CORRESPONDING GROUP AND MODULE SEQUENCESD

R. H. CROWELL

§ 1. Statement of results

For convenience we consider throughout an arbitrary but fixed multiplica-
tive group H. The integral group ring of H is denoted by ZH, and the homo-
morphism e¢: ZH- Z is always the trivializer, or unit augmentation, defined by
eh =1 for all he H. For any group extension of H, ie., exact sequence of

multiplicative groups

1—»K—>G—f+H-—>1, 1)

we shall construct an exact sequence of left ZH-modules

a
0—>B—> A—> ZH—> Z—>0. (2)

(All unlabeled mohomorphisms will be assumed to be inclusion mappings). We
shall say that the module sequence (2) is determined by the group sequence (1).
Conversely, starting from an arbitrary exact sequence (2) of left ZH-modules,

we shall construct a multiplicative group A and an abelian group extension

_ 7
1——>l‘2\—->A—>H——>1 (3)
AN

written multiplicatively

whose kernel is the additive group of the module B. We shall also say that
the group sequence (3) is determined by the module sequence (2).

Two group extensions (1) will be called equivalent if there exists an iso-
morphism of one onto the other which is the identity on H. Similarly, two
module sequences (2) are equivalent if there exist a ZH-isomorphism of one
onto the other which is the identity on ZH. It will be obvious that equivalent

group sequences determine equivalent module sequences and conversely.
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Where K' is the commutator subgroup of K, a group sequence (1) induces
the commutative diagram

11— K — G ——¢—> H—1
lax e identity (@)
<
1—K/K—>G/K'— H—>1

We shall call the second row of the diagram, which is also exact, the abelianiza-
tion of the first. The principal theorems of this paper are

(1.1) The group sequence determined by the module sequence determined by

a given group sequence (1) 4s equivalent to the abelianization of (1).
And, conversely,

(1.2) The module sequence determined by the growp sequence determined

by a given module sequence (2) is equivalent to (2).

It is an immediate corollary that the module sequences determined by two
group sequences are equivalent if and only if their abelianizations are equivalent.

The module sequence determined by a group sequence (1) will be shown
1 §6 to be the 0- and 1.dimensional part of the homology sequence of the pair
(G, 1) with coefficients in ZH as defined by Massey [?]. If G is given by a
group presentation (%1, @, ...: 7, 7,...),, the module sequence (2) may
e cafcufated using the free ditferential culus of Fox (4, 5] The matrix
[oe(32)
which is the module A in the sequence (2). These facts and (1.1) imply
Blanchfield’s result [1] that, to quote F ox, “roughly speaking, the Jacobian class of

is a relation matrix for the relative homology group Hi(G, 1; ZH),

G at ¢ determines the structure of G modulo the commutator subgroup of the
kernel of ¢". Even though the approach and proofs are entirely different, many
of Blanchfield’s basic constructions translate directly into the ones used here.
In §7 I have elaborated on the comparison.

I am greatly indebted to Hale F. Trotter of Queen’s University, Kingston,
Ontario, with whom I was associated in the NSF project!, His suggestions have
resulted in substantial simplifications in the present treatment.

§ 2. Construction of the module sequence

Consider given a group extension (1). Let ¢: ZG - ZH be the linear ex-
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tension to the group rings of the group homomorphism ¢, and let ¢: ZG— Z be
the trivializer of G. The ideals that are the kernels of ¢ and ¢ we denote by
£ and ®, respectively. Where 88 is the product ideal and = is the factor

homomorphism, we obtain the commutative diagram

‘ oS €
00— & — G —> ZH—>Z—0
lnlﬁ ln‘ ; lidentity (6)
0—> R/RG —> B/RG —> ZH—> Z—>0 (5)

whose rows are easily seen to be exact. Observe that G/R® is a left ZH-
module with the operation of ZH well-defined by

(2.1) gu* v =n(uv), for all usZG and ve@.

Furthermore, /88 is a submodule and the mappings in the second row (5)
are ZH-homomorphisms. The sequence (5) is by definition the module sequence
(2) determined by (1).

§ 3. Construction of the group extension

Consider an arbitrary exact module sequence (2) (the mapping e is always

the trivializer). With respect to a product defined by
ab=a+(0a+1)+b, for all q, be A,

the module A is a semi-group with the element 0 the identity.
Let A be the set of all = A such that da+1 H. Then,

(3.1) A is @ multiplicative group (the inverseof aisa™'= — (da+1) "'+ a).
Notice that BC A and, in addition,
(32) b1+bz=bxbg, for any by, b, € B.

