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Introduction

The notion of the elliptic polylogarithm functions as a natural generalization of
the usual polylogarithms was introduced in [BL, 4.8]. In this article we study the
properties of these functions. Some of these properties are equivalent to theorems
of [BL] but I will prove them purely analytically.

The paper is organized as follows. In the first section we introduce some ver-
sion of usual polylogarithms which are more convenvient for generalization and
describe their properties. In the second section we define the elliptic polyloga-
rithms and prove the simplest facts about them. The modular properties of elliptic
polylogarithms are discussed in the third section. In the fourth section we relate
elliptic polylogarithms with classical Eisenstein series.

I’ll use some standard notations:H := (� 2 C ;=� > 0), e(t) := exp(2�it); z =
e(�); q = e(�); w = e(�);

�(�; �) =
1X

j=�1

e( 1
2 (j +

1
2)

2� + (j + 1
2)�)

= q1=8(z1=2 � z�1=2)
1Y
j=1

(1� qj)(1� qjz)(1� qjz�1):

(Kb. 2) INTERPRINT: J.N.B. PIPS Nr.: 105712 MATHKAP
comp4014.tex; 17/06/1997; 10:09; v.6; p.1

https://doi.org/10.1023/A:1000193320513 Published online by Cambridge University Press

https://doi.org/10.1023/A:1000193320513


268 ANDREY LEVIN

1. Debye polylogarithms

DEFINITION 1.1. Thenth Debye polylogarithm�n(�) is the multivalued analytic
function on C nZ given by the integral

�n(�) =

Z i1

�

tn�1

(n� 1)!
dt

exp(�2�it)� 1
:

For � in the upper half-plane this is a one-valued function by choosing the vertical
path of integration from � to i1; it is clear that the integral converges and is
bounded by

�n(�) = O(j�jn�1 exp(�2�=(�)); (=(�) > 1): (1)

We will use two single-valued branches �+n (�) and ��n (�) which are defined on
the plane C without (�1; 0) [ (1;1) and (�1;�1) [ (0;1) respectively and
are the analytic continuations to the lower half-plane across (0; 1) or (�1; 0).

Recall the definition of the classical (Euler) polylogarithms as the analytic
continuations of the series

Lin(z) =
1X
j=1

zj

jn
:

It is clear that Li1(z) = � log(1 � z) and Lin(z) =
R z

0 Lin�1(t)d log(t).
The relation between ��(�) and Li�(�) is the following:

PROPOSITION 1.1.

(a) �n(�) =
nX

k=1

�n�k

(n� k)!
(�2�i)�kLik(z);

(b) Lin(z) = (�2�i)n
nX

k=1

(��)n�k

(n� k)!
�k(�):

Recall that z = e(�) = exp(2�i�).

PROPOSITION 1.2.

(a) �+n (�)� ��n (�) =

(
1 if n = 1

0 if n 6= 1
if =(�) < 0;

(b) �n(� + j) =
n�1X
k=0

jk

k!
�n�k(�); if =(�) > 0; j 2 Z;

(c) �+n (�) + (�1)n��n (��) =
1
n!(�

n � (�1)nBn);

(d) Nn�1
N�1X
j=0

n�1X
k=0

(�j)k

k!
�n�k

�
� +

j

N

�
= �n(N�); if =(�) > 0;

(e) (n� 1) d�n(�) = � d�n�1(�);

Here the Bn are Bernoulli numbers.
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To prove this proposition we introduce the generating function

�(�;K) =
1X
n=1

�n(�)K
n�1 =

Z i1

�

exp(Kt) dt
exp(�2�it)� 1

and similarly for ��(�;K). Then Proposition 1.2 can be reformulated in terms of
this generating function in a very simple manner.

PROPOSITION 1.3.

