c) is obtained after a simple calculation by summing part (d) of Proposition 1.3
over the arguments ¢ + j7. Statement (d) is obtained after a simple calculation by
summing part (e) of Proposition 1.3 over the arguments ¢ + j7 or —€ + 5.

3. Modular propertiesof éliptic polylogarithms

Consider the following function F'(&,n, 7)

1 1
F =1- -
(577777_) 1_Z 1_w
o
— Z (MW" — 27w g™ ST > FE> 0,37 > Sy > 0.
m,n=1

Then [Z1] F can be continued to a meromorphic function with poles at divisors
E=m+nrandn=m'+n'rand

_ 0000 + 1)

FEm D = =g 700,7) @
The transformation properties of F'(¢,n, 7) are very simple:
F(+1n,71)=F(¢n,), ©)
F(§ +7,n,7) = exp(—2min) F (¢, n,7), 4)
13 i at +b
F(CT—i-d7 et +d’ CT+d>
— (er +d) exp<2m'6:i7 d)F(g, 7, 7). 5)

F(&,n,7) can be expressed as the exponential of the generating function of Eisen-
stein functions Ey(¢,7) = S, (1/(w + £)F) and Eisenstein series e, (1) =
¥ (1/(w)¥) (B, denotes Eisenstein summation [W]):

€wel

F(e, 1) = % exp (— > T e - ek(7)>> . ©)

=1
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Thisstatementisasimplecorollary of Zagier's* Logarithmic Formula for (&, n, 7)
[Z1, Section 3, Theorem (viii)] and the power seriesfor E,, [W, Chapter 111, formula

(10)].
PROPOSITION 3.1.
0 ) o YT+ X
@ FAEmXY) = e P (6 —5 =), U

O AEmx ) =e Lr(e T ). ®

0X 2mi
The proof is adirect simple calculation.
This proposition together with (6) gives an expression for the derivatives of
elliptic polylogarithms as polynomialsin Eisenstein functions.
We now consider the transformation of A (&, 7; X, Y") under the group SL2(Z),
acting on the variables £, 7 in the standard way and on the variables X, Y ason a

- X
column-vector ().

THEOREM 3.1. Let M = (* %) belong to SL»(z). Then

¢ at + b >_ )
A(cr—{—d’ CT+b,aX+bY,CX+dY =AE X, Y)+epy(X,Y),

wherecy,(X,Y) isa Laurent seriesin X and Y with rational coefficients.

Sketch of the proof. Wefirst provethat ¢y, (X, Y'), which can be defined asthe
difference

A<L,‘”—+b;ax+bxcx+dy> A, TX,Y),
ct+d ct+0b

doesn’t depend on ¢ and 7. This means that the differential d¢ ;A (£, 7; X,Y)
satisfies the following property:

de A (cfm, Z:j:saX +bY,cX + dY) —de AT, X,Y)=0.
One can deduce this equality from (5) using the expressions for derivatives from
Proposition 3.1. So we have proved that ¢y, (X,Y") is a formal function in X
and Y with complex coefficients ¢y, (X,Y) € C((X,Y)) (C((X,Y)) denote the
completion of C((X,Y"))).

To prove the rationality of these coefficients we observethat M — ¢y, (X,Y)
is a cocycle of SL,(7Z) with coefficients in C((X,Y")). Indeed, this is a cocycle
because this is a coboundary. So it is enough to check the rationality for a set of
generators of SLo(Z):

=(33) T=(31)
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The calculation of ¢ (X,Y) is a simple exercise like the proof of part (a) of
Proposition 2.1

1

1 1
cr(X,Y) = exp(Y) — 1 <exp(X +Y)-1 B exp(X) — 1> '

To calculate cg(X,Y) we use the following trick (in which we use that SL»(%)
intertwines the action of z2):

s, v) = A (S5 H-vx) - A - 1Y)
(use Prop. 2.1.(b)) = e" (A <§,—%; -Y, X))
(useProp. 2.1.(a)) — <eYA(§,T;X, Y) - W)_J

= & (A TXY) +es(X,Y)
1
o Y T - -
(aerxy) - o)
1

_ aY _
= e CS(X,Y)+ exp(X) 1

We have deduced an equation for cg(X,Y') with an evident solution which is a
Laurent series with rational coefficients:

es(X,Y) =~ (exp<;> =) (exp(); = ®)

We now describe the action of isogenies on the elliptic polylogarithms. First we
mention that the parts (a) and (b) of Proposition 2.1 imply the following result for
m,n € Z

exp(mY +nX)AE+m+nr, 7, X,Y)—AE, 7, X,Y) e QX,Y).