Thus B is a subgroup of A. We define the mapping r: A - H by setting
ra=2a+1, all ac A. It is straightforward to show that

(3.3) 71 is a group homomorphism of A onto H with kernel B.

We therefore obtain the abelian extension (3). In any abelian extension
there is defined an operation of the image on the kernel. In particular, the
action of H on B is well defined by

raeb=aba"’, for any a= A and b B.
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This product can be extended in the obvious way so that B is a ZH-module

with respect to . Inasmuch as
ra°cb=ab(— (ra) ' a)=alb— (ya)"'*a)=a+ra*b—a=ra+b,
it follows that

(3.4) The induced module structure on B is the same as the original.

§ 4. The principal mapping diagram

Consider a given group sequence (1), and let (5) be the module sequence

which it determines. The principal mapping diagram is the commutive diagram

1— K/K'—> G/K' — H —> 1
lo 17 iﬁ (7)
0— /86— 8/RC6—>ZH—> Z—>0

The mapping @ is defined by ph=h—1, for all he H. Let a: G->@& be given
by ag=g—1, for all g G. The mapping 7 is defined by the commutativity
relation

7§ = na.
(The diagram chasing in the following lemmas is based on (4) and (6).)
(4.1) 9 s well-defined.
Proof. Observe first of all that « is a crossed homomorphism :
a(g1g) =g&—1=(g -1 +&(ge—1) =ag+guag.
Hence, for any ki, k€ K,

akikohi By = (1= bbb Dak,+ k(1 — ko ki Ry D aks.

Thus, by (2.1), makk:ki k7' =0; whence it follows that zaK'=0. Next, sup-
pose that £g;=£g:. Then, gig;' € K’ and so

0=ragig:' =nlag —gg  ag) = rag — nag,

and the proof is complete.
(4.2) o9 =B

Proof. For any g G, onfg=0omag=¢(g—1) and plég=ppg=¢g—1. -

https://doi.org/10.1017/5S0027763000002373 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000002373

CORRESPONDING GROUP AND MODULE SEQUENCES 31

(4.3)  For any n, neG/K', 1(ri7) =9r+Crisqr., 1€, 7 iS a crossed

homomorphism.
Proof. Choose counter-images 1 =¢g; and 7 =£g. Then,

77(7'1 rz) = ﬂeglgz =nag182 = 7!'((Xg1 + &1 agz)
=nag+ ¢81* rag =168 + CEg1e 15
=11+ Cree s

Inasmuch as ayr =pB¢r =1—1=0 for any < K/K', it follows that the image
of the restriction 6 =%|K/K' is contained in &/8&. Thus the existence of the
principal mapping diagram (7) is established. It is a consequence of (4.3) that

0(r172) = 0ri+ 67, for any 7r, n=K/K'.

Hence, 6 is a multiplicative-to-additive group homomorphism. In addition 4 is
a ZH-homomorphism. The operation of H on K/K' is defined by h+r=srs"},
for all he H, r€ K/K’, and s such that (s= % (just like the definition of ¢ in

the paragraph preceding (3.4)). We have

O(her)=y(srs™)
=ys+Lsegr—Cisrs™) o xs
=h-0r,

which is sufficient to verify that § is a ZH-homomorphism.
(4.4) The mapping 6 is a ZH-isomorphism onio.

Proof. The proof is obtained by constructing the inverse mapping. Choose
a system of coset representatives, i.e., for each h < H, select 7 G such that

¢h=h, and consider an arbitrary element > #,g in the ideal & Then
9EG

Dingg= >\ > nihk

YEGR hEH k=K
0=¢(Zmee)= 53 )

Since H is a basis for the free additive group ZH, 0= > ni:. Hence,
kEK

Singg= >y > warh(k—1).

1EG heHd keEK

In addition, if hZ nieh(k—1) =0, then all nir =0. It follows that the elements
, k¥1
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B(k—1), for all e H and 1%k < K, constitute a basis for the free additive
group ® We may therefore define an additive-to-multiplicative homomorphism
v: - K/K' by

w(B(k—1)) =h-£k, heH and k€ K.

Consider arbitrary elements g€ G and k€ K. Where 7 = ¢g, we have g= Rk
for some k' K. Then,
gk-1) =hKk—-1) - h(k-1),
and so
v(g(k—=1)) = (h-Ek'E) (h+ £ = ¢g- tk.
This implies

(4.5) vluw) = gu* oo, for all = ZG and veE .