(a) �+(�;K)� ��(�;K) =

(
0 if =(�) > 0;

1 if =(�) < 0;

(b) �(� + j;K) = exp(jK)�(�;K); if =(�) > 0; j 2 Z;

(c) �+(�;K) = ��(��;�K) +
e�K

K
�

eK

eK � 1
;

(d)
N�1X
j=0

exp
�
�jK

N

�
�

�
� +

j

N
;K
�
= �

�
N�;

K

N

�
if =(�) > 0;

(e)
�

@

@K
� �

�
d��(�;K) = 0:

Proof. (a) The first statement is evident. The difference between the two con-
tinuations is equal to the residue of � exp(Kt) dt

exp(�2�it)�1 at the point t = 0, which is 1.
(b) Put t0 = t� j. Then:

�(� + j;K) =

Z i1

�+j

exp(Kt) dt
exp(�2�it)� 1

=

Z i1

�

exp(K(t0 + j)) dt0

exp(�2�it0)� 1

= exp(Kj)

Z i1

�

exp(Kt0) dt0

exp(�2�it0)� 1

= exp(jK)�(�;K):

The paths of integration are homotopical because of the restriction =(�) > 0.
(c) We first check that the differentials of both sides of the equation are equal.

Indeed

d�+(�;K) = �
exp(K�) d�

exp(�2�i�)� 1
;

d

�
��(��;�K) +

exp(K�)

K

�
=

exp(K�) d�
exp(2�i�)� 1

+ exp(K�) d�
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270 ANDREY LEVIN

and

�
1

exp(�2�i�)� 1
=

1
exp(2�i�)� 1

+ 1:

So our statement is valid with some function F (K) instead of� eK

eK�1 . To calculate
this function we put 0 > =K > �2�. Then exp(K�) tends to 0 as � tends to�i1,
so

F (K) =

Z i1

�i1

exp(Kt) dt
exp(�2�it)� 1

:

The integral converges at both limits according to the conditions on the imaginary
part ofK . The path of integration goes across (0; 1). Now consider the same integral
with the path of integration going across (�1; 0). The change of t to t+1 shows that
the second integral is equal to exp(�K)F (K). On the other hand, the difference
between these integrals equals the residue of the differential form �

exp(Kt)

exp(�2�it)�1 at
the point t = 0, which is 1, so exp(�K)F (K)� F (K) = 1.

(d) This follows from the identity

1
N

N�1X
j=0

1

exp(�2�i(t+ j

N
))� 1

=
1

exp(�2�iNt)� 1

together with the evident changes of variables.
(e) This is evident.

2. Elliptic polylogarithms

The elliptic polylogarithms are single-valued analytic functions on the universal
covering of a punctured universal elliptic curve. We will define them as multivalued
analytic functions on the partial covering (C �H)nL, whereL is the relative lattice
L := (f� = m + n�; �g jm;n 2 Z). It is well known that the universal covering
of the universal elliptic curve is the product C �H and its fundamental group is
the semidirect product SL2(Z)n Z2, acting on C �H in the usual way:  

a b

c d

!
; (0; 0)

!
(�; �) =

�
�

c� + d
;
a� + b

c� + d

�
;

  
1 0

0 1

!
; (m;n)

!
(�; �) = (� +m+ n�; �):

So the preimage of the zero section is L, and (C �H) nL covers the punctured
universal elliptic curve.
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ELLIPTIC POLYLOGARITHMS: AN ANALYTIC THEORY 271

DEFINITION 2.1. The (Debye) elliptic polylogarithm�m;n(�; �)with index (m;n)
is the multivalued analytic function on (C � H) n L which is given in the strip
(0 < =� < =�) by the series

�m;n(�; �) =
1
m!

0
@ 1X
j=0

jm�+n (� + j�) + (�1)m+n+1
1X
j=1

jm��n (�� + j�)

+
nX

k=0

�n�k�k

(n� k)!k!
Bm+k+1

m+ k + 1
+ (�1)n+1 BnBm+1

n!(m+ 1)

!
:

The convergence of the infinite series is an evident consequence of (1).
This formula defines a single-valued branch of �m;n(�; �) on C �H without

the set

f� = j� + s j j 2 Z; s 2 (�1; 0] [ [1;1)g

Remark 1. The origin of this definition is the following. The series

1X
j=�1

jm�+n (� + j�)

diverges and one can regularise it by the following trick:

1X
j=�1

jm�+n (� + j�)

=
1X
j=0

jm�+n (� + j�) +
�1X

j=�1

jm�+n (� + j�)

=
1X
j=0

jm�+n (� + j�) +
1X
j=1

(�1)(m+n+1)jm��n (�� + j�)