Let M = (* }) belongto My(Z), N = det M = ad — bc # 0. Let Kpy C QP
be a set of representatives of the kernel of the map M: (Q/z)? — (Q/Z)2. We
denote elements of /Cpy by v = (]). Consider two representatives v; and vy of
some element in the kernel. The difference v1 — v» belongsto Z and consequently

e(rlY—Slx)A@ + 71— 817, T, X, Y)
_e(T2Y—52X)A(§ + 1o — 827, T, X, Y)
belongsto Q((X,Y)).
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THEOREM 3.2. Let M € M>(Z), N = detM = ad — bec # 0. Than, with
notations as above,

Z exp(rY —sX)A(& +r —s7,7; X,Y)
veE s
—A(N § ar+b aX +bY cX +dY
“\Cer+der+b’ N 7 N

) e y))
for some and, consequently, for any choice of KCj;.

Sketch of proof. It is well-known [L] that every element M of M>(Z),
det M # 0 can be decomposed in a product of ‘standard’ elements (7§ 9) and
elements of SL,(Z). For ‘standard’” elements the statement of this Theorem was
proved in the part (c) of Proposition 2.1 and for elements of SL;(Z) this statement
isequal to the previoustheorem. Hence we must show that if our statement is valid
for two matrices, it isvalid for their product. Introduce some notation. L et

=TS ST
s ’ S2 152 172
a b

be the usual skewsymmetric pairing. It is easy to check that for M = (0 ) €
M>(Z),ad — bc = N # 0, (Mv1, Mvy) = N (v, v2). Clearly

MG):(M@(%).

Put M3 = My1M> and K, = ICMi; M; = (ai bi), N; = a;d; — b;c;. We can

i di
choosefor K3 the set ‘
ridy — s1b2
5 4 7”102]\_[231&2 =v2 + Mz_lvl <Zz> =v; €K;
2 TN,
Then
% en((m (3 )))a(ex (7)) mixy)
v3€EK3
=Y T e <<vz+ M; Yoy, (§)>)
v2EK2 11EK,

xA<£+<vz+M{lv1,<1>>,T;X,Y> =
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= > ep <N2—1 <M2M2_lvl,M2 <§§)>>

11EKL,

N2¢ + <M2M2101, M> <1>>
xA
coT + d2

?

azm + by axX + bY X +dY
coT + by’ N> ’ N

— -1 axX + bY
= 3w (e (55 Ty )

v11EK1

a2T + b

N P —

A +(wvy, | coT +d2 ,
coT + dp 1

+ CMZ(X, Y)

a7 + by axX +bY X +dpY
coT + by’ N> ’ No

=A

<N § a37 + b3 azX +b3Y c3X + d3Y>
303T+d3 caT + b3’ N3 ’ N3
Here = denotes congruence mod Q((X,Y")).

4. Eisenstein—Kronecker seriesand elliptic polylogarithms

Werecall aclassical result of Kronecker [W]: Denote by L the lattice generated by
land 7. Any n € C determinesacharacter x,, on L

Xn(€) = exp(zm L/ f”)

Then [W, Z1] the Eisenstein—Kronecker series of weight 1 which is given by

5” Z w+§

wel
(where X5, denotes Eisenstein summation; see [W]) expresses as

1) Fen.m) (10)

Ki(&,n,1) = 2mi exp<2m§
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(F was defined in the beginning of Section 3). One can represent this function as
the generating function with respect to the variable ¢ of the usual Eisenstein series

ex(n,7) = Ezue[, e(Xn(w)/wk):

} ]XTI
Tt ZZ e
1 ’X( )

E(fa 7y X, Y) = eSX+TYA(£a 7, X, Y)

Now we describe the relation between elliptic polylogarithms and indefinite
Eichler—Shimuraintegrals of Eisenstein series.

Let T be a congruence subgroup and G(7) a modular form of weight & with
respect to T'. Then the vector-valued differential form G (7)(=Y7 + X)*2dr
is -invariant. The indefinite Eichle—Shimuraintegral G(7, X,Y’) of G(7) isthe
indefinite integral of this form:

d.G(1,X,Y) = G(r)(=YT + X)F2dr.

Let r and s be rational. Then the Eisenstein series e’ (1) = ey (r + s7,7) isa
modular form of weight % for some congruence subgroup.

THEOREM 4.1. If (r,s) # (0,0) then E(&, 7; X, Y')|¢— 1 is the modified gen-
erating function for the indefinite Eichler—Shimura integrals of Eisenstein series

e’ (7):
—7

o LY - D)t (2

2ETXY) = 5
k=2

and 240, 7; X,Y) = (E(,, 7, X, Y) — 5 log(2mi€)) e~ is the modified gener-
ating function of Eisenstein serieSe%o(r) of the level 1:

o
—T
B0, X,Y) = )% Yk — 1)(2mi) *EP0
0,7, X,Y) X(—YT+X)+kz::2( )"k = 1)(2mi) EL

d:E° = e (1) (=Y + X)" 2dr.
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The proof isadirect calculation of d,Z™*(7, X, Y") using Proposition 3.1 and (11).
Now we have expressed the nonholomorphic Eisenstein series

exi(&,7) = Z’ Xn(®)

€ kol
weL wrw

in terms of elliptic polylogarithms. Evidently

KO(nugvl) = Ze X&(w)

weL |w + T]|2

is the generating function of e, ; (£, 7) with respect to variables n, 77:

Xe(w) 1 e ke v Xxe(w)
= —+ (=) (=) g
Ze|w+77|2 |77|2 u%,ek;o wk+1wl+1

1 .- 1 xe(w)
Tt Z (—U)k(—ﬁ)lz e e (13)
2 P L g

Letusconsider X andY asimaginary objects, thismeansthat they areantiinvari-
ant with respect to the action of the complex conjugation, soif we puty = =L +X

= 2mi
thenn = =LEX and conversely X = 2mi =11, —Y = 2mi =L,

271

THEOREM 4.2. Consider X and Y asexpressionsinn and 77 as described above.
Then

T—T

E(faT;XaY) - E(&T : _Xa _Y) = _WKO(na£7 1)

Sketch of the proof. A direct calculation shows that both sides of the equality
satisfy the following conditions:

(i) They are solutions of the system of differential equations

( 0 2w B 1
(8_§ - 7._?77>f = %Kl(nagal)
0 2mi 1
(3_g+ TT}”) f = —5Ki(=n,81)
13 7 (14)
9, 6-80 n=nd), 1 9KingY)
or 17—706 T—T7T0n — (2mi)? on
0 5_5 0 U—ﬁ 0 o 1 8K1(_777€71)
\<§+T—78_§+T—?3_ﬁ>f__(2m')2 on

(if) They are modular invariant.
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For the right-hand side this statement is the result of a simple calculation. For
the left hand side (i) is the corollary of Proposition 3.1 and (10) and (ii) is the
corollary of the modular properties of eliptic polylogarithms (Theorem 3.1); the
additional term ¢y, (X,Y) — cpr (— X, —Y") vanishes, becausec,, isareal function
and X and Y areimaginary.

So the difference between the rhs and the Ihs of the conclusion of the theorem
is modular invariant and is a solution of the homogeneous version of (14). Any
solution of the homogeneous equationsis given by

g (77 — Z) exp (—271'2'77]5 — Z§>
T—T T—T
with an arbitrary function g. The modular invariance show that g is some constant
C'. The simplest way to show the vanishing of C' is to consider the constant term
in the n, 77 expansion and to apply the Kronecker limit formula. We will prove the
vanishing of C' in another way.

Suppose ¢ and ) arereal, 7 isimaginary. Consider the asymptotic of both sides
as 7 tends to ico. The first terms are proportional to 7, the second terms don’t
depend on 7 and other terms tend to zero. We will provethat first and second terms
of both sides coincide, so the limit of the difference vanishes and consequently the
differenceis zero.

Ifnané aereal thenY = 0and s = 0, sO

E(¢,7,X,0) = AT X,0)

1 e . ad
= 57 | S emlix) log(1 - z¢%) + 3 exp(—iX) log(1 — = '¢’)
LU W et
exp X 1 1
Tepx-17 T Yepx—1

and
E(fa T, Xa O) - E(fa T, _Xa 0)

- 2_71m (i exp(;.X)(log(1 — z¢’) +log(1 — z~*¢’))
j=0

+ i exp(—jX)(log(1— 2z *¢’) + log(1 — qu)))
j=1

- exp X
(expX —1)2
epx 1
T(epr —1)22mi

(log(1— z) +log(1—z71)) + O(r7Y).
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On the other hand x¢(m + n71) = exp(—2ming) andif n # 0

1 1 < 1,1 )
Im+nt+n2 2nt\ m+nr+n m-nr+n/)’

We used above our conditionson &,  and 7. So

Ko(ﬁa&l)
e 1
= 2 gy

m=—oQ

exp(2ming) 1 1
(Z+Z> 2nTt ;<_m+n7+n+m—n7+n>

n>0 n<0

— (2ri)? exp(2rin) (Z + Z)

(exp(2min) _1 n>0 n<0

exp(2miné)
X e —
2nt
(_ Z,eXp(Zm'(n +n7))+1 - exp(2ri(n —nt)) + l>
exp(2ri(n +nt1)) — 1 exp(2ri(n —n1)) — 1)
In this computation we use the classical representation of cotangent as an infinite

sum, which is equivalent to the Euler product formula for sine, see e.g. [W].
According to our restriction 27in = X. If 7 tends to ioco, mw tends
p2mi(n+nT)—1

to — sign (n)mi and we get:

KO(nu 57 1)

exp(2min) n 1
(exp(2min) — 1)2 27

X ( Z —exp(Zm'nf) (wi — (—mi)) + Z —eXp(Zm'nf) (—mi — 7rz)>

= (2mi)?

n>0 n n<0 n
+O(T_2)
_ (2mi)? exp(2min)  2mi

(exp(2min) — 1)2 2r
x(log(1— z) +log(1— z71)) + O(r72).

We proved that the asymptotics of both sides of equation are equal. This ends the
proof.
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Remark. The statement of the previous Theorem means that the elliptic analogs
of the Bloch—Wigner—Zagier polylogarithms are nonholomorphic Eisenstein series.
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