Consider the identity
(=1 (g—-1)=glglbg—1) - (k—-1), g€ G and k€ K.

Inasmuch as ¢£g = ¢g, we have, according to the definition of the operation of
H on K/K',

viglglbg—1)) =¢g- &g kg) = E(gg " kgg™") = &k
Hence,

v(k—1)(g—1) = (k) (¢R) ' =1L

The ideal 88 is a left ZG-module generated by all elements (k—1)(g—1),
ke K and g€G. As a result of the above equation and (4.5), we conclude
that v(88)=1. Consequently, v induces a homomorphism o: /88 - K/K',
which is easily seen by (4.5) and (2.1) to be ZH-linear. Since &K and
{n(k—1)}rex generate the modules K/K' and 8/ &®, respectively, the equations

06k =n(k—1)
wn(k—1) =v(k—1) =&k

show that @ = identity and 6w = identity, and the proof is complete.

The preceding result, (4.4), is the key lemma of this paper. I had. origi-
nally proved it using the free calculus of Fox, specifically, §4 of his paper [4].
Later K. Iwasawa suggested a proof independent of group presentations. The
present proof was constructed in a discussion with Trotter and was motivated
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by an analogous argument on page 190 of [2]. It is a corollary of (4.4) and
the principal mapping diagram that if k€ K and k—1< 86, then k= K'. This
is a result proved by Fox for the case that G is a free group, cf. (4.9) in [4].
Fox’s paper also contains references to earlier proofs by Schuman and Blanch-
field.

§ 5. Proofs of (1.1) and (1.2)

The proof of (1.1) is an immediate corollary of (4.4) and the principal

mapping diagram. We write the second row of the latter as 0-B->A-—>ZH
€ [

—>Z—-0, and consider the abelian extension 0 > B- A—> H -1 which it deter-

mines. Diagram chasing around (7) yields
(5.1) A =image 7 and ry=C.
(5.2) % is a group isomorphism of G/K' onto A.
Proof. That % is a homomorphism follows from

W) =g+ 8ric 9
=71+ 197 9 = (1) (972).
Next suppose that 7 = identity for some r= G/K'. Since the identity element

of A is 0, we have
O=opr=Rr=Cr—1.

It follows that < K/K' and thence that 0=y =0r. Since, by (4.4), 0 is a
multiplicative to additive isomorphism, we conclude that » =1. This completes
the proof.

As a result, the commutative diagram

| [ donti
4‘,0 l’? \l,xdentxty

— T
1—B — A — H—>1

exhibits the equivalence of the two rows, and theorem (1.1) is proved.
To prove (1.2), we start with an arbitrary module sequence (2). In order
to avoid the necessity of introducing new notation in what follows, we write

the group sequence (3) determined by (2) as 1—>K—>G—W—>H—> 1. This group
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extension in turn detemines the module sequence (5), and it is our objective
to show that (2) and (5) are equivalent. The additive group of ZG is freely
generated by G. Since G= AC A, the inclusion can be extended to an additive

group homomorphism 7: ZG- A.

(5.3) dluw) = (¢u)+ (i), for any n<ZG and v G.
Proof. Tt is sufficient to prove that #(gv) = (¢g)+ (iv) for any g€ G and
ve®. Since v= 2] ng(g—1), it is actually enough to show
9EG -

igle:—1)) =(¢g) il&—1), g, &<0G.

The identity 1= G is the element 0 = A, Thus {1 =0. Furthermore, ¢ =7, and
so according to the definition of multiplication in the semi-group A, the equa-
tion gi1g» =g+ ¢gi* & holds in A. Therefore,

glg—-1))=igg:—g)=8g—&
=¢gi &= (¢g)oi(g—1),

and this completes the argument.
(5.4) #(88)=0.

Proof. In view of (5.3), it suffices to verify the assertion on a generator
(-1)(g-1), k=K and g=G.

(k-1 (g—1)=ilkg—k—-g+1)
=hkg—k-g=kt+ok-g—k-g=0.

As a result, there exists the following commutative diagram of additive group

homomorphisms
i|®
® —>A
S
i /
v
&/86

(5.5) 7 is a ZH-homomorphism.
Proof. This amounts to checking

Jgu - nv) = gu- jrv, for any = ZG and v 6.
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By (2.1), (5.3), and the above diagram
J(Qu 7o) = jruv = juv = u -+ v = Ju- jrv.