+
1X
j=1

1
n!
(�1)mjm((� � j�)n � (�1)nBn);

where the last ‘equation’ follows from part (c) of Proposition 1.2. The first and
second series converge according to the bound (1) and the third, which is a series
of polynomials in the variable j, can be defined using the formal equality

1X
j=1

jm = �(�m) = (�1)mBm+1=(m+ 1):

comp4014.tex; 17/06/1997; 10:09; v.6; p.5

https://doi.org/10.1023/A:1000193320513 Published online by Cambridge University Press

https://doi.org/10.1023/A:1000193320513


272 ANDREY LEVIN

Remark 2. A one-valued version of the elliptical polylogarithms was introduced
by Bloch [B] in the casem+n= 3 and by Zagier [Z2] [Prop. 2(ii), (iii)] for arbitrary
m;n (see also Theorem 4.2).

The generating function

�(�; � ;X;Y ) =
X

m>0;n>1

�m;n(�; �)(�Y )
n�1Xm

is equal to
1X
j=0

exp(jX)�+(� + j� ;�Y ) +
1X
j=1

exp(�jX)��(�� + j� ;Y )

+
exp(�Y �)

�Y

�
1

exp(�Y � +X)� 1
�

1
�Y � +X

�

+
1

eY � 1

�
1

eX � 1
�

1
X

�
:

Evidently �0;1(�; �) =
1

2�i log(�(�; �)=�(�)), �(�) = q1=24Q1
j=1(1� qj).

Many of the transformation properties of the �m;n(�; �) become simpler if we
introduce the modified generating function

� (�; � ;X;Y ) = �(�; � ;X;Y ) +
exp(�Y �)

(�Y )(�Y � +X)
+

1
(expY � 1)X

=
1X
j=0

exp(jX)�+(� + j� ;�Y ) +
1X
j=1

exp(�jX)��(�� + j� ;Y )

+
exp(�Y �)

�Y

1
exp(�Y � +X)� 1

+
1

expY � 1
1

expX � 1
:

The reason is that in the domain f0 < <X; 0 < <(�Y � + X) < 2�=�g
�j2Ze

jX�+(� + j� ;�Y ) converges and equals � (�; � ;X;Y ).

PROPOSITION 2.1. (a) Let 0 < =(�) < =(�). Then

� (� + 1; � ;X;Y ) = e�Y
�
� (�; � ;X;Y ) +

1
exp(X)� 1

�
:

(b) Let 0 < <(�)=(�)�=(�)<(�) < =(�). Then

� (� + �; � ;X;Y ) = e�X� (�; � ;X;Y ):

(c) Let 0 < =(�) < =(�). Then

N�1X
j=0

exp
�
jY

N

�
�
�
� + j

N
; � ;X;Y

�
= �

�
N�;N� ;X;

Y

N

�
:

comp4014.tex; 17/06/1997; 10:09; v.6; p.6

https://doi.org/10.1023/A:1000193320513 Published online by Cambridge University Press

https://doi.org/10.1023/A:1000193320513


ELLIPTIC POLYLOGARITHMS: AN ANALYTIC THEORY 273

(d)�
@

@Y
+ �

@

@X
+ �

�
d�;�� (�; � ;X;Y ) = 0:

Sketch of the proof. Statement (a) is obtained after a simple calculation by
summing part (b) of Proposition 1.3 over the arguments �+j� or��+j� . Statement
(b) is the result of substituting � + � for � in the definition and changing the limits
of summation in the first and second sums, part (c) of Proposition 1.3. Statement
(c) is obtained after a simple calculation by summing part (d) of Proposition 1.3
over the arguments � + j� . Statement (d) is obtained after a simple calculation by
summing part (e) of Proposition 1.3 over the arguments � + j� or �� + j� .

3. Modular properties of elliptic polylogarithms

Consider the following function F (�; �; �)

F (�; �; �) = 1�
1

1� z
�

1
1� w

�
1X

m;n=1

(zmwn � z�mw�n)qmn =� > =� > 0;=� > =� > 0:

Then [Z1] F can be continued to a meromorphic function with poles at divisors
� = m+ n� and � = m0 + n0� and

F (�; �; �) =
�0(0; �)�(� + �; �)

�(�; �)�(�; �)
: (2)

The transformation properties of F (�; �; �) are very simple:

F (� + 1; �; �) = F (�; �; �); (3)

F (� + �; �; �) = exp(�2�i�)F (�; �; �); (4)

F

�
�

c� + d
;

�

c� + d
;
a� + b

c� + d

�

= (c� + d) exp
�

2�i
c��

c� + d

�
F (�; �; �): (5)

F (�; �; �) can be expressed as the exponential of the generating function of Eisen-
stein functions Ek(�; �) = �ew2L(1=(w + �)k) and Eisenstein series ek(�) =

�0ew2L(1=(w)
k) (�e denotes Eisenstein summation [W]):

F (�; �; �) =
1
�

exp

 
�

1X
k=1

(��)i

i
(Ek(�; �)� ek(�))

!
: (6)
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274 ANDREY LEVIN

This statement is a simple corollary of Zagier’s ‘Logarithmic Formula’ forF (�; �; �)
[Z1, Section 3, Theorem (viii)] and the power series forEn [W, Chapter III, formula
(10)].

PROPOSITION 3.1.

(a)
@

@�
� (�; � ;X;Y ) = e�Y �F

�
�;
�Y � +X

2�i
; �

�
; (7)

(b)
@

@�
� (�; � ;X;Y ) = e�Y �

@

@X
F

�
�;
�Y � +X

2�i
; �

�
: (8)

The proof is a direct simple calculation.
This proposition together with (6) gives an expression for the derivatives of

elliptic polylogarithms as polynomials in Eisenstein functions.
We now consider the transformation of �(�; � ;X;Y ) under the group SL2(Z),

acting on the variables �; � in the standard way and on the variables X;Y as on a

column-vector (X
Y
).

THEOREM 3.1. Let M =
�
a b

c d

�
belong to SL2(Z). Then

�

�
�

c� + d
;
a� + b

c� + b
; aX + bY ; cX + dY

�
= � (�; � ;X;Y ) + cM (X;Y );

where cM (X;Y ) is a Laurent series in X and Y with rational coefficients.

Sketch of the proof. We first prove that cM (X;Y ), which can be defined as the
difference

�

�
�

c� + d
;
a� + b

c� + b
; aX + bY; cX + dY

�
� � (�; � ;X;Y );

doesn’t depend on � and � . This means that the differential d�;�� (�; � ;X;Y )
satisfies the following property:

d�;��

�
�

c� + d
;
a� + b

c� + b
; aX + bY; cX + dY

�
� d�;�� (�; � ;X;Y ) = 0:

One can deduce this equality from (5) using the expressions for derivatives from
Proposition 3.1. So we have proved that cM (X;Y ) is a formal function in X
and Y with complex coefficients cM (X;Y ) 2 C ((X; Y ))̂ (C ((X;Y ))̂ denote the
completion of C ((X; Y ))).

To prove the rationality of these coefficients we observe that M ! cM (X;Y )
is a cocycle of SL2(Z) with coefficients in C ((X;Y ))̂. Indeed, this is a cocycle
because this is a coboundary. So it is enough to check the rationality for a set of
generators of SL2(Z):

S =

�
0 �1
1 0

�
; T =

�
1 1
0 1

�
:
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The calculation of cT (X;Y ) is a simple exercise like the proof of part (a) of
Proposition 2.1

cT (X;Y ) =
1

exp(Y )� 1

�
1

exp(X + Y )� 1
�

1
exp(X) � 1

�
:

To calculate cS(X;Y ) we use the following trick (in which we use that SL2(Z)
intertwines the action of Z2):

cS(X;Y ) = �

�
� � 1
�

;�
1
�

;�Y;X
�
� � (� � 1; � ;X;Y )

(use Prop. 2.1.(b)) = eY
�
�

�
�

�
;�

1
�

;�Y;X
��

(use Prop. 2.1.(a)) �

�
eY � (�; � ;X;Y ) �

1
exp(X)� 1

�

= eY
�
� (�; � ;X;Y ) + cS(X;Y )

�
�

�
eY � (�; � ;X;Y ) �

1
exp(X)� 1

�

= eY cS(X;Y ) +
1

exp(X)� 1
:

We have deduced an equation for cS(X;Y ) with an evident solution which is a
Laurent series with rational coefficients:

cS(X;Y ) = �

�
1

exp(Y )� 1

��
1

exp(X) � 1

�
: (9)

We now describe the action of isogenies on the elliptic polylogarithms. First we
mention that the parts (a) and (b) of Proposition 2.1 imply the following result for
m;n 2 Z

exp(mY + nX)� (� +m+ n�; � ;X;Y ) � � (�; � ;X;Y ) 2 Q(X;Y ):

Let M =
�
a b

c d

�
belong to M2(Z), N = det M = ad � bc 6= 0. Let KM � Q

2

be a set of representatives of the kernel of the map M : (Q=Z)2 ! (Q=Z)2. We
denote elements of KM by v =

�
r

s

�
. Consider two representatives v1 and v2 of

some element in the kernel. The difference v1 � v2 belongs to Z and consequently

e(r1Y�s1X)� (� + r1 � s1�; � ;X;Y )

�e(r2Y�s2X)� (� + r2 � s2�; � ;X;Y )

belongs to Q((X; Y ))̂.
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THEOREM 3.2. Let M 2 M2(Z), N = detM = ad � bc 6= 0. Than, with
notations as above,X

v2KM

exp(rY � sX)�(� + r � s�; � ;X;Y )

��

�
N

�

c� + d
;
a� + b

c� + b
;
aX + bY

N
;
cX + dY

N

�
2 Q((X; Y ))

for some and, consequently, for any choice of KM .

Sketch of proof. It is well-known [L] that every element M of M2(Z),
detM 6= 0 can be decomposed in a product of ‘standard’ elements

�
Ni 0
0 1

�
and

elements of SL2(Z). For ‘standard’ elements the statement of this Theorem was
proved in the part (c) of Proposition 2.1 and for elements of SL2(Z) this statement
is equal to the previous theorem. Hence we must show that if our statement is valid
for two matrices, it is valid for their product. Introduce some notation. Let

��
r1

s1

�
;

�
r2

s2

��
= r1s2 � s1r2

be the usual skewsymmetric pairing. It is easy to check that for M =
�
a b

c d

�
2

M2(Z); ad� bc = N 6= 0, hMv1;Mv2i = Nhv1; v2i. Clearly

M

�
�
1

�
= (c� + d)

0
@ a� + b

c� + d
1

1
A :

Put M3 = M1M2 and Ki = KMi
; Mi =

�
ai bi
ci di

�
, Ni = aidi � bici. We can

choose for K3 the set8>><
>>:

0
BB@ r2 +

r1d2 � s1b2

N2

s2 +
r1c2 � s1a2

N2

1
CCA = v2 +M�1

2 v1

��������
�
ri
si

�
= vi 2 Ki

9>>=
>>; :

Then

X
v32K3

exp
��

v3;

�
X
Y

���
�

�
� +

�
v3

�
�
1

��
; � ;X;Y

�

=
X
v22K2

X
v12K1

exp
��

v2 +M�1
2 v1;

�
X
Y

���

��

�
� +

�
v2 +M�1

2 v1;

�
�
1

��
; � ;X;Y

�
=
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=
X
v12K1

exp
�
N�1

2

�
M2M

�1
2 v1;M2

�
X
Y

���

��

0
BBB@
N2� +

�
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;
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X
v12K1

exp
�
N�1

2

�
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�
a2X + b2Y
c2X + d2Y

���

��

0
B@ N2�+

c2� + d2
+

*
v1;

0
B@
a2� + b2

c2� + d2

1

1
CA
+
;

a2� + b2

c2� + b2
;
a2X + b2Y

N2
;
c2X + d2Y

N2

1
CA

� �

�
N3

�

c3� + d3
;
a3� + b3

c3� + b3
;
a3X + b3Y

N3
;
c3X + d3Y

N3

�
:

Here � denotes congruence mod Q((X;Y ))̂.