Since in the present instance B = K, the commutator subgroup K’ is trivial.
This simplifies the fundamental mapping diagram, and we obtain 7: G- §/{@.
For any g=G, we have 7g¢=n(g—1), and so jrg=jr(g-1)=i(g—1)=g
That is,

(5.6) The composition G—L@/ Q@-—J?A is the inclusion mapping.

Inasmuch as 7| K is the isomorphism 8, it follows from (5.6) that j maps
R/8® onto K =B and that the restriction of j to 8/8® is the inverse 67, We
therefore obtain the diagram

3
0—>R/RG—> /RG> ZH —> Z—>0
lom li Lidentity |identity (8)

0— B — A3 70 > 7—>0

whose rows are the module sequences (5) and (2). To establish commutativity,

it remains to show
(57) 82j= 81.

Proof. We need 0,jrv=0:nv, for any v=&; so it suffices to prove
2jn(g—1) =owm(g—1), for any g€ G. The mapping r =¢ is defined by 2.g
+1=7g=¢g By (5), oin(g—1)=¢g—1. Hence, 2jr(g—1) =3,i(g—1)
=0,8=¢g&—1=09,7(g—1), and the proof is complete.

Thus (8) is a commutative diagram. Since §7!is an isomorphism, it follows
from the “five” lemma that jis also, We conclude that the rows are equivalent,
and theorem (1.2) is proved. It is interesting that according to (5.6) the
mapping ;! is an extension of % from G=A to A. If we could produce this
extension directly, (1.2) would be an immediate corollary of the principal

mapping diagram.

§ 6. The homology sequence

In this section we show that the module sequence (5) determined by a
given group extension (1) is the 0- and 1-dimensional part of the homology
sequence of the pair (G, 1) with coefficients in ZH.
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For any ring homomerphism ¢: .- 4' (a ring is assumed to have an
identity) and right A’-module B', we define the right 4-module B, whose un-
derlying additive group is the same as that of B’ and whose scalar multiplica-
tion is defined by &'+2=050'+¢A. For any left .1-module A, we define the left
A-module (y,A =4, ®@ s A. The mapping ¢4: A- (A defined by ¢4(a) =1'® ra
obviously satisfied

da(Aea) =¢r¢pila), for all A= 4 and e = A.

Assuming that ¢ is onto and using the right exactness of the tensor product,
. i % .
we obtain from the exact sequence 0 - kernel ¢ —>A—> 4}, - 0 of right .{-modules

the commutative diagram

i®nid o®nid
kernel @ n A——>AQ N A———> A, @ A—>0
/'1
,//
j|l= v/
/(,’Jt.
1
A

whose row is exact. The isomorphism j is the mapping A® na—~>4+a, and the

image of kernel ¢ ® » A under j(i® 5id) is (kernel ¢ )+ A. We conclude that

(6.1) If ¢ is onto, then 0— (kernel ¢)+ A A—> ,,A~0 is exact.

Finally, we remark that any /A-homomorphism f: A;>A. of two left A-
modules induces a .t-homomorphism f': (,,;A1- ()4, in the obvious way and
that ¢,/ =/"¢4,.

Our construction of the homology sequence of (G, 1) follows Trotter’s for-
mulation [8] for a group system. The system here consists simply of the group
G, the trivial subgroup {1}, and the inclusion {1}>G. The module of coeffi-
cients is ZH,, where ¢: ZG-»ZH is the extension to the group rings of the

group homomorphism ¢. Let X be a projective ZG-resolution of Z,

) d; di €
—> X > Xi—>ZG—> Z—>0.

The subcomplex Y corresponding to {1} is

—>0—>0—>ZG—> Z—>0.
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The graded structure of the chain mapping ¢x: X - (,X is exhibited in

dof

d/
—> nXo > () Xi—> ZH—> Z—>0

For =1, we have abbreviated ¢x, by ¢». The module ZH,®ZG has been
identified with ZH and, therefore, ¢z¢ is replaced by ¢. The homology sequence
of (G, 1) with coeflicients in ZH is that of the pair ((,,X, «,Y). That is, of

’ ’

d
—5 o Ko ) Xi—> ZH—> 0 %
- 0 —> 0 — ZH—>0

It follows that the 0- and 1-dimensional part of this sequence is of the form
i R
0-H\(G; ZH)>Hi(G, 1; ZH)—>ZH—>Z~0. In order to establish its equi-

valence with (5), it will suffice to establish a commutative diagram

| |
| |

() fG
l !