4. Eisenstein–Kronecker series and elliptic polylogarithms

We recall a classical result of Kronecker [W]: Denote by L the lattice generated by
1 and � . Any � 2 C determines a character �� on L

��(�) = exp

 
2�i

�� � ��

� � �

!
:

Then [W, Z1] the Eisenstein–Kronecker series of weight 1 which is given by

K1(�; �; 1) =
X
w2L

e

��(w)

w + �

(where �e denotes Eisenstein summation; see [W]) expresses as

K1(�; �; 1) = 2�i exp
�

2�i�
� � �

� � �

�
F (�; �; �); (10)

comp4014.tex; 17/06/1997; 10:09; v.6; p.11

https://doi.org/10.1023/A:1000193320513 Published online by Cambridge University Press

https://doi.org/10.1023/A:1000193320513


278 ANDREY LEVIN

(F was defined in the beginning of Section 3). One can represent this function as
the generating function with respect to the variable � of the usual Eisenstein series
ek(�; �) = �0w2L e(��(w)=w

k):

X
w2L

e

��(w)

w + �
=

1
�
+
X
w2L

0

e

1X
j=0

(��)j
��(w)

wj+1

=
1
�
+

1X
j=0

(��)j
X
w2L

0

e

��(w)

wj+1 : (11)

Put r = �����

���
, s = ���

���
, then � = r + s�; � = r + s� . Define the function:

�(�; � ;X;Y ) = esX+rY � (�; � ;X;Y ):

Now we describe the relation between elliptic polylogarithms and indefinite
Eichler–Shimura integrals of Eisenstein series.

Let � be a congruence subgroup and G(�) a modular form of weight k with
respect to �. Then the vector-valued differential form G(�)(�Y � + X)k�2 d�
is �-invariant. The indefinite Eichler–Shimura integral G(�;X; Y ) of G(�) is the
indefinite integral of this form:

d�G(�;X; Y ) = G(�)(�Y � +X)k�2 d�:

Let r and s be rational. Then the Eisenstein series er;s
k
(�) = ek(r + s�; �) is a

modular form of weight k for some congruence subgroup.

THEOREM 4.1. If (r; s) 6= (0; 0) then �(�; � ;X;Y )j�=r+s� is the modified gen-
erating function for the indefinite Eichler–Shimura integrals of Eisenstein series
e
r;s

k
(�):

�(�; � ;X;Y ) =
��

X(�Y � +X)
+

1X
k=2

(�1)k�1(k � 1)(2�i)�kEr;s
k

(12)

and ��(0; � ;X;Y ) = (�(�; � ;X;Y ) � 1
2�i log(2�i�))j�=0 is the modified gener-

ating function of Eisenstein series e0;0
k
(�) of the level 1:

��(0; � ;X;Y ) =
��

X(�Y � +X)
+

1X
k=2

(�1)k�1(k � 1)(2�i)�kE0;0
k
;

d�E
r;s

k
= e

r;s

k
(�)(�Y � +X)k�2 d�:
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The proof is a direct calculation of d��r;s(�;X; Y ) using Proposition 3.1 and (11).
Now we have expressed the nonholomorphic Eisenstein series

ek;l(�; �) =
X
w2L

0

e

��(w)

wkwl

in terms of elliptic polylogarithms. Evidently

K0(�; �; 1) =
X
w2L

e

��(w)

jw + �j2

is the generating function of ek;l(�; �) with respect to variables �; �:

X
w2L

e

��(w)

jw + �j2
=

1
j�j2

+
X
w2L

0

e

1X
k;l=0

(��)k(��)l
��(w)

wk+1wl+1

=
1
j�j2

+
1X

k;l=0

(��)k(��)l
X
w2L

0

e

��(w)

wk+1wl+1 : (13)

Let us considerX andY as imaginary objects, this means that they are antiinvari-
ant with respect to the action of the complex conjugation, so if we put � = �Y �+X

2�i ,
then � = �Y �+X

2�i and conversely X = 2�i �����
���

, �Y = 2�i ���
���

.