¢|® e
00— >8——">ZH—>Z—0
lﬂ@ l;f ; lidentity (9)
: !
0 0
whose rows and columus are exact.

dx e
From the exact sequence » X;—> X;—> @ - 0. where ex=d,x, for all x< X,

we obtain the commutative diagram

s ® —— 0
l(/;z lg’n iﬁ=¢@ (10)

d.
(¢,Xg~2»(.?,x1—e»H1(G,|1; ZH) —>0

i
4

0
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The second row is exact by the right exactness of the tensor product and the

column is exact by (6.1).

The remaining two lemmas serve to complete the proof of the existence
of the mapping diagram (9).
(6.2) #R=H(G; ZH).

Proof. An element of H:(G, 1; ZH) belongs to H,(G; ZH) if and only
if it has a counter-image under e/ in kernel di;. Consider v= & and select
x & X; such that ex=dix=v. Then 7v=¢¢:x and dig1x = odix =¢v=0.
Hence nv = H(G; ZH). Conversely, consider 6 € H(G; ZH). Select x’ € kernel
dy such that e'x' = b, and choose x € X; such that ¢:x=x'. Since ¢ex =¢dix
=digp1x=dix' =0, we have ex . Since Fex=e'¢,x =e'x' =b, we conclude

benf®. This completes the proof.
(6.3) o7 =(¢|©).

Proof. 1t follows from the definition of the boundary operator in an homo-
logy sequence that de' = dj. Hence,

oe=20e' ¢1=d 1= ¢di= (¢|®)e.

Since e is onto, the proof is complete.

§ 7. Jacobian matrices and Blanchfield’s senior thesis

Suppose G is defined by a group presentation G = (%%, . . . 71, 72, .« - )o.
That is, there is given a free group F freely generated by xi, %, ... and a
homomorphism ¢ of F onto G with kernel the consequences of 7, 7, . . . (cf.
[4, 51). We first show that the Jacobian matrix at ¢, i.e, ,gbgo(%;—’])‘, is a

relation matrix for Hi(G, 1; ZH). Following Trotter, we define the complex
Xo =2G
X = free ZG-module generated by a;<>x;, 7=1,2, ...
X; = free ZG-module generated by b; <7, i=1,2, ...
di: Xi— X, defined by digi=9x—-1,7=1,2, ...
o7 .
dy: X X, defined by dob; = ;,a(@%)'a,-, i=1,2 ....

. d> dy e .
It is not hard to prove that the sequence Xo—> Xi—> X,—>Z -0 is exact (cf.

lemma 5.1 of [6]). It is therefore the 2-skeleton of a projective ZG-resolution

https://doi.org/10.1017/50027763000002373 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000002373

CORRESPONDING GROUP AND MODULE SEQUENCES 39

of Z. Consider the mapping diagram (10) in which X; and X, are assumed to
be as dgscribed in this section. The ZH-modules (,X; and (,,X: are free and

generated by {(¢ia@i, ¢ia, . ..} and {¢2b1, ¢2bs, . . .}, respectively. Since
ori .
digebi = prasbi = S90S ) ey, i=l2 .

ori

D )t is the matrix of @i and therefore a relation matrix
)

it follows that L,/;w(
of Hi(G, 1; ZH).

Blanchfield proved that, for any finite presentation (%, ..., %x: 71, . - -,
or;i
ox;
column matrix @ =|¢¢x;—1{, j=1,..., n, determine the groups K/K' and

#m), =G, the matrix P:F(ﬁsﬁ( ) i=1,...,m j=1,..., n, and the

G/K'. In view of the preceding paragraph, this result follows at once from
our theorem (1.2). We have seen that specifying P is the same as specifying
d;. Similarly, @ defines d! inasmuch as

di¢ra; = pdia; = p¢xi — 1.

Finally, the sequence

X X2 2 5> 20
defines the homology sequence (2) which, by (1.1), determines
1-K/K'->G/K'-> H-1.
Blanchfield proved (4.4) for finitely generated groups. That is, he has
K/K'~Xkernel di/image d5,

where di and dj are defined by the matrices @ and P. Interestingly enough,
he did not consider Hi(G, 1; ZH) = A but a group which can be identified as
the image of G/K' under 7, i.e., our group A.
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