THEOREM 4.2. ConsiderX and Y as expressions in � and � as described above.
Then

�(�; � ;X;Y )� �(�; � : �X;�Y ) = �
� � �

(2�i)2K0(�; �; 1):

Sketch of the proof. A direct calculation shows that both sides of the equality
satisfy the following conditions:

(i) They are solutions of the system of differential equations8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

�
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1
2�i
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@

@�
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�

�
f = �

1
2�i

K1(��; �; 1)
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@�
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� � �

� � �

@
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� � �

� � �

@

@�

!
f =

1
(2�i)2

@K1(�; �; 1)
@� 

@

@�
+

� � �

� � �

@

@�
+
� � �

� � �

@

@�

!
f = �

1
(2�i)2

@K1(��; �; 1)
@�

:

(14)

(ii) They are modular invariant.
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For the right-hand side this statement is the result of a simple calculation. For
the left hand side (i) is the corollary of Proposition 3.1 and (10) and (ii) is the
corollary of the modular properties of elliptic polylogarithms (Theorem 3.1); the
additional term cM (X;Y )� cM (�X;�Y ) vanishes, because cM is a real function
and X and Y are imaginary.

So the difference between the rhs and the lhs of the conclusion of the theorem
is modular invariant and is a solution of the homogeneous version of (14). Any
solution of the homogeneous equations is given by

g

�
� � �

� � �

�
exp

 
�2�i

�� � ��

� � �

!

with an arbitrary function g. The modular invariance show that g is some constant
C . The simplest way to show the vanishing of C is to consider the constant term
in the �; � expansion and to apply the Kronecker limit formula. We will prove the
vanishing of C in another way.

Suppose � and � are real, � is imaginary. Consider the asymptotic of both sides
as � tends to i1. The first terms are proportional to � , the second terms don’t
depend on � and other terms tend to zero. We will prove that first and second terms
of both sides coincide, so the limit of the difference vanishes and consequently the
difference is zero.

If � an � are real then Y = 0 and s = 0, so

�(�; �;X; 0) = � (�; � ;X; 0)

=
1

2�i

0
@ 1X

j=0

exp(jX) log(1� zqj) +
1X
j=1

exp(�jX) log(1 � z�1qj)

1
A

��
expX

(expX � 1)2 + (� � 1
2 )

1
expX � 1

and

�(�; �;X; 0) � �(�; �;�X; 0)

=
1

2�i

0
@ 1X

j=0

exp(jX)(log(1� zqj) + log(1� z�1qj))

+
1X
j=1

exp(�jX)(log(1� z�1qj) + log(1 � zqj))

1
A

�2�
expX

(expX � 1)2

= �2�
expX

(expX � 1)2

1
2�i

(log(1� z) + log(1� z�1)) +O(��1):
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On the other hand ��(m+ n�) = exp(�2�in�) and if n 6= 0

1
jm+ n� + �j2

=
1

2n�

�
�

1
m+ n� + �

+
1

m� n� + �

�
:

We used above our conditions on �, � and � . So

K0(�; �; 1)

=
1X

m=�1

1
(m+ �)2

+

 X
n>0

+
X
n<0

!
exp(2�in�)

2n�

X
m

�
�

1
m+ n� + �

+
1

m� n� + �

�

= (2�i)2 exp(2�i�)
(exp(2�i�)� 1)2 +

 X
n>0

+
X
n<0

!

�
exp(2�in�)

2n�

�

�
��i

exp(2�i(� + n�)) + 1
exp(2�i(� + n�))� 1

+ �i
exp(2�i(� � n�)) + 1
exp(2�i(� � n�))� 1

�
:

In this computation we use the classical representation of cotangent as an infinite
sum, which is equivalent to the Euler product formula for sine, see e.g. [W].
According to our restriction 2�i� = X . If � tends to i1, �i exp 2�i(�+n�)+1

exp 2�i(�+n�)�1 tends
to � sign (n)�i and we get:

K0(�; �; 1)

= (2�i)2 exp(2�i�)
(exp(2�i�)� 1)2 +

1
2�

�

 X
n>0

exp(2�in�)
n

(�i� (��i)) +
X
n<0

exp(2�in�)
n

(��i� �i)

!

+O(��2)

= (2�i)2 exp(2�i�)
(exp(2�i�)� 1)2 �

2�i
2�

�(log(1� z) + log(1� z�1)) +O(��2):

We proved that the asymptotics of both sides of equation are equal. This ends the
proof.
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Remark. The statement of the previous Theorem means that the elliptic analogs
of the Bloch–Wigner–Zagier polylogarithms are nonholomorphic Eisenstein series.
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